1-4244-0630-7/07/$20.00 ©2007 IEEE.

3B-3

A Processor Generation Method
from Instruction Behavior Description
Based on Specification of Pipeline Stages and Functional Units

Takeshi SHIRO, Masaaki ABE, Keishi SAKANUSHI, Yoshinori TAKEUCHI,
and Masaharu IMAI

Graduate School of Information Science and Technology,
Osaka University,
1-5, Yamada-oka, Suita, Osaka 565-0871, Japan
e-mail: {t-siro, m-abe, sakanusi, takeuchi, imai} @ist.osaka-u.ac.jp

Abstract— This paper proposes a method for generating a
pipeline processor from the behavior description of instructions.
In the proposed method, a micro-operation description is gen-
erated by complementing the behavior description with specifi-
cations of the pipeline stages, such as the number of pipeline
stages, the attributes of each stage. From the behavior descrip-
tion, software development tools, such as an instruction-set sim-
ulator (ISS), a compiler, and an assembler can be generated, and
a synthesizable HDL description of a processor can be generated
from the micro-operation description. Compared with the con-
ventional method of writing individual descriptions, the proposed
method can dramatically reduce the code size of the architectural
description language and the design time without degrading the
design quality. As a result, a design space exploration can be per-
formed efficiently.

I. INTRODUCTION

In recent years, embedded systems that require severe de-
sign goals have been employed in application-specific instruc-
tion set processors (ASIPs), because ASIPs are more flexible
than application-specific integrated circuits (ASICs) and have
higher performance than general-purpose processors. The per-
formance of an ASIP depends on the instruction sets, func-
tional units, and the number of pipeline stages. Therefore, a de-
sign space exploration is required to design an optimum ASIP.
To evaluate an ASIP architecture, software development tools,
such as instruction-set simulators (ISS), compilers, and assem-
blers, are required. However, the specifications of the software
development tools must be changed if the architecture changes.
Since designing and modifying processors and software devel-
opment tools are time-consuming tasks, the ASIP design and
performance evaluation process is not efficient. An ASIP de-
sign environment that can generate a synthesizable HDL de-
scription of an ASIP and software development tools is of great
benefit to explore design space of ASIPs.

ASIP Meister [1] is an ASIP design environment. It auto-
matically defines the data paths and control logic of a proces-
sor, and generates a synthesizable HDL description and soft-

ware development tools, such as an instruction-set simulator,
a C compiler, and an assembler, from its specific architectural
description language (ADL). The instructions are specified in
two descriptions, a micro-operation description and a behav-
ior description. The micro-operation description represents the
operations of each pipeline stage for each instruction, and is
used to generate the HDL description. On the other hand, the
behavior description represents instruction semantics, and soft-
ware development tools can be generated from it. With these
two forms, the designer can obtain various ASIPs and evaluate
them with the generated software development tools.

However, in conventional ASIP design environments, if
there is inconsistency between the micro-operation description
and the behavior description, the generated ISS cannot cor-
rectly simulate the behavior of the generated processor, or the
generated processor cannot execute code generated by the as-
sembler or compiler. Furthermore, the code size of the micro-
operation description is larger than that of the behavior descrip-
tion, and usually the task of describing the micro-operation de-
scription takes up most of the ASIP design time. In addition,
since the micro-operation description of all instructions must
be rewritten by changing the number of pipeline stages, it is
difficult for a designer to explore the optimum pipeline archi-
tecture within the limited processor design term. Consequently,
the design space exploration is not efficient.

In this paper, we propose a method of generating the micro-
operation description from the behavior description. In this
method, by using abstract syntax trees (ASTs) constructed
from the behavior description, micro-operation descriptions are
generated without pipeline stages and functional units (micro-
operation segments). The number of pipeline stages and the
attributes of each stage defined by a designer are automatically
reflected in generated micro-operation segments. Then, func-
tional units are bound to each micro-operation segment. Ac-
cordingly, the processor and software development tools can be
efficiently designed by writing only the behavior description. A
designer can quickly evaluate the processor architecture with
the generated software development tools, and consequently,
the design space exploration can be performed efficiently.

286

The rest of this paper is organized as follows. Section
II introduces the conventional pipeline processor generation
method. Section III describes the method of generating the
micro-operation description from the behavior description. Ex-
perimental results are shown in Section IV, and Section V sum-
marizes this paper.

II. DESIGN OF PIPELINE PROCESSORS

We implemented the proposed method in the framework of
ASIP Meister. This section describes related work and the de-
sign flow of a pipeline processor and software development
tools with ASIP Meister.

A. Related Work

There are several processor generation methods. Xtensa [3]
is a customizable configurable processor core, and MetaCore
[2] is a digital signal processor (DSP) design environment. A
designer can add new instructions and hardware units to the
base processor in these systems. Although specific instruc-
tions defined by a designer can be implemented in the tar-
get processor, the number of pipeline stages cannot be cus-
tomized in these approaches. Therefore, they have low flex-
ibility. MIMOLA hardware design system [4] [5] can gener-
ate an application-specific instruction set processor, a compiler,
and an instruction-set simulator. MIMOLA provides a flexible
definition of the processor architecture. The description of a
processor in MIMOLA is similar to HDL, MIMOLA does not
provide definition of data paths of a processor automatically. A
designer must describe data paths of a processor. The modifi-
cation of a processor is difficult in MIMOLA. LISA [6][7] is
an Architecture Description Language (ADL). The LISA lan-
guage describes an instruction set, a pipeline architecture, and
behavior of each instruction. A designer can get the HDL de-
scription of a processor and software development tools by de-
scribing them in the LISA language. In LISA, a designer has
to specify the control logic of the pipeline registers. Therefore,
the design space exploration of the number of pipeline stages
is not efficient, and a designer must understand the details of
the controller and describe the control logic, which are usually
error-prone tasks. C-DASH [8] is a system design language
based on an instruction set architecture (ISA). A designer does
not specify the control logic of pipeline registers. In C-DASH,
the instructions must be described at both the behavior level
and micro-operation level. However, if there is inconsistency
between the two descriptions, the generated hardware core or
related software development tools will not work correctly.

B. Processor Design Flow in ASIP Meister

ASIP Meister’s design flow for processors and software de-
velopment tools consists of six steps. (1) First, the architecture
of the processor is defined. The design goal (area, delay, and
power), the number of pipeline stages, the attributes of each
stage, and the number of delay slots are defined. (2) Next, the
resources (storages and functional units) in the processor are
defined. The flexible hardware model (FHM) [9] is used as
a reusable resource model. In FHM, parameters, such as bit

3B-3

~

Instruction ADD {
Operand Definition {
1 {opname{rd}
usage {register}
addressing mode {register direct (GPR) }
datatype {SInt31to0} }

2{ opname{rs0}
usage {register}
addressing mode {register direct (GPR)}
datatype {SInt31to0} }

3{ opname{rs1}
usage {register}
addressing mode {register direct (GPR)}
datatype {SInt31to0} } }

Semantics Definition{ rd = rsO + rs1; }

\

Fig. 1. Behavior Description of Instruction ADD

)

range, are parameterized, and resource instances are generated
by specifying parameter values. (3) After that, the instruction
set is defined. Instruction name, operation code, and operands
are defined. (4) The semantics of each instruction are then de-
fined with the behavior description, and (5) the operations of
each instruction are defined with the micro-operation descrip-
tion. (6) Finally, the HDL description of the processor and
software development tools, such as instruction set simulator,
C compiler, and assembler, are generated.

The behavior description is used to generate the software
development tools. The behavior description consists of an
operand definition and semantics definition. In the operand def-
inition, a designer defines the name, usage, addressing mode,
and type (signed/unsigned and bit range) for each operand. In
the semantics definition, the designer defines the instruction se-
mantics.

Figure 1 shows the behavior description of the instruction
ADD. In Figure 1, operands of the instruction ADD (rs0, rsl1,
and rd) are registers of the registerfile GPR. In the semantics
definition, s0 and rs1 are added, and the result is stored in rd.

The micro-operation description is used to generate a HDL
description of a processor. It defines the micro-operations of
each stage with the variables and resources that were defined
in the resource definition step. A definition of a variable is
described in the following format.

wire [bit_range] name_of _variable ;
An operation in a stage is described in the following format.
variable = resource . function (variables) ;
Figure 2 shows the micro-operation description of the in-
struction ADD in a processor with five pipeline stages. Vari-

ables used in multiple pipeline stages are defined in variable
as global variables. In stagel, an instruction word is fetched.

287

3B-3

Instruction ADD{
variable{
wire[31:0] source0;
wire[31:0] sourcel;
wire[31:0] result;}

1{ wire[31:0] current pc;
wire[31:0] inst;
current_pc = PC.read();
inst = IMAU.read(current_pc);
null = IR.write(inst);
null = PC.inc();}

2{ source0 = GPR.read0O(rs0);
sourcel = GPR.read1(rs1);}

3{ wire[3:0] flag;
<result,flag> = ALUO.add(source0,sourcel);}

4}
5{ null = GPR.writeO(rd,result);}

\J Y,

Fig. 2. Micro-Operation Description of Instruction ADD

In stage2, rs0 and rs1, which are registers of the registerfile
G PR are loaded and stored in intermediate variables sourceQ
and sourcel. In stage3, source0 and sourcel are added with
the function add of ALUO, and the result is stored in result.
In stage4, there is no code in the instruction ADD. Finally, in
stageb, result is stored in register rd.

III. METHOD OF GENERATING MICRO-OPERATION
DESCRIPTION

This section describes the method of generating the micro-
operation description from the behavior description.

A. Micro Operation Description and Behavior Description

ASIP Meister uses both the micro-operation description and
the behavior description of the processor. The micro-operation
description represents the operations of each pipeline stage.
The designer must explicitly specify the functional units. On
the other hand, the behavior description represents the seman-
tics of the instructions. The designer does not have to spec-
ify the instruction behavior of each pipeline stage and func-
tional unit. The code size of the micro-operation description is
larger than that of the behavior description. Moreover, if there
is inconsistency between the micro-operation description and
the behavior description, the generated processor or software
development tools will not work correctly. Therefore, a de-
signer must carefully write two descriptions, and this is usually
troublesome. In addition, since the micro-operation description
of all instructions must be rewritten if the number of pipeline
stages is changed, it is difficult for a designer to explore the op-
timum pipeline architecture within the limited processor design
term.

Specification of Pipeline Stages
Stage Name Attribute
Stagel Instruction Fetch
Stage2 Operand Fetch
Sign-Extension
Stage3 Execution
Jump or Branch
Stage4 Memory Read
Memory Write
Stage5 Register Write

Fig. 3. Specification of Pipeline Stages

To manage this problem, the instructions should have only
one description, the behavior description is the easiest choice.
Hence it is that we propose generating the micro-operation de-
scription from the behavior description. However, the behav-
ior description is insufficient for specifying the pipeline stages
and functional units of the micro-operation description. There-
fore, for our purposes, the behavior description must be com-
plemented with such information. In particular, our method
uses the architecture definition information about the pipeline
stages. The resulting micro-operation description is consistent
with the behavior description, and the design time is dramati-
cally reduced.

Although interrupts (external, internal, reset, etc.) must be
described with the micro-operation description, our method
does not generate the micro operation description of interrupts
because the code size of the interrupts is considerably smaller
than that of the instructions. That is, since describing inter-
rupts with micro-operation description hardly affects the design
time, we assume that the designer can describe them without
difficulty.

B. Specification of Pipeline Stages

The proposed method assumes a pipeline processor with a
Harvard architecture. The pipeline stages, such as the number
of stages and the attributes of each stage, are defined in the
architecture definition step.

Figure 3 shows an example of specification of pipeline stages
that was defined by a designer. The example is for a processor
with five pipeline stages. stagel is for instruction fetch, stage2
is for instruction decode, operand fetch, and sign extension,
Execution and access to the program counter in branch or jump
instructions are performed in stage3, stage4 is for memory ac-
cess, and stage5 is for writing back to the register file.

C. The Proposed Method

The proposed method consists of four parts: (1) Abstract
syntax trees (ASTs) are constructed from the behavior de-
scription; (2) By scanning constructed ASTs, the micro-
operation descriptions are generated without having to specify
the pipeline stages and the functional units (micro-operation
segments); (3) Micro-operation segments are allocated to the

288

Instruction ADD
Assign

N

Array +
GPR rd Array Array
GPR rsO GPR rs1

Fig. 4. AST of Instruction ADD

pipeline stages; (4) Functional units are defined for each micro-
operation segment.

C.1 Abstract Syntax Trees (ASTs)

An AST is constructed from the behavior description of each
instruction. An AST expresses sentences or expressions. A
sentence expresses assignments or if-statements. Assignments
and if-statements are expressed as ASTs that have Assign and
1 f respectively as a root node. An expression expresses func-
tional expressions, data type, operands, or integer values. A
functional expression is expressed as ASTs that have an oper-
ator (+, —, *, /, %, <<, >>, >, <, <=, >=, ==, | =, and,
or, xor, not, extend, Cast, Array) as a root node. Type,
operands, and integers are expressed as nodes of type name
(signed/unsigned bit-range), string, and integer value, respec-
tively. An operator C'ast expresses a cast of a type. An operator
Clast has a data type name as a left child and expression as a
right child. An operator Array expresses an array. An operator
Array has an array name as a left child and an index as a right
child.

Figure 4 shows an example of an AST for Figure 1. The
registers rs0 and rs1 in the registerfile GPR are added in the
right child, and the result is stored in register rd in the left child.

C.2 Micro-Operation Segments

The micro-operation segments are generated by scanning the
constructed AST in post order. To generate nodes of operators,
we have to define a function for a node of an operator. In this
step, only functions are defined. That is, the functional units
are not specified yet.

Figure 5 shows the micro-operation segments of the instruc-
tion BEQ. In the left child of I f, micro-operation segments to
read rs0 and rs1 from registerfile GPR, and to compare 7s0
with sl are generated. A functional unit for comparison is
expressed as a temporary functional unit temp0; only the func-
tion compare is decided. The result of the comparison is stored
in the variable cond. Variable cond is ‘1’ only if 7s0 is equal to
rsl. In the right child, the micro-operation segments for calcu-
lating the target address and jumping to the target address are
generated. The functional units for sign extension and addition

3B-3

Instruction BEQ
If(rs0 ==rs1){ PC = PC + (const << 2); }

=9

tIf -~ -4 [cond] ! |null = PC write(sourceb);
_________ fidpigtisatphvatsl]
-I’—
- N
e~ z 1
Lo == TN ,“Assign
’ \\ , ,
/ /\ v ,
1 i P a"“\\
' Array Array ‘}EQ*/,’ .
/7 \
1
G\IiR rsOGPR rs,‘l,/ | PC << |
~ -, 1 l|
S~ - \ 1
T .\
i ‘. const 27
1 S - !
1 Dinaie 1
[} 1
_________ 2, S

:sourceO = GPR.read0(rs0); : : source2 = PC.read();
. ;

1
1
:50“L°f1$t= GP(I)R.read1(rs1); 1 | source3 =$temp1.extend(const); |
roond = v emp=. 0 1. 1 150Urce4 = <source3[29:0},°00">; [
! compare(source0,source1); | :source5 - i

___________________ 1 $temp2.add(source2,source4); !

Fig. 5. Micro-Operation Segments of Instruction BEQ

TABLE I
EXAMPLE OF DECIDING FUNCTIONAL UNITS

Instruction | Function | Functional Decided Instance
Name Unit of Functional Unit
ADD add alu ALUO
SUB sub alu ALUO
MULT mul multiplier MULTO
DIV div divider DIVO

are not decided; only the functions extend and add are de-
cided. [cond] is placed in the head of “PC.write(sourceb)”.
This means the following sentence is executed only if cond is
‘1.

The proposed method assumes that the micro-operation de-
scription of the instruction fetch is written by the designer, be-
cause it is not expressed in the behavior description of the in-
structions.

C.3 Allocation of Segments

After the micro-operation segments of all instructions are
generated, the micro-operation segments are allocated to the
pipeline stages according to the designer’s specification.

Figure 6 is an example of micro-operation segment alloca-
tion for the five pipeline stages in the instruction ADD. The
micro-operation segments are allocated according to the infor-
mation in Figure 3. Read functions of register s0 and s1 from
the registerfile GPR are allocated to stage2. Addition of rs0
and rsl is allocated to stage3. Finally, a write back operation
of the result is allocated to stageS.

C.4 Deciding Functional Units

Next, the temporary functional units are replaced by instances
of functional units.

289

3B-3

Instruction ADD

Stage | Micro Operation Description
Stage1

source0 = GPR.read0(rs0); ----.| stage2 | sourced = GPR.read0(rs0);

source! = GPR.read1(rs1); ----" source1 = GPR.read1(rs1);
Stage3 | result =

result = /’ $temp.add(source0,source);

$temp.add(source0,source1); Stage4
null = GPR.write0(rd,result); ==~~~ » Stage5 | null = GPR.writeO(rd,result);

Fig. 6. Example of Allocation of Micro-operation Segments to Pipeline
Stages in Instruction ADD

Table I shows an example of decided instances of functional
units. The first column shows the instruction name, and the
function used in the instruction of the first column is shown
in the second column. The third column shows the functional
unit that has the function in the second column, and the fourth
column shows an instance of a functional unit in the third col-
umn. For example, the function add used in instruction ADD
is executed by ALUO.

After deciding the instance of the functional unit, the tempo-
rary functional units in micro-operation segments are replaced
by decided instances.

The proposed method does not consider the design space ex-
ploration of combinations of functional units. That is, it as-
sumes that there is only one functional unit for a certain func-
tion.

IV. EXPERIMENTS

We designed several processors with the proposed method
and the conventional method, in which the micro-operation de-
scription is manually described by a designer, and compared
their code sizes, design times, and design qualities. The pro-
cessors were of the MIPS R3000 [11] subset (42 instructions
implemented) and DLX [12] subset (51 instructions imple-
mented). The number of pipeline stages of the DLX sub-
set was changed to three to determine whether the proposed
method could generate processors with different numbers of
stages. Then, to confirm that the proposed method could gen-
erate specific instructions, and quickly change the number of
pipeline stages, we expanded the DLX subset by implement-
ing several specific instructions and changing the number of
pipeline stages.

A. Experimental Results

Table II shows the results of the code size comparison. The
code size is the sum of the number of lines of the operand
definition and the semantics definition. In ASIP Meister, the
designer can write the micro-operation description by using
macros, which can generate operations that are common among
instructions, such as instruction fetches or arithmetic opera-
tions. In this experiment, the code size of the micro-operation
description was taken to be the total code size of the macros and

TABLE I
COMPARISON OF CODE SIZE

MIPS R3000 subset
behavior | micro-operation | total
description description
conventional 165 292 | 457
proposed 165 0 165
DLX subset
behavior | micro-operation | total
description description
conventional 195 392 587
proposed 195 0 195
(Unit: lines)
TABLE III
COMPARISON OF DESIGN TIME
MIPS R3000 subset
behavior | micro-operation | others | total
description description
conventional 45 100 85 230
proposed 45 0 75 120
DLX subset
behavior | micro-operation | others | total
description description
conventional 60 125 115 300
proposed 60 0 95 155

(Unit: minutes)

the micro-operation description with macros. Inspection of Ta-
ble II confirms that the proposed method reduced the code size
by about 64% in MIPS R3000 and about 67% in DLX com-
pared with the conventional method.

Table IIT compares design times. The conventional method
took longer in describing the micro-operation description.
Compared with the conventional method, the proposed method
reduced design time by about 50% for both MIPS R3000 and
DLX

We synthesized HDL descriptions of the generated proces-
sors and evaluated their area and delay. Table IV compares the
results of the logic synthesis. We used Synopsys Design Com-
piler [13] as a logic synthesis tool. In MIPS R3000 subset, area
of the processor generated by the proposed method increased,
compared with that of the processor generated by the conven-
tional method, because the combination of functional units is
different between the proposed method and the conventional
method. However, as a whole, the Table IV shows that the pro-
posed method could generate synthesizable HDL descriptions
of processors and hardly degrade the design quality from that
of the conventional method.

B. Modification of DLX Processor

We implemented several specific instructions in the DLX
processor and changed the number of pipeline stages. Im-
plemented instructions are shown in Table V. The imple-
mented instructions were multiply and accumulate (MAC), in-
crement/decrement memory access, calculation of absolute,
and compare and exchange. The expanded DLX processor had
five pipeline stages and two execution stages.

Figure VI shows the design quality and the design time of

290

TABLE IV
DESIGN QUALITY

MIPS R3000 subset
Area (gates) | Delay (ns)
conventional 36829 8.95
proposed 39102 8.97
DLX subset
Area (gates) | Delay (ns)
conventional 36019 9.72
proposed 36114 9.83
(library: 0.18um CMOS)
TABLE V
IMPLEMENTED INSTRUCTIONS
Instruction Type Behavior

MADD, MSUB
LDINC, LDDEC
STINC, STDEC
ABS

CEX

Multiply and Addition/Subtraction
Load and Increment/Decrement
Store and Increment/Decrement
Absolute

Compare and Exchange

the customized DLX. The design time is the time to expand
the DLX processor; add new instructions and change the num-
ber of pipeline stages. In the proposed method, the time to
change the number of pipeline stages is perfomed within a few
minutes, because the proposed method automatically allocates
each micro-operation segment to the pipeline stages, base on
the specification of each pipeline stages defined by a designer.
Apparently, the proposed method could generate the processor
with specific instructions and change the number of pipeline
stages in a short period.

By the experimental results, we confirm that the proposed
method provides reduction of code size and design time, and
generated processor by the proposed method hardly degrade
the design quality compared with the conventional method.

V. CONCLUSION

This paper described a method of generating a micro-
operation description from a behavior description. The pro-
posed method quickly generates a synthesizable HDL descrip-
tion and software development tools, and the generated pro-
cessor and software development tools are perfectly consistent
because they are generated from a single description. In experi-
ments, we designed three processors with the proposed method
and the conventional method of manually generating both de-
scriptions, and compared their code sizes, design times, and
design qualities. The results showed that in comparison with
the conventional method, the proposed method dramatically re-
duced code size and design time and did not degrade the design
quality.

Future research will include optimizing the micro-operation
segments and the combination of functional units, and imple-
mentation of an algorithm to minimize the number of pipeline
stages [10].

(1]

(2]

(3]

[4]

(5]

(6]

(71

(8]

[9]

[10]

[11]
[12]

[13]

291

3B-3

TABLE VI
DESIGN QUALITY AND DESIGN TIME

DLX + Specific Instructions
Area (gates) | Delay (ns) Design Time
conventional 52169 8.41 50
proposed 52888 8.52 20
(library: 0.18um CMOS)
REFERENCES

M. Imai, “ASIP Meister : A Configurable Processor Core Development
System,” Proc. ITI of 3rd International Conference on Information &
Communications Technology (ICICT 2005), Cairo, Egypt, Dec. 2005.

J.-H. Yang, B.-W. Kim, S.-J. Nam, Y.-S. Kwon, D.-H. Lee, J.-Y. Lee,
C.-S. Hwang, Y.-H. Lee, S.-H. Hwang, I.-C. Park, and C.-M. Kyung,
“MetaCore: An Application Specific DSP Development System,” IEEE
Transactions on Very Scale Integration (VLSI) Systems, Vol. 8, No.2, pp.
173-183, Apr. 2000.

G. Ezer, “Xtensa with user defined DSP coprocessor microarchitectures,”
Proc. of 2000 IEEE International Conference on Computer Design, VLSI
in Computers & Processors (ICCD 2000), pp. 335-342, 2000.

R. Leupers and P. Marwedel, “Retargetable Code Generation Based on
Structural Processor Description,” Design Automation for Embedded
Systems, Springer Netherlands, 1998.

R. Leupers, J. Elste, and B. Landwehr, “Generation of interpretive and
compiled instruction set simulators,” Proc. of Asia and South Pacific De-
sign Automation Conference 1999 (ASP-DAC 1999), pp. 339-342, Hong
Kong, Jan. 1999.

A. Hoffmann, H. Meyr, and R. Leupers, “Architecture Exploration for
Embedded Processors with LISA,” Kluwer Academic Publishers, 2002.

A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H.
Meyr, “A methodology for the Design of Applications Specific Instruc-
tion Set Processors (ASIP) Using the Machine Description Language
LISA,” Proc. of the International Conference on Computer Aided Design
(ICCAD), pp. 625-630, San Jose, USA, Nov. 2001.

H. Yanagisawa, M. Uehara, and H. Mori, “ISA based system design lan-
guage in HW/SW co-design environment,” Proc. of the 13th IEEE Inter-
national Workshop on Rapid System Prototyping (RSP 2002), pp. 122-
127, 2002.

T. Morifuji, Y. Takeuchi, J. Sato, and M. Imai, “Flexible Hardware Model
Database Management System Implementation and Effectiveness,” Proc.
of the Workshop on Synthesis and System Integration of Mixed Tech-
nologies (SASIMI 1997), pp. 83-89, Osaka, Japan, Dec. 1997.

M. Abe, K. Sakanushi, Y. Takeuchi, and M. Imai, “Pipeline Stage Mini-
mization Algorithm for Embedded Processors,” Technical Report of IE-
ICE, DSP2003-60, Vol. 103, No. 147, pp. 55-60, 2003 (in Japanese).
MIPS Technologies Inc., http://www.mips.com

J. L. Hennessy, and D. A. Patterson, “Computer Architecture: A Quan-
titative Approach Second Edition,” Morgan Kaufmann Publishers, Inc.,
1996.

Synopsys Inc., http://www.synopsys.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

