
Efficient Automata-Based Assertion-Checker Synthesis
of SEREs for Hardware Emulation

Marc Boulé and Zeljko Zilic
McGill University, Montréal, Québec, Canada

marc.boule@elf.mcgill.ca, zeljko.zilic@mcgill.ca

Abstract— In this paper, we present a method for generating
checker circuits from sequential-extended regular expressions
(SEREs). Such sequences form the core of increasingly-used
Assertion-Based Verification (ABV) languages. A checker gen-
erator capable of transforming assertions into efficient circuits
allows the adoption of ABV in hardware emulation. Towards that
goal, we introduce the algorithms for sequence fusion and length
matching intersection, two SERE operators that are not typically
used over regular expressions. We also develop an algorithm
for generating failure detection automata, a concept critical to
extending regular expressions for ABV, as well as present our
efficient symbol encoding. Experiments with complex sequences
show that our tool outperforms the best known checker generator.

I. INTRODUCTION

Hardware verification aims to ensure that a design fulfills
its given specification by either formal or dynamic (simula-
tion based) techniques. Assertion-Based Verification (ABV) is
quickly emerging as the dominant methodology for performing
hardware verification in practice. Assertions are statements
added to the source code that specify how a design should
behave. Hardware assertions are typically written in a verifica-
tion language such as PSL (Property Specification Language)
or SVA (SystemVerilog Assertions). In dynamic verification,
a simulator can monitor the Device Under Verification (DUV)
and report assertion violations.

As circuits become more complex, hardware emulation
is becoming an increasingly important asset for verification.
Hardware emulation achieves the traditional dynamic verifi-
cation goals by loading and executing the circuit on a repro-
grammable hardware substrate, typically using programmable
logic devices. Once implemented in hardware, the emulator
fully exploits the inherent circuit parallelism, as opposed to
performing a serial computation in a simulation kernel.

A problem arises when performing ABV in a hardware
emulation environment: assertions are usually expressed at
higher levels of abstraction that are not easily expressed in a
Hardware Description Language (HDL). Assertion languages
allow compact representations of complex temporal relations
between the circuit signals. In order to consolidate assertion-
based verification and emulation, a checker generator is needed
to generate hardware assertion checkers, which are meant to
catch errors through assertion violations [1], [2]. Assertion
checkers are RTL (Register Transfer Level) implementations
of assertions that can be included in the DUV.

Assertion languages such as PSL and SVA make use of
sequential-extended regular expressions (SEREs) for describ-

ing temporal sequences. This paper introduces the algorithms
for transforming SEREs into resource efficient circuits suitable
for hardware emulation, and demonstrates their applicability
within our complete checker generator tool. Synthesizing
resource efficient assertion checker circuits is crucial for em-
ulation because the assertion checking circuits compete with
the DUV for resources in an emulator. Bus interface designs
that incorporate hundreds or even thousands of assertions
are not uncommon. To our knowledge, the only other stand-
alone tool capable of generating hardware checkers from PSL
assertions is IBM’s FoCs property checkers generator [1], [3].
It will be shown that the circuits generated by our tool can be
significantly more efficient.

Generating hardware from regular expressions is of interest
in applications such as protocol compilers [4] and Esterel
hardware compilers [5], as well as in Production Based
Specification [6]. The body of research on converting regular
expressions into hardware from [4], [6], [7], [8] can be a
starting point for the task of transforming sequences into
hardware. However, the SEREs used in assertion languages
are much more demanding. First, the symbols in sequences
correspond to many simultaneously interacting Boolean ex-
pressions, as opposed to the plain symbols used in pattern
matching. Second, the notion of sequence intersection, which
is often not treated in regular expression matching, must be
reconsidered given the first point, and must be of length-
matching type. Third, while automata-based regular expression
recognizers only require the matching (detection) of patterns,
assertions often require explicit detection of sequence failures.
Fourth, sequence fusion, an operator not found in conventional
regular expressions, is required in assertions sequences.

The sequential-and operator from [6] consists in performing
the Boolean conjunction of the result of sequences (i.e. in their
final cycle), and does not equate to the proper length-matching
intersection found in assertion languages. Furthermore, the
sequential-not operator does not correspond to the type of
negation required to perform sequence-failure detection, as the
negation is performed on the result signal of a sequence.

The automata produced in [9], [10] can be used to check a
property during simulation. These types of checkers are meant
to indicate the status of the property at the end of execution
only. This is not ideal for debugging purposes; it is more
informative to provide a dynamic trace of the assertion and
to report each instance where the assertion fails.

All the algorithms described in this paper are implemented
in our PSL checker generator called MBAC. The basic

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3C-4

324

framework for MBAC, introduced in [2], did not include
the automata-based implementation of SERE checkers. By
adding automata-based SERE recognition, checkers which
contain temporally infinite sequences under all operators can
be generated. The contributions of this paper are:

• Introduction of procedures for generating resource effi-
cient sequence-checking circuits, with special attention
paid to intersection and fusion, operators that are not
typically used in regular expressions;

• Introduction of the algorithms used to convert sequence-
checking automata into sequence-failure automata;

• Improvement upon the best known checker generator in
terms of efficiency, capability and correct behavior of the
generated circuits.

II. BACKGROUND

A string is a sequence of symbols from an alphabet Σ,
including an empty string, denoted as ε. A regular expression
RE is a pattern that describes a set of strings, or a language
of RE, denoted L(RE). Regular Expressions and the corre-
sponding languages are described as follows:

• a symbol s from Σ is a RE; L(s) = {s}
• ε is a RE; L(ε) = {ε}
• r1|r2 is a RE; L(r1|r2) = L(r1) ∪ L(r2) (set union)
• r1r2 is a RE; L(r1r2) = L(r1)L(r2) (set concat.)
• r1∗ is a RE; L(r1∗) = (L(r1))∗ (Kleene closure)

where r1 and r2 are regular expressions, and the Kleene
closure (Kleene star) is an operator that creates the strings
formed by concatenating zero or more strings from a language.

A regular expression’s language can be expressed equiva-
lently, in a form suitable for computation, by a finite automa-
ton [11] that accepts the same language. A Finite Automaton
A is described by a quintuple A = (Q, Σ, ∆, q0, F), where

• Q is a set of states;
• ∆ is a set of transitions (or edges);
• q0 is the start state;
• F is a set of states from Q which are final states.

Symbols δ.to and δ.from refer to the source and destination
states of an edge δ, respectively. An edge also carries a symbol
taken from the alphabet Σ. This edge symbol, denoted by
δ.sym can also be the empty symbol ε, in which case a
state transition is instantaneous – when matching against an
input pattern, no input symbol needs to be processed for an
ε transition to take place. A pattern is a sequence of symbols
from Σ. For a non-ε edge, a given transition takes place when
the input symbol is identical to the edge’s symbol. When a
final state is active, the pattern has been matched.

A regular expression is converted to an equivalent automa-
ton in a recursive manner [11]. First, terminal automata are
built for the symbols of the regular expression. Next, these
automata are recursively combined according to the regular
expression operators comprising the given expression. Choice
and concatenation of two sub-automata involves combining
the sub-automata using ε edges. The Kleene closure of an
automaton is created by adding ε edges for bypassing the

automaton (empty matching), and re-triggering the automaton
(multiple consecutive matching). The construction procedure
produces a Nondeterministic Finite Automaton containing ε
transitions (NFA). An automaton can be determinized, hence
producing a deterministic finite automaton (DFA). Procedures
for removing ε transitions, minimizing and determinizing
classical automata are well known [11].

Definition 1: An automaton for which no ε edge is present
and no state has more than one outgoing edge with the same
symbol is a Deterministic Finite Automaton (DFA), otherwise
it is a Nondeterministic Finite Automaton (NFA).

While there are several modern assertion languages, our tool
currently uses PSL (IEEE 1850 Standard), which is arguably
the most complex. We briefly present features of its Verilog
flavor, with emphasis on temporal sequences.

The Boolean Layer in PSL is built around the Boolean
expressions of the underlying HDL. Let top-level Boolean
expressions be represented by single primary symbols labeled
bi. Each bi can be a single signal or a Boolean function of
multiple signals. Sequences, or Sequential-Extended Regular
Expressions (SEREs), are used to specify temporal chains
of events of Boolean primitives. SEREs are defined as fol-
lows [12]. If b is a Boolean expression and r, r1 and r2 are
SEREs, the following expressions are SEREs:

• b • {r} • r1 ; r2 • r1 : r2

• r1 | r2 • r1 && r2 • [∗0] • r[∗]
Here, the curly brackets are the equivalent of the parentheses in
conventional regular expressions, and the semicolon represents
temporal concatenation. In assertion context, concatenation
of two Boolean expressions bl; br indicates that the Boolean
expression bl must evaluate to true in one cycle, and br must be
true in the next cycle. The [∗] operator is the Kleene star, and
the | operator corresponds to sequence disjunction (choice).

The colon operator denotes sequence fusion, which is a
concatenation in which the last Boolean expression occurring
in the first SERE must intersect (i.e. both held to be true)
with the first Boolean primitive occurring in the second SERE.
Empty sequences in either side do not result in a match. The
length matching sequence intersection operator (&&) requires
that both argument sequences occur, and that both sequences
start and terminate at the same time. The [∗0] operator is the
empty SERE and is equivalent to the ε expression mentioned
previously. The ε can be seen as a primitive which spans no
clock cycles. All PSL expressions will be implicitly clocked to
the default clock, specified with PSL’s default clock directive.

PSL defines additional syntactic “sugaring” operators which
simplify the writing of assertions, but do not add expressive
power to the language. The PSL SERE sugaring operators
are shown next, which we arrange to use as rewrite rules
in preparation for the next section. Some rules are presented
differently than in [12]; we believe the rules shown below
offer a more intuitive form. b is a Boolean expression; r is a
SERE; l, h and c are nonnegative integers with h ≥ l; and the
�= symbol indicates equivalency, with a preferred direction to
be used as a rewrite rule. + also denotes a positive integer.

3C-4

325

• r[∗c+] �= r; r; . . . ; r (c times) • r[∗0] �= [∗0]
• r[∗l:h] �= r[∗l] | . . . | r[∗h] • r[+] �= r ; r[∗]
• b[–>] �= {(∼b)[∗] ; b}
• b[–> c+] �= {b[–>]}[∗c]
• b[–> l+:h+] �= {b[–>]}[∗l:h]
• b[= c] �= {b[–> c]} ; (∼ b)[∗]
• b[= l:h] �= {b[–> l:h]} ; (∼ b)[∗]
• r1 within r2 �= { {[∗]; r1; [∗]} && {r2} }
• r1 & r2 �= {{r1}&&{r2; [∗]}} | {{r1; [∗]}&&{r2}}
The [∗c] and [∗l:h] operators are known as repetition count

and repetition range. The first four operators can be used
without the SERE r, in which case r = “true” is implied.
The [=] corresponds to non-consecutive repetition, whereas
the [–>] operator is known as goto repetition. The single &
is called non-length-matching intersection.

PSL also defines properties on sequences and Boolean
expressions. When used in properties, sequences can appear
in two different semantic contexts.

Definition 2: Conditional mode. Sub-statement semantic
context for which the detection of a sequence must be per-
formed. For each start condition, the result signal is triggered
each and every time the chain of events described by the
sequence is observed.

Definition 3: Obligation mode. Semantic context for which
the failure of a sequence must be identified. For each start
condition, if the chain of events described by the sequence
does not occur, the result signal is triggered (for a given start
condition, the first and only the first failure is identified).

For example, in “always ({b1 ; b2} |–> {b3 ; b4})”, the left
sequence is in conditional mode because its occurrence is used
to trigger a condition. On the other hand, the right sequence
is in obligation mode because its failure to occur indicates
an error. In our semantics for dynamic verification, obligation
mode is not a proper negation of conditional mode.

III. TRANSFORMING SEQUENCES INTO CIRCUITS

A. Sequence Automata

Given that the symbol encoding we use in the automata for
SEREs is different than in classical automata, we introduce
Sequence Automata (s-automata), denoted by A. The encod-
ing differs from conventional regular expressions because in
SEREs, the alphabet Σ represents arbitrary Boolean expres-
sions. Our encoding of Boolean primitives to s-automaton
symbols is to assign a distinct symbol si to each Boolean
primitive bi, without concern for the fact that two Boolean
primitives may simultaneously evaluate to true. This intro-
duces a fundamental difference with normal REs: in regular
expressions, one symbol is received at each step, while the
Boolean expression symbol encoding causes multiple symbols
to be received at each step. A similar encoding was also used
in the co-universal automata for PSL model checking in [13].

It is possible to create a symbol encoding which represents
the power set of the Boolean primitives, such that one and only
one symbol is received at each step during the matching. How-
ever, when a SERE references many Boolean primitives, the

1: FUNCTION: INTERSECT S-AUTOMATA(A1, A2)
2: create new s-automaton A
3: push state (0, 0) onto construction stack
4: while stack is non-empty do
5: (i, j) ← pop stack
6: create the state labeled (i, j) in A
7: for each edge α of state i in A1 do
8: for each edge β of state j in A2 do
9: add a new edge δ to state (i, j)

10: δ.sym ← α.sym ∧ β.sym
11: δ.to ← (α.to, β.to)
12: push (α.to, β.to) un-redundantly onto stack
13: mark state (i, j) final iff i and j are final states
14: return A

Fig. 1. Sequence-automata intersection algorithm.

exponential increase of symbols and edges quickly becomes
impractical.

B. Building Sequence Detection Automata

Sequence automata are constructed recursively, during the
traversal of a sequence expression. Numerous syntactical sug-
aring operators are dynamically rewritten as they are encoun-
tered such that they do not appear as distinct operators.

1) Conventional Regular Expression Operators: The con-
ventional operators for regular expressions are concatenation,
choice and the Kleene star, as presented in Section II. The
Boolean expression encoding scheme produces nondetermin-
istic automata because from a given state, two distinct sym-
bols can cause simultaneous outgoing transitions when their
respective Boolean expressions are both true. The NFA con-
struction for conventional operators can be reused for sequence
automata given that s-automata are also nondeterministic.

2) Length-Matching Intersection: Typical automata inter-
section [11], which equates to building a product automaton of
both arguments, is incompatible with the Boolean expression
symbol encoding. If the traditional intersection procedure is
applied to two automata which have no symbol in common
(i.e. no syntactically equal symbols), an empty automaton re-
sults. This automaton can obviously not detect the intersection
of two sequences which use disjoint sets of primary symbols.

To implement intersection for sequence-automata, the con-
dition on syntactic equality of symbols must be relaxed and
the conjunction of symbols must be considered by the algo-
rithm. To consider all relevant pairs of edges, the intersection
automaton is built using the subset construction technique, as
is typically done in the determinization algorithm [11]. This
technique, characterized by its creation stack, is visible in our
intersection algorithm in Fig.1. The state-creation stack is the
core of the algorithm (line 3), and is initialized to the pair of
initial states of both argument automata (line 2). A state in the
intersection automaton is labeled by a state pair (i, j), where i
and j correspond to states from the first and second argument
automata respectively. The two for loops intersect two states,
and the while loop together with the stack create the entire
intersection automaton. A new state (i, j) is a final state if

3C-4

326

s1 s2

s3 s4

s2 s3

s1 s3

{s1;s2[]}

{s3;s4}

s1 s3

s1

:

0 0 1s2 s3
2&& =

0,0 0,20,1
s1 s2

Fig. 2. Examples: intersection (top) and fusion (bottom).

1: FUNCTION: FUSE S-AUTOMATA(AL, AR)
2: create s-automaton A with AL and AR (both are disjoint)
3: for each edge δL in AL that hits a final state do
4: for each edge δR in AR that leaves the start state do
5: create new edge δ from δL.from to δR.to
6: δ.sym ← δL.sym ∧ δR.sym
7: mark final states in AL as a non-final states
8: set the start state to AL’s start state
9: return A

Fig. 3. Sequence-automata fusion algorithm.

and only if states i and j are final states in their respective
automata. Because of the subset construction approach, new
states and edges are only created for the reachable states of
the resulting automaton.

An example depicting intersection is shown in the top
part of Fig.2 for {s1[∗]} && {s2; s3}. Sequence intersection
produces a sequence-automaton that has in the worst case mn
states, where m and n are the sizes of the input automata. The
algorithm is easily proven to terminate.

3) Fusion: As observed in Section II, sequence fusion can
be seen as an overlapped concatenation. Our algorithm for
performing the fusion of two sequence-automata is shown in
Fig.3. The algorithm starts by incorporating both argument
automata into a new automaton, such that they are disjoint (line
2). From there, fusion edges are created from edges that hit
final states in the left automaton and edges that leave the start
state of the right automaton. This algorithm has similarities to
the independently developed algorithm in [9].

Sequence fusion produces a sequence-automaton that has
m + n states, where m and n are the sizes of the input
automata. When the start state of the right side automaton is
non-final (ex: Fig.2), this state becomes useless and is removed
during minimization. Because empty strings on either side do
not result in a match, marking all states in the left automaton
as non-final states is correct. The number of edges added can
be easily determined by examining the two for loops in the
algorithm. An illustration of sequence fusion is shown in the
bottom half of Fig.2 for {s1; s2[∗]} : {s3; s4}.

C. Building Sequence-Failure Automata

The sequence-automata built by the algorithms from the
previous subsection perform precisely the task described by

1: FUNCTION: FIRSTFAIL S-AUTOMATON(A)
2: A ← S-Determinize(A)
3: add a fail state f to A
4: for each state s in A do
5: for each Boolean assignment of bi in edges from s not

handled by an edge do
6: create new edge δ from state s to state f
7: δ.sym ← symbol for Boolean assignment above
8: remove edges from state s which lead to a final state
9: mark state f as the final state

10: return A
Fig. 4. Failure transformation algorithm.

1
2

3

s1

s2

a) Before S-Determinize() b) After S-Determinize()

1
2

3

s1 s2

s1 s2

s1 s2
2,3

Fig. 5. Determinizing sequence-automata.

Definition 2, with respect to conditional mode sequences.
In obligation mode sequences however, each start condition
indicates that the sequence should occur, and that its non-
fulfillment indicates an error. Alternatively, this can also be
seen as the detection of the first failure. Therefore, a separate
procedure is required to transform the sequence detection au-
tomaton into a first-failure detection automaton, in accordance
with Definition 3 (obligation mode sequences).

Fig.4 shows the transformation algorithm used to produce
a failure detection automaton from a detection automaton.
Under the Boolean encoding of symbols, Definition 1 for
DFAs is no longer sufficient. Classical determinization “sees”
only symbols, and does not consider the possibility that these
symbols represent Boolean expressions, many of which can
simultaneously be true. Our determinization algorithm (S-
Determinize(), line 2) is based on the classical determinization
algorithm [11], with added features that take into consideration
the Boolean nature of symbols (as is also done in [13]). The
S-Determinize() algorithm produces deterministic sequence-
automata. The effect of this algorithm is shown using a small
example in Fig.5. The left side shows a nondeterministic s-
automaton and the right side shows the result of applying
S-Determinize() (“2,3” is a label for a new state). In the
determinized s-automaton, no conditions will allow state 1 to
transition into more than one state. If the automaton in the left
side of Fig.5 was not a sequence automaton, it would already
be deterministic.

Determinization produces an automaton with at most 2m

states, where m is the number of states of the input automaton;
however in practice, the resulting automaton is often much
smaller. The failure transformation algorithm is therefore
also exponential (worst case) in the number of input states.
The main idea behind this algorithm is to catch the case
where the automaton “dies” (i.e. from the active state, no
transitions are taken). In order for the automaton to be in

3C-4

327

one and only one state, for a given start condition, it must
be deterministic. The for loop at line 5 adds precisely the
Boolean conditions that lead to the “death” of the automaton,
hence the failure automaton is produced. Line 8 produces the
necessary pruning, given that we are only interested in the
first failure. The determinization also explains why multiple
succeeding start conditions can be processed in a pipelined
(or threaded) manner, by the failure automaton. This allows
failures to be identified in a continual and dynamic manner
during execution. The failure algorithm actually implements a
form of negation; however this does not correspond to classical
automata negation for many reasons, most notable of which
is the dynamic semantics imposed by Definition 3 (obligation
mode).

IV. EXPERIMENTAL RESULTS

Hardware implementations are well suited for nondeter-
ministic automata [8]; in our case, sequence-automata are
converted to hardware in a similar manner, using flip-flops
and combinational logic. In this section, the assertion circuits
produced by MBAC and FoCs are compared, using examples
that showcase both obligation and conditional sequences.
Temporally simple assertions, such as those used for verifying
most bus protocols are not informative for evaluating a checker
generator, as they span very few clock cycles. However, as
assertions become more popular and verification engineers
become more adept at writing assertions, checker generators
must be able to follow.

The comparison is partitioned into two categories: hardware
and software metrics. Software metrics are obtained using
the Modelsim simulator (version 6.1f SE). This simulator
implements PSL and is used as a golden reference to en-
sure proper behavior of the assertion circuits. The hardware
comparison metrics involve synthesizing the assertion circuits
using ISE 6.2.03i from Xilinx, for a XC2V1500-6 FPGA. The
number of flip-flops (FF) and four-input lookup tables (LUT)
required by a circuit is of primary interest when assertion
circuits are to be used in hardware emulation. Because speed
may also be an issue, the maximum operating frequency for
the worst clk-to-clk path is reported.

Ideally, the assertion circuits that are produced should be
small, fast and should provide the correct behavior. In order for
the software metrics to be meaningful, the assertions are made
to trigger often during a simulation run. To accomplish this,
primary signals supplied by the testbench are pseudo-randomly
generated with different probabilities. When comparing with
FoCs, MBAC’s final result signals are also sampled by a FF.
The random stimulus comparison is obviously not a proof that
the circuits generated by MBAC are correct, however it does
offer reasonable assurance.

The assertion distance is introduced to compare the behav-
ior of two assertion circuits’ outputs. For two given traces
of assertion signals, the assertion distance is defined as the
number of clock cycles in which the two assertion signals
disagree. The signals in question are typically from two
different implementations of the same PSL assertion.

A. Conditional-Mode Sequences

In this subsection, we empirically evaluate the efficiency and
behavior of the intersection and fusion operators in conditional
mode sequences. Regarding the semantics of PSL in dynamic
verification, it should be noted that some assertions interpreted
by simulators such as Modelsim will only trigger once for any
given start condition. Between MBAC’s assertion circuits and
Modelsim, the distance is not incremented when an assertion
circuit output triggers and Modelsim’s assertion does not.
When such a condition occurs, a residual distance is instead
incremented. Residual distances are an indication that MBAC
is reporting more failures, which can then be exploited for
debugging purposes. Residual distances are noted “r n”. When
applicable, the residual distance is well anticipated because of
the multiple paths in the corresponding sequence. In all cases,
105 pseudorandom test vectors are supplied by the testbench.

The FoCs and MBAC checker generators are evaluated with
the set of assertions shown in Table I. In the comparison table,
N.A. means Not Applicable, and appears when an assertion
circuit contains only one FF and the FF has no feedback
path (the MHz is a clk-to-clk figure). In all cases, the circuits
produced by MBAC are smaller and have an equal or higher
operating frequency; their behavior is also correct and better
suited for debugging purposes, as more assertion violations
get reported.

B. Obligation-Mode Sequences

In this subsection both tools are evaluated using sequences
that appear in obligation mode. The FoCs and MBAC checker
generators are evaluated with the set of assertions shown in
Table II. The only case of a non-zero distance to Modelsim
occurs because MBAC’s circuits are able to identify certain
failures earlier than Modelsim. This arises because MBAC
is sometimes able to reach a terminal state earlier when
evaluating a given sequence. Contrary to the conditional mode
results, the circuits generated by FoCs are similar to MBAC’s.
However, the strength of our approach becomes apparent
when increasing the complexity of sequences. In all of our
experiments, checkers were generated instantly by our tool.

V. CONCLUSION AND CONTINUING WORK

As assertion-based verification and emulation become in-
creasingly important in verification, a practical tool for gener-
ating efficient hardware assertion checkers is a must. We have
shown how to generate efficient circuits from sequences and
introduced algorithms for implementing the sequence fusion
and intersection operators. Such operators are not typically
used in conventional regular expressions. The sequences used
in assertion languages are not exclusively used for pattern
matching (conditional mode); sequences also appear in obli-
gation mode. For the latter, we have introduced an algorithm
for creating a failure detection automaton from a classical
matching automaton. At the core of these algorithms is the
efficient symbol encoding of our automata-based methods.
Experimental results show important improvements in terms
of the resource usage, behavior and capability of assertion

3C-4

328

TABLE I

BENCHMARKING OF CONDITIONAL-MODE SEQUENCES (N.A. = NOT APPLICABLE).

Hardware Emulation Metrics Asr. Distances
Assertions MBAC FoCs MBAC– MBAC–
“assert never Sx;”, where Sx is FF LUT MHz FF LUT MHz FoCs MSim
S1: { a;d;{b;a}[∗2:4];c;d } 12 12 622 25 24 622 0 0 r1910
S2: { {a[∗0:1];b[∗0:2]} : {c[∗0:1];d} } 2 3 680 33 30 326 0 0 r2366
S3: { {e;e} within {c;d;a;b;c} } 11 11 622 30 29 521 9507 0
S4: { {{b;c[∗1:2];d}[+]} && {b;{e[–>2:3]};d} } 16 20 422 40 48 422 3727 0 r31
S5: { {a[∗];b[∗1:3]} | {c;d[∗1:2];e} } 4 4 622 24 23 454 0 0 r445
S6: { {a|b} ; {{c[∗]} && {d[∗1:3]}} : {e} } 4 5 622 14 13 487 0 0 r300
S7: { {a|b} ; {{c[∗]} && {d[=4]} } : {e}} 6 9 616 22 24 487 0 0 r4490
S8: { {a|b} ; {{c[∗]} && {d[–>1]}} } 2 4 622 5 6 622 0 0
S9: { {[∗];a} && {b[=0]} } 1 2 N.A. 6 4 622 0 0
S10: { a ; {b;c;d} & {e;b;a;d} ; a } 6 6 680 13 12 622 0 0
S11: { {a;b[∗1:3]} & {c[∗2:4]} } 6 9 479 91 117 285 37396 0 r5637
S12: { {a[∗]} : {b[∗]} } 1 2 680 7 7 483 0 0 r1867
S13: { {a;[∗];b} && {c[∗1:5];d} } 6 8 487 18 22 425 4166 0 r609
S14: { {c[–>1]} && {d[=0]} } 1 2 N.A. 5 4 622 0 0
S15: { {a| b};{{c[∗]} && {d[∗1:3]}}:{e} } 4 5 622 14 13 487 0 0 r1800
S16: { {a| b};{{c[∗]} && {d[∗1:6]}}:{e} } 7 9 487 20 21 483 0 0 r1858

TABLE II

BENCHMARKING OF OBLIGATION-MODE SEQUENCES (N.O. = NO OUTPUT).

Hardware Emulation Metrics Asr. Distances
Assertions MBAC FoCs MBAC– MBAC–
“assert always {a} |=> Sx;”, where Sx is FF LUT MHz FF LUT MHz FoCs MSim
S1: { b;c[∗];d } 3 5 622 3 4 622 3272 0
S2: { {b;c;d} & {e;d;b} } 4 6 483 N.O. N.O. 0
S3: { e;d;{b;e}[∗2:4];c;d } 15 21 378 N.O. N.O. 0
S4: { b ; {c[∗0:4]} & {d} ; e } 7 11 487 7 10 359 3973 0
S5: { b ; {c[∗0:6]} & {d} ; e } 9 15 428 N.O. N.O. 0
S6: { {{c;d}[∗]} && {e[–>4]} } 9 13 420 10 15 357 0 0
S7: { {{c;d}[∗]} && {e[–>6]} } 13 19 420 N.O. N.O. 0
S8: { {{c[∗1];d}[+]} && {e[–>2]} } 5 7 517 6 10 425 0 0
S9: { {{c[∗1:2]}[+]} && {e[–>2]} } 3 4 616 N.O. N.O. 0
S10: { {{c[∗1:2];d}[+]} && {e[–>2]} } 9 20 355 N.O. N.O. 0
S11: { {{c[∗1:3];d}[+]} && {{e[–>2:3]};d} } 20 44 305 N.O. N.O. 209
S12: { {{b;c[∗1:2];d}[+]} : {{e[–>]};d} } 22 58 317 N.O. N.O. 0
S13: { {{b;c[∗1:2];d}[+]} : {b;{e[–>2:3]};d} } 65 192 255 N.O. N.O. 0
S14: { b ; {{c[∗0:2]} ; {d[∗0:2]}}[∗] ; e } 3 5 622 7 15 425 26 0 r2061
S15: { {{c[∗1:2];d}[+]} & {e[–>2]} } 4 5 561 N.O. N.O. 0

circuits. Using our tool, assertions can be used in hardware
emulation, in silicon debug tools, as well as in efficient
simulations that do not support assertion languages such as
PSL.

REFERENCES

[1] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, and Y. Wolfsthal,
“FoCs: Automatic Generation of Simulation Checkers from Formal
Specifications,” Conference on Computer Aided Verification, pp. 538–
542, 2000.

[2] M. Boulé and Z. Zilic, “Incorporating Efficient Assertion Checkers
into Hardware Emulation,” IEEE International Conference on Computer
Design (ICCD–2005), pp. 221–228, 2005.

[3] IBM AlphaWorks, “FoCs Property Checkers Generator ver. 2.03,”
www.alphaworks.ibm.com/tech/FoCs, 2006.

[4] M. Oliveira and A. Hu, “High-Level Specification and Automatic Gen-
eration of IP Interface Monitors,” 39th Design Automation Conference,
ACM Press, pp. 129–134, 2002.

[5] S. Edwards, “An Esterel Compiler for Large Control–Dominated Sys-
tems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21, 2002.

[6] A. Seawright and F. Brewer, “High–Level Symbolic Construction
Techniques for High Performance Sequential Synthesis,” 30th Design
Automation Conference, ACM Press, pp. 424–428, 1993.

[7] P. Raymond, “Recognizing Regular Expressions by Means of Dataflow
Networks,” 23rd International Colloquium on Automata, Languages and
Programming, pp. 336–347, 1996.

[8] R. Sidhu and V. Prasanna, “Fast Regular Expression Matching using
FPGAs,” 9th Annual IEEE Symposium on Field–Programmable Custom
Computing Machines (FCCM’01), pp. 227–238, 2001.

[9] S. Gheorghita and R. Grigore, “Constructing Checkers from PSL Prop-
erties,” 15th International Conference on Control Systems and Computer
Science (CSCS15), vol. 2, pp. 757–762, 2005.

[10] M. Gordon, J. Hurd, and K. Slind, “Executing the Formal Semantics of
the Accellera Property Specification Language by Mechanised Theorem
Proving,” LNCS, vol. 2860, pp. 200–215, Oct. 2003.

[11] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages and Computation, 2nd ed. Addison–Wesley, 2000.

[12] Accellera, “Property Specification Language Reference Manual, v.1.1,”
www.eda.org/vfv/docs/PSL-v1.1.pdf, 2004.

[13] S. Ruah, D. Fisman, and S. Ben-David, “Automata Construction for On-
The-Fly Model Checking PSL Safety Simple Subset,” IBM, Tech. Rep.
H-0234, 2005.

3C-4

329

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

