
DpRouter: A Fast and Accurate Dynamic-Pattern-Based Global Routing Algorithm*

Zhen Cao
1
, Tong Jing

1, 2
, Jinjun Xiong

2, 3
, Yu Hu

2
, Lei He

2
, Xianlong Hong

1

Abstract - This paper presents a fast and accurate global rout-

ing algorithm, DpRouter, based on two efficient techniques: (1)

dynamic pattern routing (Dpr), and (2) segment movement.

These two techniques enable DpRouter to explore large solu-

tion space to achieve better routability with low time complex-

ity. Compared with the state-of-the-arts, experimental results

show that we consistently obtain better routing quality in terms

of both congestion and wire length, while simultaneously

achieving a more than 30x runtime speedup. We envision that

this algorithm can be further leveraged in other routing appli-

cations, such as FPGA routing.

I Introduction

The success of future integrated circuit designs requires

the consideration of physical impact. Congestion-aware

global routing is crucial to achieve this goal and has been

proven useful in physical synthesis.

Existing global routing algorithms mainly focus on con-

gestion reduction [1-8]. Among them, [7] and [8] are two of

the most recent publications with good results. Labyrinth [7]

is a global router that evaluates routing results in terms of

congestion and wire length. Fengshui [8] proposed the con-

cept of amplified congestion estimation, which helped to

improve both over-congestion and routing length.

Some Steiner tree algorithms [9-11] even tried to improve

the routability. [9] and [10] presented the idea of solving

Steiner tree problem based on pre-computed lookup table.

[11] proposed the concept of flexibility in the rectilinear

Steiner tree (RST) problem. These tree algorithms are help-

ful, but the final congestion reduction still mainly relies on

powerful routing algorithms.

The problem of congestion-aware routing, however, is

far-from being solved. This paper focuses on the routabil-

ity-driven global routing problem. Our focus is congestion

reduction and algorithm efficiency. The major contributions

of this work are as follows:

(1) An efficient dynamical pattern routing (Dpr) technique

to achieve the optimal routing solution for two-pin nets.

(2) A segment-move technique to extend the searching

space for routability driven RST problem.

* This work was supported in part by the Key Project of Chinese Ministry

of Education under Grant No.106008, the Specialized Research Fund for

the Doctoral Program of Higher Education (SRFDP) of China under Grant

No.20050003099, and the National Natural Science Foundation of China

(NSFC) under Grant No. 90607001.

(3) A congestion-aware global routing algorithm that

combines the above two techniques to achieve high speed

and high optimization capability.

Compared with the state-of-the-art routers, labyrinth 1.1

[7] and Fengshui 5.1 router (newest edition of Chi dispersion

router) [8], we simultaneously reduce total overflow by

89.76% and 51.71%, total wire length by 14.49% and 1%,

while achieving 64x and 38x speed up of runtime, respec-

tively. Comparison has also been performed between Dpr

and Z-shaped pattern routing [6] on runtime and congestion

reduction. We show that Dpr achieves better routing solu-

tions with the same time complexity.

The rest of this paper is organized as follows. Basic defi-

nitions and the problem formulation are introduced in Sec-

tion II. The dynamic pattern routing (Dpr) technique is de-

scribed in Section III. In section IV, both DpRouter and the

segment-move techniques are introduced in detail. Experi-

mental results are given in Section V, and Section VI con-

cludes this paper.

II. Preliminaries

A. Basic Definitions and Problem Formulation

Global routing problem is often formulated by partition-

ing the routing area into global cells and mapping all physi-

cal pins in each cell into the center of the cell. The centers

make up the global routing graph (GRG). We introduce the

following concepts in the context of routability driven global

routing.

Given ce as the capacity of a GRG edge, de as the routing

demand for edge e, the overflow of edge e is defined as fol-

lows.
,

0,

e e e e

e

d c if d c
overflow

otherw ise (1)

The total overflow of the entire routing area is as follows.

e

e E

tof overflow

 (2)

Segment: a segment is a horizontal or vertical edge line on

GRG connecting its two endpoints.

Edge of a tree: an edge of a tree is the routing between

two vertexes in this tree. Note that the difference between

edge of a tree and edge on GRG. As shown in Fig.1.(b), A

and D are pins, B and C are Steiner points, the edge con-

necting AB consists of two segments, AE and EB.

Topology: for a given RST, there is a corresponding graph

1 Computer Science & Technology Department

Tsinghua University

Beijing 100084, China

Phone: +86-10-62785564

e-mail: caoz@mails.thu.edu.cn

2 Electrical Engineering Department

UCLA

Los Angeles, CA, 90095, USA

Phone: (310) 267-5407

e-mail: {tomjing, jinjun, hu, lhe}@ee.ucla.edu

3 IBM Research Center

Yorktown Heights

NY, 10598, USA

Phone: 1-914-945-3676

e-mail: jinjun@us.ibm.com

1-4244-0630-7/07/$20.00 ©2007 IEEE.

3A-3

256

G(T,E) called topology, where T is the set of pins and Steiner

points and E is the set of edges between the vertexes in T.

For a given topology for a netlist, there may exist many em-

bedded Manhattan trees.

[11] presented the definition of flexible edges. A flexible

edge is an edge by which two vertexes are connected by

more than one segment. Flexible edges allow more than one

minimum length routing solution, which is more suitable for

global routing than non-flexible edges. As shown in Fig.1,

the tree in Fig.1(b) has two flexible edges (AB and CD),

whereas the tree in Fig.1(a) has no flexible edges at all. So

the tree in Fig.1(b) can avoid congested grey area by ex-

ploiting flexible edges to achieve the minimum length,

whereas the tree in Fig.1(a) can not. Therefore we should

exploit the flexibility of each tree as much as possible to

gain better routing solutions.

(a) No flexible edge in tree (b) Two flexible edges in tree

Fig.1. RST with or without flexible edges

 (gray area indicates congestion).

(a) POWV (1, 1, 1, 1, 2, 1) (b) POWV (1, 2, 1, 1, 1, 1)

Fig.2. Different POWVs for a given net

B. Flute Technique

[10] presented a fast and accurate rectilinear Steiner

minimal tree (RSMT) algorithm based on lookup table,

called FLUTE. In FLUTE, the set of all degree n nets are

partitioned into n! categories according to their relative posi-

tions of pins. For every category, several potentially optimal

wire length vectors (POWVs, i.e., the different linear com-

binations of distance between adjacent Hanan grid lines [12])

are stored in a lookup table to give a fast estimation of

minimal wire length. As shown in Fig.2, two POWVs, (1, 1,

1, 1, 2, 1) and (1, 2, 1, 1, 1, 1), for one category of 4-pin net

are stored in a look up table. Then, the minimal wire length

can be estimated by calculating the wire length considering

the real distance between adjacent Hanan grid lines. For

high-degree nets, the table size will become impractical

large. So a net-braking technique is used to divide the net

into sub-nets recursively to find an approximated minimal

wire length.

For every POWV, one tree topology is also stored in

FLUTE. However, in global routing, only one tree topology

is not enough. So we present a fast search technique to con-

sider all possible routing solutions for every POWV, which

will be introduced in Section III and Section IV.

III. Dynamic Pattern Routing

In global routing, researchers often decompose a tree to-

pology into 2-pin nets. Then they use pattern routing or

maze routing to route each 2-pin net separately. But the

searching space of L- or Z-shape pattern routing is too small

and the time complexity of maze routing is too high. Here

we present a new and flexible technique to connect a 2-pin

net, called dynamic pattern routing (Dpr). Compared with L-

or Z-shape pattern routing, this technique can explore pat-

terns with more than 2 bends and search the solution space

of all routings with minimal wire length and low time com-

plexity.

A. Pattern Routing

As shown in Fig.3, the L-shape (1-bend) pattern routing

only allows routing on the bounding box, while Z-shape

(2-bend) pattern routing only allows routing with two bends

on or inside the bounding box. So compared with maze

routing, the L- or Z-shape pattern routing’s time complexity

is much lower. However, in the routability driven routing

problem, especially in the case of high congestion, L- or

Z-shape pattern routing can not avoid some congested area,

as shown in Fig.4(a). Therefore, new fast pattern routing

technique with more-than-2-bend is needed for routability

driven routing as shown in Fig.4(b).

(a) L-shape (b) Z-shape (a) Z-shape (b) 3-bend

Fig.3. L- and Z-shape pat-

tern routing

Fig.4. Pattern routing in con-

gested area

B. Dynamic Pattern Routing Algorithm

We present an algorithm called dynamic pattern routing

(Dpr) to search for more-than-2-bend routings with low time

complexity.

Theorem 1: There are C(m+n, m) different routing solu-

tions to connect an edge with minimal wire length, where m
and n are the vertical and horizontal distances of the edge,

respectively.

Proof: Every routing solution can be formulated as

choosing m vertical steps out of total m+n steps. That is just

C(m+n, m) different combinations

We employ a linear function to estimate the routing cost

of every edge on GRG, while considering congestion and

other information. Then routability driven routing problem is

then formulated to find the routing solution with minimal

cost. This function (formula (3)) is given in Sub-Section

IV.E. However, it is too costly to consider all possible solu-

tions. So we utilize dynamic programming in Dpr.

Theorem 2: With the linear cost function, the optimal

3A-3

257

routing solution must be optimal in its sub routings.

Proof: (By way of contradiction) Suppose that the routing

with minimal cost has a sub-routing which is not optimal.

Then, this sub-routing can be replaced with another routing

with a lower cost. Since the cost function is linear, the

so-obtained new routing would have a lower cost than be-

fore, which is contradictory to the assumption that the origi-

nal solution is optimal. Therefore, all sub-routings of the

optimal routing must be optimal too.

The key of dynamic programming is that the sub-solution

of the optimal solution must be optimal too. Therefore, with

Theorem 2, we can utilize dynamic programming to find the

optimal routing of an edge. The idea is illustrated in Fig.5.

To find an optimal routing from A to B, we only need to find

the optimal routings form A to C and from A to D. Then, by

adding the routing cost for CB and DB, we can choose the

optimal routing from A to B out of the two candidates, which

is ACB in the figure.

Fig.5. Dynamic pattern routing

(a) Dpr algorithm (b) Dpr-M algorithm

Fig.6. Dpr and Dpr-M algorithm

Algorithm 1 Dpr algorithm

Input: Routing graph G, a 2-pin net n={(x1, y1), (x2,y2)}

Output: Optimal routing solution for n

1: if x1 equals to x2, or y1 equals to y2 then

2: return the straight line routing from (x1, y1) to (x2,y2);

3: end if;

4: for dy from 0 to y2 - y1 do

5: for dx from 0 to x2 - x1 do

6: current position is (x1+dx, y1+dy), namely p;

7: get two points and corresponding segments left and below p;

8: calculate the corresponding cost for routings from

(x1, y1) to p that pass these two points;

9: choose one with lower cost as p’s parent, record the cost;

10: end for;

11: end for;

12: back trace from (x2,y2) to (x1, y1), get the routing solution s;

13: return s;

Fig.7. The pseudo-code of Dpr algorithm

With the above idea, we can find all optimal routing solu-

tions from A to all vertexes on or inside the area of ACBD,

shown in Fig.6.(a). The pseudo-code of Dpr is shown in

Fig.7. Dpr first finds optimal routings for vertexes on line

AD, then extend to the line just above AD. The iteration

goes on until finally extend to CB.

Theorem 3: The time complexity of Dpr is the same as

Z-shape pattern routing.

Proof: Given n={(x1,y1),(x2,y2)}, let Z be the segments on

and within the bounding box of n, L be the segments on the

bounding box of n, then |Z|= 2 |x1-x2| |y1-y2|+|x1-x2|+|y1-y2|,

|L|= 2 (|x1-x2|+|y1-y2|). For L-shape pattern routing, time

complexity is O(|L|), while for Z-shape pattern routing it is

O(|Z|). With analysis of Dpr algorithm, we can find that each

segment on or within the bounding box is only calculated

once. So time complexity of Dpr is O(|Z|), which is the same

as Z-shape pattern routing.

Dpr is very powerful for routability driven global routing,

because compared with Z-shape routing, with the same time

complexity, the searching space of Dpr routing is much lar-

ger. Dpr obtains the optimal routing solution with minimal

length by considering all possible C(m+n, m) minimal

wire-length routing solutions, while Z-shape only considers

m+n routing solutions. Our experimental results also con-

firm this analysis.

C. Extension of Dpr

Dpr technique is very flexible, and it enables us to solve

the routing problem with movable endpoints (Dpr-M) effi-

ciently. In this case, the endpoint of an edge is allowed to

move in some directions. For example, as shown in Fig.6(b),

we may first find optimal routings from A to all vertexes in

rectangle ACBD. If the end point moves from B to E, we

only need to extend the calculation to green (BCFG) and red

areas (BHID). In another word, only the calculation to find

the optimal routings for vertexes in the extended area is

needed, hence saving much runtime.

In Section IV.B, we use a segment-move technique to ex-

plore such flexibility for better routability.

IV. Global Routing Algorithm DpRouter

A. Global Routing Flow

We present a global router based on the combination of

Dpr and segment-move technique.

In our algorithm, the initial routing solution is found by

Dpr and segment-move technique. After initial routing, first

we rip-up and reroute by using Dpr and segment-move to

reroute every congested net for several iterations. Then we

use maze routing. The notion is that maze routing got a

much higher time complexity and a larger searching space

than Dpr and segment-move do. Therefore, we first use the

quicker method to reduce congestion keeping short wire

length. Then we use maze routing to reduce congestion of

the nets that need to be detoured. This strategy can reduce

run time while keeping good routability.

In our algorithm, we order the nets by size of the bound-

ing box. In the initial routing step, the order is from small to

large, while in the rip-up and rerouting the order is from

large to small. The notion is that net with bigger bounding

box is more flexible than net with a smaller one. So, in ini-

tial routing, big ones are routed after the small ones to avoid

congestion. In rerouting, the information of congestion is

enough. So, big nets should be rerouted firstly to quickly

3A-3

258

reduce congestion.

The flow of the routing algorithm DpRouter is shown in

Fig.8. The detailed introduction of DpRouter will be given

in the following.

Algorithm 2 DpRouter

Input: Routing graph G and nets set N

Output: Routing solutions for every net in N

1: congestion estimation;

2: for every net list l in N do

3: get the POWVs set P of l;

4: for every POWV v in P do

5: use FLUTE to get the original topology t for vector v of

net list l;

6: find independent movable segment sets M of t;

7: use Dpr and Segment-Move techniques to move segments

in M to find the best routing solution s for v, put s in set S;

8: end for;

9: select the best solution s’ in S, route it;

10: end for;

11: rip-up and reroute every net in congested area, using method the

same of line 3-8, for several iterations;

12: rip-up and reroute every net in congested area, tree topology is se-

lected using method of line 3-8, but maze routing is utilized in rout-

ing;

13: return;

Fig.8. Pseudo-code of DpRouter.

B. Segment-Move Technique

As discussed in Sub-Section II.B, only one topology for

each POWV is stored in FLUTE, which is not sufficient for

global routing. Searching all solutions with minimal length

for each POWV is needed by routability driven global rout-

ing. Then every different topology should be given.

This problem is shown in Fig.9, where the red square

points are Steiner points, the dotted edge indicates this edge

is a flexible one, the green edge (light color) indicates this

edge is a movable segment and the gray area indicates con-

gestion. Fig.9(a) is the original tree topology, stored by

FLUTE. We can only search some of the solution space by

giving different routing solutions for this topology, one of

them is shown Fig.9(d). This is not enough for avoiding

congestion. Note that some other tree topologies are trans-

formable from the original one by moving the green segment

up, as shown in Fig.9(b) and Fig.9(c). Then, a Dpr search of

each edge in Fig.9(b) and Fig.9(c) can cover all the other

solution space of this POWV, two of them are shown in

Fig.9(e) and Fig.9(f). Finally, Fig.9(f) shows the best routing

solution.

Fig.9. Different routing solutions for one POWV

We firstly try to find all the movable segments of the

original tree topology and move them to new positions. Then

the Dpr technique is utilized to search all edges to give the

best routing for new topologies. But using Dpr to every to-

pology separately is too costly. So, segment-move and Dpr

should be combined to reduce the time complexity.

C. Combination of Dpr and Segment-Move

We first try to find all the movable segments of the origi-

nal tree topology and move them to new positions. Then the

Dpr technique is utilized to search all edges to give the best

routing for new topologies. In another word, segment-move

and Dpr are combined to further reduce the time complexity.

Three types of movable edges are shown in Fig.10.

Type A: the movement of the movable segment will not

reduce the flexibility of its adjacent edges, which is shown

in Fig.10(a) and Fig.10(b). In Fig.10(a) the movement of the

segment will not influence the flexibility of other edges. In

Fig.10(b), upwards movement will increase the flexibility of

edge BA as shown in Fig.10(b’).

Fig.10. Different types of movable edges

Type B: movement of the movable segment will decrease

flexibility of its adjacent edges, as shown in Fig.10(c). Up-

wards movement will decrease DC’s flexibility and increase

AB’s.

Type C: movement of the movable segment will cause the

change of connection relationship among the vertexes. As

shown in Fig.10(d), downward or upward movement of the

movable segment will increase the number of Steiner points

and connection relationships of these vertexes.

For Type A, we first put the segment on one end of its

movable range. In Fig.10(a), it can be the segment AB or CD.

In Fig.10(b), it is the segment BC. Then the movable seg-

ment will move along its movable direction. We calculate

the corresponding cost at each position. If the movement

extends the flexibility of an edge, such as AB’ in Fig.10(b’),

then the Dpr-M algorithm will be used to find the changed

optimal routing solution for this changed flexible edge.

For Type B, we use the similar method. If two flexible

edges are impacted by the movement shown in Fig.10(c), we

first use Dpr for each of the two flexible edges. Assume that

its movable end point (i.e., the interconnect point) is on its

maximum movable position, in this way we can get optimal

3A-3

259

routing of each possible position. When moving the segment,

both edges’ corresponding optimal routings are already

known based on previous computation.

For Type C, we first change the tree topology. Then, the

problem can be reclassified to either Type A or Type B.

D. Overlap of Movable Segments

We can move every movable segment with the combina-

tion of Dpr and segment-move. However, sometimes mov-

able segments overlap so we cannot move them independ-

ently. Based on our analysis of all the relative positions of

two movable segments, we summarize two types of overlap

and show them in Fig.11.

Type A is shown in Fig.11(a). For this type, movement of

one segment will not influence the flexible edges of the other.

So movement is independent. But the tree topology may

have to be changed as the point of B and C in Fig.11(b).

Type B is shown in Fig.11(c). For this type, the intercon-

nected point A is the endpoint of both movable edges. Then,

movement of these two movable segments is not independ-

ent. As shown in Fig.11(c), the maximum movable position

for the interconnected point A is B. So A is movable in the

gray area. We adopt Dpr-M in this case. When A is moving,

both Steiner point C and D are moving too, shown in

Fig.11(d). So incremental Dpr-M will be applied to these

three flexible edges to find the optimal routing solution.

Fig.11. Two types of overlaps

E. Selection of Tree Routing Solution

A cost function is employed to select the best tree routing

solution. We first find all movable segments and then divide

them into independent movable sets. After that, we use

Dpr-M to move every segment in independent movable set

to minimize the total cost, which is defined as follows.

* * * *f a ov b mid c net d esti (3)

where a, b, c, and d are coefficients, ov represents overflow,

net and esti represent real routed and estimated number of

nets on these GRG edges, respectively, mid is the number of

nets over lower capacity (To avoid congestion, we often give

a lower capacity for each GRG edge, which is T% of its

original capacity) of these GRG edges. The tree topology

with the minimal cost is selected for the net list to be routed.

The coefficients were different in different steps of rout-

ing. Before maze routing, we give T as 50% and give a, b a

small number. When performing maze routing, we raise T to

95% and raise a, b too. The idea is that, in maze routing, the

weight of congested should be bigger to avoid congested

area.

F. Congestion estimation

We use Dpr to do congestion estimation. To reduce run-

time, we only choose the tree topology with minimal wire

length from FLUTE and route it only using Dpr. After that,

we record the routed net number on each GRG edge as the

estimated congestion information.

The coefficient d in formula (3) is deceasing when more

and more nets are routed, and finally down to zero in the

rip-up reroute and maze routing steps. The reason is that in

the last moment of routing, the routed nets will give more

accurate congestion information than the estimated informa-

tion.

V. Experimental Results

A. Experiments Setup

We implement our algorithm in C++, and we test our

global router on ISPD’98 benchmarks. TABLE I shows the

characteristics of all benchmarks.

We compare our router with two latest academic

state-of-the-art ones, labyrinth 1.1 and Fengshui 5.1 (newest

implementation of Chi dispersion router). The total overflow

(tof), total wire length (twl) and runtime (CPU) of the rout-

ing results are compared and shown in TABLE II. Experi-

ments in this paper are performed in 1.6GHz CPU Linux PC.

B. Wire Length and Congestion Comparisons

The comparison of test results is shown in TABLE II,

from which we can find that DpRouter achieves high speed

up with a great congestion reduction. Compared with Laby-

rinth 1.1, DpRouter reduces on average total overflow by

89.76%, total wire length by 14.49%, and a 64x speed up.

Compared with Fengshui 5.1, DpRouter reduces total over-

flow by 51.71%, total wire length by 1%, and a 38x speed

up.

C. Congestion Reduction of Dpr

We compared Dpr with L- or Z-shape pattern routing on

tof and runtime. To demonstrate the optimization capability

of Dpr, we choose the topology given by FLUTE with mini-

mal wire length for all the 3 pattern routing techniques and

give 5 iterations of rip-up and rerouting.

The results are shown in TABLE III. Dpr can reduce more

than 30% overflow than L- or Z-shape pattern routing do

with shorter runtime. The reason for longer runtime of

Z-shape pattern routing is that it shares the same complexity

with Dpr but has to route more congested nets than Dpr does

in the rerouting step.

3A-3

260

TABLE I

Benchmark Data

Circuits Net# Grids Circuits Net# Grids

ibm01 13k 64×64 ibm06 34k 128×64

ibm02 19k 80×64 ibm07 46k 192×64

ibm03 26k 80×64 ibm08 49k 192×64

ibm04 31k 96×64 ibm09 59k 256×64

ibm05 30k 128×64 ibm10 66k 256×64

TABLE III

Comparison with L- and Z-shape Pattern Routing (PR)

L-shape PR Z-shape PR Dpr
circuit

tof cpu(s) tof cpu(s) tof cpu(s)

ibm01 2118 0.13 2053 0.18 1636 0.15

ibm02 4081 0.37 4030 0.45 3585 0.37

ibm03 1016 0.27 983 0.42 480 0.27

ibm04 3163 0.32 3151 0.46 2356 0.31

ibm05 51 0.44 94 0.73 0 0.37

ibm06 3424 0.55 3083 0.82 2210 0.57

ibm07 2789 0.60 2644 0.84 2073 0.57

ibm08 2690 0.98 2580 1.45 1229 0.94

ibm09 4065 0.86 3528 1.62 1656 1.09

ibm10 3576 1.00 3306 1.84 2343 1.29

Total 26973 5.52 25452 8.81 17568 5.93

*Norm 1.54 0.93 1.45 1.49 1.00 1.00

* Normalized to Dpr’s tof and CPU.

VI. Conclusions

This paper presents a very fast global routing algorithm. A

dynamical pattern routing (Dpr) technique is presented to

achieve optimal routing solutions for an edge with low time

complexity. A segment-move technique is developed to

search more solution space for routability driven RST prob-

lem. Based on the combination of Dpr and segment-move

techniques, a global router called DpRouter is developed.

We believe, though not verified, that this algorithm can be

further leveraged in other routing applications, such as

FPGA routing.

Acknowledgements

The authors would like to thank Prof. Chris Chu from

Iowa State University for providing the source code of

FLUTE.

References

[1] C. Chiang, M. Sarrafzadeh, and C.K. Wong, “Global routing

based on steiner min-max trees”, IEEE Trans. on CAD, 1990,

9(12): pp.1318-1325.

[2] W. Swartz and C. Sechen, “A new generalized row-basedglobal

router”, In Proc. of DAC, 1993, pp.491-498.

[3] R. C. Carden IV, J. M. Li, and C. K. Cheng, “A global router

with a theoretical bound on the optimal solution”, IEEE Trans.

on CAD, 1996, 15(2): pp.208-216.

[4] C. Albrecht, “Provably good global routing by a new approxi-

mation algorithm for multicommodity flow”, In Proc. of ISPD,

2000, pp. 19-25.

[5] T. Jing, X.L. Hong, H.Y. Bao, J.Y. Xu, and J. Gu, “SSTT: Effi-

cient local search for GSI global routing”, Journal of Compute

Science and Technology, 2003, 18(5): pp.632-639.

[6] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern rout-

ing: use and theory for increasing predictability and avoiding

coupling,” IEEE Trans. on CAD, 2002, 21(7): pp.777-790.

[7] Labyrinth, http://www.ece.ucsb.edu/~kastner/labyrinth/

[8] R.T. Hadsell and P.H. Madden, “Improved global routing

through congestion estimation,” In Proc. of DAC, 2003,

pp.28-31.

[9] C. Chu, “FLUTE: fast lookup table based wirelength estimation

technique”, In Proc. of ICCAD, 2004, pp. 696-701.

[10] C. Chu and Y. Wong, “Fast and accurate rectilinear Steiner

minimal tree algorithm for VLSI design,” In Proc. of ISPD,

2005, pp. 28-35.

[11] E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh, “Creating

and exploiting flexibility in rectilinear Steiner trees,” IEEE

Trans. on CAD, 2003, 22(5): pp.605-615.

[12] M. Hanan, “On Steiner's problem with rectilinear distance”,

SIAM J. on Applied Mathematics, 1966, 14: pp.255-265

TABLE II

Comparison between Labyrinth 1.1 and Fengshui 5.1.

circuit Labyrinth 1.1 Fengshui 5.1 DpRouter Improve on Labyrinth Improve on Fengshui

name twl tof cpu(s) twl tof cpu(s) twl tof cpu(s) twl(%) tof(%) spd(x) twl(%) tof(%) spd(x)

ibm01 76517 398 35.1 66006 189 25.0 63857 125 0.94 16.55 68.59 37.3 3.26 33.86243 26.6

ibm02 204734 492 58.9 178892 64 81.8 178261 3 2.34 12.93 99.39 25.2 0.35 95.3125 35.0

ibm03 185116 209 63.7 152392 10 61.8 150663 0 1.44 18.61 100.00 44.2 1.13 100 42.9

ibm04 196920 882 145.5 173241 465 94.3 172608 165 3.58 12.35 81.29 40.6 0.37 64.51613 26.3

*ibm05 420583 0 108.1 412197 0 191.4 413496 0 1.49 - - - - - -

ibm06 346137 834 171.6 289276 35 131.8 286025 14 4.46 17.37 98.32 38.5 1.12 60 29.6

ibm07 449213 697 408.4 378994 309 218.8 379133 99 5.44 15.60 85.80 75.1 -0.04 67.96117 40.2

ibm08 469666 665 417.5 415285 74 199.0 412308 56 6.18 12.21 91.58 67.6 0.72 24.32432 32.2

ibm09 481176 505 673.1 427556 52 234.4 419199 47 4.74 12.88 90.69 142.0 1.95 9.615385 49.5

ibm10 679606 588 789.6 599937 51 467.9 598460 46 7.66 11.94 92.18 103.1 0.25 9.803922 61.1

Average 14.49 89.76 63.73 1.01 51.71 38.16

* The result comparison did not include the case ibm05 since it is a trivial case.

3A-3

261

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

