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Abstract— This paper describes the stochastic model order re-
duction algorithm via stochastic Hermite Polynomials from the
practical implementation perspective. Comparing with exist-
ing work on stochastic interconnect analysis and parameterized
model order reduction, we generalized the input variation repre-
sentation using polynomial chaos (PC) to allow for accurate mod-
eling of non-Gaussian input variations. We also explore the im-
plicit system representation using sub-matrices and improved the
efficiency for solving the linear equations utilizing block matrix
structure of the augmented system. Experiments show that our
algorithm matches with Monte Carlo methods very well while
keeping the algorithm effective. And the PC representation of
non-gaussian variables gains more accuracy than Taylor repre-
sentation used in previous work[9].

I. INTRODUCTION

As we step into the nanometer design regime, circuit and
device parameters are no longer deterministic and they suf-
fer from distinct types of variations [6]. The circuit analysis
and simulation methods have to consider countless variations
explicitly to meet the variational design requirements in the
nanometer scale. Model order reduction (MOR) technique,
which change a large linear system into a small one, is an
important technique to enhance the efficiency for interconnect
analysis. In order to consider the variational issues in inter-
connect analysis and model order reduction, many approaches
have been proposed.

The perturbational MOR [5, 10] focus on finding the in-
terconnect performance under perturbational variations, which
means circuit parameters are perturbed a little near the nom-
inal value. The lower order polynomials captured via regres-
sion/fitting [10] or two-step matching[5] could accurately rep-
resent the perturbed transfer functions and capture the per-
turbed system performance under perturbational variations.
But if the variations are modeled as stochastic variations, the
lower order polynomials from the perturbational approach can
only generate good results under small perturbations near the
nominal value, and did not consider stochastic distributions of
variations thus can not ensure good stochastic metrics. Interval
or affine based MOR[2] use a specialized computer arithmetic
which take place of traditional scalar arithmetic to generate the
system performance under variations. Statistical/stochastic in-
terpretation for the arithmetic is also given in [2], but error ex-
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plosion and instability in long computation chains may occur
thus not very scalable for large circuits, although it is fast and
do not require or assume stochastic distributions.

Parametrical variations, in fact, are stochastic/statistical vari-
ations, and stochastic interconnect analysis in fact is a simula-
tion or solving of a stochastic process. Stochastic parameter-
ized model order reduction, which considers stochastic varia-
tional parameters during the process of MOR, is the topic of
this paper. Although some theories and results of the stochas-
tic interconnect analysis via hermite polynomials chaos have
already been reported in [9] and the parametrical model order
reduction based on the stochastic formulation of the augmented
system has been briefly discussed in that work, there are still
several issues not addressed.

First, Taylor expansions were used to generate the stochastic
input variation of non-gaussian variables in [9] but the Taylor
expansion itself did not take the distribution information into
consideration thus may not be optimal for non-gaussian vari-
ations. Second, after the augmented system equation is built,
any model order reduction technique could be used for the aug-
mented system. But the block structure of the system equa-
tion of the augmented system provides great possibility for effi-
ciency improvement of subsequent MOR but have not been ex-
plored in that work. In this paper, we follow the same theoret-
ical idea in that work but we focus on the practical design and
implementation issues concerning the Stochastic Model Order
Reduction (SMOR) utilizing hermite polynomial expansions,
including the representation of the complicated input varia-
tion using polynomial chaos, and how to express the system
memory-efficiently in sub-matrix level and how to efficiently
solve the governing equations utilizing the block structure of
the linear equation during the model order reduction. The three
issues which have not been discussed in [9], are important por-
tions for implementing a practical algorithm of SMOR.

Our paper is organized in the following way: Section II gives
an overview of the algorithm of stochastic interconnect analy-
sis and SMOR. Section III describes the representation of vari-
ation, and how to convert non-Gaussian variation into a polyno-
mial chaos representation. Section IV discuss how to represent
the system using blocks of submatrices. Section V discuss the
efficient solver utilizing matrix structures. Section VI explains
the experiment results on stochastic model order reduction of
interconnect analysis with Gaussian and non-Gaussian varia-
tions. Finally, conclusions and future works are given.
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II. OVERVIEW OF THE STOCHASTIC ANALYSIS OF

INTERCONNECT

A. Notations and basic flow of the stochastic analysis of inter-
connect and SMOR

Here we briefly review the background and notation for
stochastic interconnect analysis and stochastic MOR. A more
detailed theoretical description could be found in [9].

The interconnect for analysis could be represented in the sys-
tem equation written in MNA form:

(G + Cs)x = Bu

y = LT x (1)

When stochastic variations are considered of the MNA form,
the above equation shall become

(Ĝ + Ĉs)x̂ = B̂u

ŷ = L̂T x̂ (2)

in which the Ĝ,Ĉ etc are represented using an affine form of
random variations:

Ĝ = G0 + G1ε1 + G2ε2 + · · · + Gnεn (3)

Ĉ = C0 + C1ε1 + C2ε2 + · · · + Cnεn (4)

εi are random variables denoting stochastic parametrical
variations, here we assume they are independent. If the ran-
dom variables are correlated, a Karhunen-Loeve expansion [3]
which use the covariance function of random variables could
remove the correlations.

The next procedure is to generate an augmented system from
the Eq.(2). Clearly, from Eq.(2), we could see x̂ is a function
of εi. Explicitly expand x̂ using an affine form of a set of basis
function wi which is also function of εi:

x̂ = x0w0 + x1w1 + x2w2 + · · · + xkwk + · · · (5)

Here xi are deterministic coefficients while wi are polynomial
basics accounts for stochastic variations. This expansion is in
fact infinite which means it should contain infinite number of
terms. Practically, truncations should be performed. The typ-
ical function basis are Hermite polynomials for Gaussian ran-
dom variables. The zero order Hermite polynomial is 1, the
first order Hermite polynomials are εi, the second order Her-
mite polynomials are εiεj(i �= j) and ε2

i − 1. Higher order
Hermite polynomials are also available. εi is normalized inde-
pendent gaussian variables.

As the finite truncation of Eq.(5) is performed, the trunca-
tion error should be minimized. Based on Galerkin method,
the minimization of the truncation error is further transformed
into several equations on the inner product over the basis func-
tions. Put Eq.(5) into Eq.(2), and perform the inner product of
each functional basis with Eq.(2), or from another perspective,
project the equation onto that function basis

〈wi, LHS〉 = 〈wi, RHS〉 (6)

where the inner product

〈f1, f2〉 = E(f1 ∗ f2) (7)

Eq.(6) holds in order to minimize the truncation error, it gives
an augmented system equation of deterministic xi, which could
further been investigated via model order reduction.

Generally speaking, the stochastic interconnect analysis con-
siders stochastic input variations and tries to found the response
represented as linear combination of Hermite Polynomials as
the function basis.

B. A simple illustrative example of stochastic interconnect
analysis

For illustration, a simple example is shown: Suppose only
one gaussian random variable is considered and a second order
Hermite polynomials are used as basis:

((G0 + G1ε1) + s(C0 + C1ε1))(x0 + x1ε1 + x2(ε2
1 − 1)) ≈ b0

Expand that equation, we could obtain:

(G0x0 + G0x1ε1 + G0x2(ε2
1 − 1)

+ G1x0ε1 + G1x1ε2
1 + G1x2(ε3

1 − ε1))

+ s(C0x0 + C0x1ε1 + C0x2(ε2
1 − 1)

+ C1x0ε1 + C1x1ε2
1 + C1x2(ε3

1 − ε1)) ≈ b0

Perform the inner product of w0 : 1; w1 : ε1 and w2 : ε2
1 − 1

with the LHS and RHS respectfully, we could get three block
linear equations:

((G0x0 + G1x1) + s(C0x0 + C1x1)) = b0

((G1x0 + G0x1 + 2G1x2) + s(C1x0 + C0x1 + 2C1x2) = 0

(2G1x1 + 2G0x2) + s(2C1x1 + 2C0x2) = 0

. Thus the augmented system could be obtained from the equa-
tions above:
([

G0 G1 0
G1 G0 2G1
0 2G1 2G0

]
+ s

[
C0 C1 0
C1 C0 2C1
0 2C1 2C0

])[
x0
x1
x2

]
=

[
b0
0
0

]

Then traditional MOR algorithm may be further be applied
to obtain the stochastic response. Even from this small exam-
ple, we could see that the system equations of the augmented
system are intrinsically represented in block matrices, thus
block algorithms may be available to enhance the efficiency
of MOR algorithm.

In the next sections, we present algorithm improvements and
practical implementing techniques to utilize the special matrix
property of stochastic MOR to give a more widely applicable
while efficient SMOR algorithm.

III. POLYNOMIAL CHAOS REPRESENTATION OF INPUT

VARIATIONS

A. Reasons and methods to support non-gaussian variations

The first issue we discuss in SMOR is the support of non-
gaussian stochastic input variations in Eq.(3,4). Although, in
most cases, manufacturing variations are modeled as Gaus-
sian variations, there are still several reasons that non-Gaussian
variations needs to be considered and supported. First, it is
likely some statistical information of the variation collected
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from measured data, we should perform the variational sim-
ulation according to the measured statistics rather than empiri-
cal Gaussian assumption. Another possibility is that Gaussian
geometrical variations may still generate non-gaussian varia-
tions of RLC electrical parameters due to some non-linearities
in extraction process. Also, variations due to thermal effects
or leakage effects could not be modeled as Gaussian. So the
variational simulator and underlying variational model order
reduction should be able to cope with variations modeled as
non-gaussian to be widely applicable.

The askey scheme [1, 9] change the basis functions series
wi for projection according to the stochastic distribution of
the variations εi and it can guarantee faster stochastic conver-
gence. However, to implement several different functional ba-
sis for stochastic simulation is not an easy job. Also the askey
scheme did not provide solution for arbitrary stochastic input
variations.

Another scheme, which is also the method used in this pa-
per, only implements hermite polynomial chaos representation
(solely using polynomials of Gaussian variables similar to the
example in the previous section) in the framework of SMOR.
So in order to support non-Gaussian input variables, transfor-
mation from non-Gaussian input variations into functions of
Gaussian variables is needed.

B. Demonstrations and comparisons of two types of transfor-
mations

Two types of such transformation are available: Taylor rep-
resentation and polynomial chaos representation. In [9], Tay-
lor expansions are used to cope with non-Gaussian variations
in an example for coping lognormal input variations. In order
to demonstrate the difference between the two approach, here,
we also make the illustration of lognormal variations as an ex-
ample.

Consider a lognormal random variable k, k = eε, here ε is a
random variable with normal distribution. The transformation
using Taylor models using the Taylor expansions:

eε = 1 + ε + ε2/2 + ε3/6 + · · ·
If finite truncation is used e.g a second order truncation, the
equations become

eε ≈ 1 + ε + ε2/2 (8)

Later this equations is further substituted into the equation of
input variations e.g Eq.(3,4), and the SMOR based on gaussian
hermite polynomials still could be used subsequently.

The polynomial chaos (PC) representation, on the other
hand, seek the truncated polynomials which match the inner
product of the function basis selected to minimize the stochas-
tic truncation error, e.g, for the second order PC representation:

eε ≈ a ∗ 1 + b ∗ ε + c ∗ (ε2 − 1)

1, ε, ε2 − 1 are zero order, first order, second order Hermite
polynomials respectfully, and they are orthogonal with each
other. Similarly, using these Hermite polynomials to conduct
inner product with LHS and RHS, we could obtain:

a = < eε, 1 > / < 1, 1 >=< eε, 1 >

TABLE I
STATISTICS COMPARISON OF DIFFERENT REPRESENTATION OF A

LOGNORMAL VARIABLE

Monte Carlo Taylor (3rd Order) PC (3rd Order)

mean std mean std mean std

1.6482 2.1570 1.4999 1.7072 1.6482 2.1257

(a) Monte Carlo (b) Taylor (3rd order) (c) PC (3rd order)

Fig. 1. p.d.f comparison of different representation of a lognormal random
variable

b = < eε, ε > / < ε, ε >=< eε, ε >

c = < eε, ε2 − 1 > / < eε, ε2 − 1 >=< eε, ε2 − 1 > /2

Thus a = e1/2, b = e1/2, c = e1/2/2. so that

eε ≈ e1/2/2 + e1/2ε + e1/2ε2/2 (9)

There are several prosperities of the truncated PC represen-
tation. First, it keeps the stochastic expectation:

E(eε) = E(e1/2/2 + e1/2ε + e1/2ε2/2)

Second, it is the polynomial (here means the second order poly-
nomial in this example, a higher order could give better results
obviously) which minimized the stochastic truncations error
E((eε − (e1/2/2 + e1/2ε + e1/2ε2/2)2). While the polynomi-
als generated from Taylor models do not have these properties.
Both the p.d.f of the PC representation and that of the Taylor
representation are close to that provided by Monte-Carlo (See
Fig.1). A function evaluation comparison of ex and third or-
der Taylor and third order PC is shown in Fig.2. We could
see from the figure that Taylor model may be accurate near the
mean value while PC model prevail in stochastic statistics and
is more accurate in the far ends.Some statistics are also com-
pared and PC models are more accurate in both mean value
and variance (See Table I). So the PC representation of input
stochastic variation is a more preferable choice.

C. Support for arbitrary stochastic input variations

The lognormal variation demonstrated in the previous sub-
section could be explicitly represented as a function over a
gaussian variables: eε. Not every variation could be written in
that obviously explicit form such as uniform distribution or dis-
tributions represented in histogram form. However, this form
could be obtained via cumulative probability function CDF.

Let k denote that random variable,

CDF (k) = CDF (ε) (10)
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Fig. 2. Function evaluation comparison of the lognormal variable

defines a transformation or mapping from gaussian variable ε
to that random variable k. An explicit from is:

k = CDF−1(CDF (ε)) (11)

Then we could perform numerical integration of the inner
products to calculate the coefficients of Hermite polynomial
function basis and represent that variation with polynomials of
gaussian variables similar to examples of lognormal variable in
previous subsection, and perform SMOR subsequently.

IV. REPRESENTATION AND CALCULATION OF THE

AUGMENTED SYSTEM

Now, we discuss the techniques in forming the augmented
system. Because of the effect of allowing for non-gaussian
variations, the system matrices Ĝ, Ĉ are also represented in
a truncated PC form:

Ĝ = G0 + G1w1 + G2w2 + · · · + GNw
wNw

(12)

Ĉ = C0 + C1w1 + C2w2 + · · · + CNw
wNw

(13)

Here the Nw is the number of the basis functions. Since w0 =
1, the system equation: (Ĝ + sĈ)x̂ = b̂ could be rewritten as

Nw∑
i=0

Nw∑
j=0

Gixjwiwj + s

Nw∑
i=0

Nw∑
j=0

Cixjwiwj =
Nw∑
i=0

biwi (14)

and then the block equation generated from the inner product
of wk should be

Nw∑
i=0

Nw∑
j=0

Gixj〈wiwj , wk〉 + s

Nw∑
i=0

Nw∑
j=0

Cixj〈wiwj , wk〉

=
Nw∑
i=0

Nw∑
j=0

GixjE(wiwjwk) + s

Nw∑
i=0

Nw∑
j=0

CixjE(wiwjwk)

=
Nw∑
i=0

biE(wiwk) (k = 0, 1, · · · , Nw) (15)

Because the orthogonality of the hermite polynomials
E(wiwk) = 0(i �= k), and E(w2

i ) could be easily computed
and put in a table for look-up further. The LHS, on the other
hand, requires some special treatment. Rewritten Eq.(15) into
a block matrix form:{

(Gaug + sCaug)∗ = baug

y = LT
augxaug

(16)

where

Gaug =

⎡
⎢⎣

A00 · · · A0Nw

...
. . .

...
ANw0 · · · ANwNw

⎤
⎥⎦ (17)

Caug =

⎡
⎢⎣

B00 · · · B0Nw

...
. . .

...
BNw0 · · · BNwNw

⎤
⎥⎦ (18)

baug =

⎡
⎢⎣

b0

...
0

⎤
⎥⎦ xaug =

⎡
⎢⎣

x0

...
xNw

⎤
⎥⎦ Laug =

⎡
⎢⎣

Lw0

...
LwNw

⎤
⎥⎦(19)

Ajk =
Nw∑
i=0

GiE(wiwjwk) (20)

Bjk =
Nw∑
i=0

CiE(wiwjwk) (21)

So we got the matrix form of the system equation of the aug-
mented system. There are some observations from that equa-
tion. First, the matrix Gaug and Caug are block symmetric,
which means Ajk = Akj , Bjk = Bkj . If the system Gi is
symmetric, e.g the matrices for RC case, the matrices of the
augmented system Gaug , Caug are also symmetric. Second,
for a memory efficient implementation, we do not need to rep-
resent matrix Gaug and Caug explicitly using Nw ∗ Nw sub-
matrices, but they could be determined using the matrix Gi,Ci

and the inner product E(wiwjwk), it would cost only about
1/Nw memory of the explicit form.

And E(wiwjwk) could be computed using symbolic or nu-
merical integration before the augmented system is built. In
[3], some tables for the E(wiwjwk) is already given in ad-
vance.

V. EFFICIENT SOLVING OF LINEAR EQUATIONS OF THE

AUGMENTED SYSTEM

A. Model order reduction via PRIMA

After the augmented system is built, we then perform the
model order reduction on the augmented system. The model
order reduction method we use is PRIMA [4] which is a widely
used model order reduction algorithm. Fig.3 shows the main
algorithmic flow of PRIMA. From the flow we could see the
most costly process of the PRIMA is to solving linear equations
Gx = (G−1C)iR.

As the dimension of the augmented system is much larger
than the original system, direct methods via LU decomposition
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1.start from the augmented system Gaug, Caug, baug in (16).
2.Solve GaugX0 = b.
3.Orthogonalize and normalize each column in X0.
For k = 1, 2, · · ·

4.Solve GaugXk = CaugXk−1

5.Orthogonalize and normalize each column in Xk

end for
6.X = [X0X1 · · ·Xk].
7.Obtain the reduced system matrix from
G̃ = XT GaugX, C̃ = XT CaugX,

b̃ = XT baug, L̃ = XT Laug .
8.Perform the eigen decomposition G̃−1C̃ = SΛS−1

9.Obtain the poles, residues and transfer functions

Fig. 3. The Main algorithmic flow of MORstat, conducting PRIMA on
augmented system

may be prohibitive. Krylov space iterative methods which even
do not need the explicit matrix form but only need the Matrix-
vector product may be a better choice.

The matrix-vector product could be constructed implicitly
in sub-matrix level with the help of the sub-matrices represen-
tation of the block equations equation (20,21). Suppose we
need to compute the matrix-vector multiplication in the Krylov
space iterative methods:

⎡
⎢⎣

A00 · · · A0Nw

...
. . .

...
ANw0 · · · ANwNw

⎤
⎥⎦ ∗

⎡
⎢⎣

x0

...
xNw

⎤
⎥⎦ =

⎡
⎢⎣

r0

...
rNw

⎤
⎥⎦ (22)

We could obtain the results using the implicict representation
of the matrix (20,21), thus we have:

ri =
Nw∑
j=0

Aij ∗ xj =
Nw∑
i=0

Nw∑
j=0

Gi ∗ xj ∗ E(wiwjwk) (23)

The matrix-vector multiplication using the implicit sub-
matrix representation (20,21) may seem to be more compli-
cated than direct matrix-vector representation. However, as
there are a lot of zero in the table of E(wiwjwk), implicit
matrix-vector multiplication is also very efficient. Besides, the
results of sub-matrix vector multiplication Gi ∗ xj could be
reused for efficiency.

B. Efficient solving of the system equation via block Jacobi
preconditioners

Although the krylov space method such as Conjugated Gra-
dient(CG) and GMRES could be used to solve the system ex-
pressed in an implicit matrix form. The convergence speed may
be slow. Preconditioner should be used to speed up the krylov
space method.

However, as the system is expressed in an implicit form, we
use a block Jacobi preconditioner on higher block level and
an ILUTP preconditioner on lower sub-matrix level. As the
scale of the variations are one or two magnitudes less than the
nominal value, thus the whole augmented system is block di-
agonal dominant, but at sub-matrix level, the matrix may have

many zero entries on the diagonal, the MNA matrix may be
non-symmetric or non-definite (for RLC case), the ILUTP pre-
conditioner is robust and the preconditioner greatly speeds up
the krylov space method for solving the linear equations for
PRIMA. Moreover, the block diagonals are mostly the scalar
multiple of G0 (see the small examples in the section II), we
only need to generate the ILUTP preconditioner of G0 once to
form the preconditioner of the augmented system, which is also
much faster than to built a ILUTP preconditioner for the large
augmented system.

VI. EXPERIMENT RESULTS

We implemented the algorithms of stochastic model or-
der reduction in a software prototype called MORstat using
C/C++ language. The sparse matrix library MORstat use is
GMM++[7] which also has SuperLU and LAPACK interface.
We tested our algorithms on a PC work station with AMD
2000+, 768M memory running GNU Linux.

We test several RC/RLC circuits under normal stochastic
variations or log-normal variations. The circuit size ranges
from 113 nodes to 5452 nodes. We use second order poly-
nomial expansion in our experiments, and four random vari-
ables are incorporated in the experiment. Table II shows the
running-time comparison and memory consumption compari-
son of the Monte-Carlo simulation using PRIMA, Morstat us-
ing explicit matrix formulation and direct solver, Morstat using
implicit matrix formulation and preconditioned iterative solver,
respectfully. It is not clear which MOR method the work in [9]
use and how the linear equations concerning the augmented
system is solved. But we found that our block-jacobi precon-
ditioned krylov method needs roughly about 1/Nw memory
while have the same or even faster speed for solving the aug-
mented system. In RC case, we use the block Jacobi plus in-
complete cholsky preconditioned CG method and it runs 2-5
times faster then direct method using SuperLU. While in RLC
case, we use block Jacobi plus ILUTP preconditioned GMRES
method, it only slightly faster than direct method. But the im-
plicit iteration method saves a great memory than the direct
method.

As many results of the the stochatic interconnect analysis
with Gaussian variations was reported in [9]. We omit the re-
sults about SMOR on the pure Gaussian case. Table III shows
the accuracy comparison of the mean and variance comparison
on the circuit 50% delay under log-normal stochastic paramet-
rical variations. We compare the results of the Monte-Carlo
simulation using PRIMA, Morstat using Taylor expansion for
input variation, Morstat using using Polynomial expansion for
input variation. The input variations are assumed log-normal,
four random variations are incorporated, and the number of
sampling in Monte Carlo is 4000. Clearly we can see using PC
representation of the input stochastic variations can improve
the accuracy of MOR than the Taylor representation.
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TABLE II
RUNNING-TIME AND MEMORY CONSUMPTION COMPARISON OF

DIFFERENT METHODS

Monte Carlo Morstat(Direct) Morstat(Iterative)

time(s) mem(M) time(s) mem(M) time(s) mem(M)

78m35s 0.7 2m11s 8.7 1m37s 2.2

325m44s 1.8 14m11s 84.7 5m15s 13.2

956m9s 6.4 31m24s 231.8 11m47s 45.1

TABLE III
ACCURACY COMPARISON OF DIFFERENT METHODS

Monte Carlo Morstat(Taylor) Morstat(PC)

mean(ns) std(ns) mean(ns) std(ns) mean(ns) std(ns)

12.22 1.719 12.13 1.724 12.23 1.721

19.75 1.921 19.55 1.911 19.77 1.923

25.86 2.412 25.82 2.414 25.88 2.409

VII. CONCLUSIONS AND FUTURE REMARKS

We present specific implementation techniques of stochastic
model order reduction algorithm via stochastic Hermite Poly-
nomials expansions. Comparing with existing work on stochas-
tic parameterized model order reduction, we generalize the in-
put variation representation using polynomial chaos to allow
for accurate modeling of non-Gaussian input variations. We
also provide an implicit representation using sub-matrices for
the augmented system and improved the efficiency for solv-
ing the linear equations using the special matrix structure of
the of the augmented system. Experiments show that our al-
gorithm matches with Monte Carlo methods very well while
keeping the algorithm effective, and the PC representation of
non-gaussian variables gains more accuracy than Taylor repre-
sentation used in previous work.
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