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Abstract - This paper presents a fast and accurate global rout-

ing algorithm, DpRouter, based on two efficient techniques: (1) 

dynamic pattern routing (Dpr), and (2) segment movement. 

These two techniques enable DpRouter to explore large solu-

tion space to achieve better routability with low time complex-

ity. Compared with the state-of-the-arts, experimental results 

show that we consistently obtain better routing quality in terms 

of both congestion and wire length, while simultaneously 

achieving a more than 30x runtime speedup. We envision that 

this algorithm can be further leveraged in other routing appli-

cations, such as FPGA routing. 

I Introduction 

The success of future integrated circuit designs requires 

the consideration of physical impact. Congestion-aware 

global routing is crucial to achieve this goal and has been 

proven useful in physical synthesis. 

Existing global routing algorithms mainly focus on con-

gestion reduction [1-8]. Among them, [7] and [8] are two of 

the most recent publications with good results. Labyrinth [7] 

is a global router that evaluates routing results in terms of 

congestion and wire length. Fengshui [8] proposed the con-

cept of amplified congestion estimation, which helped to 

improve both over-congestion and routing length. 

Some Steiner tree algorithms [9-11] even tried to improve 

the routability. [9] and [10] presented the idea of solving 

Steiner tree problem based on pre-computed lookup table. 

[11] proposed the concept of flexibility in the rectilinear 

Steiner tree (RST) problem. These tree algorithms are help-

ful, but the final congestion reduction still mainly relies on 

powerful routing algorithms. 

The problem of congestion-aware routing, however, is 

far-from being solved. This paper focuses on the routabil-

ity-driven global routing problem. Our focus is congestion 

reduction and algorithm efficiency. The major contributions 

of this work are as follows: 

(1) An efficient dynamical pattern routing (Dpr) technique 

to achieve the optimal routing solution for two-pin nets. 

(2) A segment-move technique to extend the searching 

space for routability driven RST problem. 
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(3) A congestion-aware global routing algorithm that 

combines the above two techniques to achieve high speed 

and high optimization capability. 

Compared with the state-of-the-art routers, labyrinth 1.1 

[7] and Fengshui 5.1 router (newest edition of Chi dispersion 

router) [8], we simultaneously reduce total overflow by 

89.76% and 51.71%, total wire length by 14.49% and 1%, 

while achieving 64x and 38x speed up of runtime, respec-

tively. Comparison has also been performed between Dpr 

and Z-shaped pattern routing [6] on runtime and congestion 

reduction. We show that Dpr achieves better routing solu-

tions with the same time complexity. 

The rest of this paper is organized as follows. Basic defi-

nitions and the problem formulation are introduced in Sec-

tion II. The dynamic pattern routing (Dpr) technique is de-

scribed in Section III. In section IV, both DpRouter and the 

segment-move techniques are introduced in detail. Experi-

mental results are given in Section V, and Section VI con-

cludes this paper. 

II. Preliminaries 

A. Basic Definitions and Problem Formulation 

Global routing problem is often formulated by partition-

ing the routing area into global cells and mapping all physi-

cal pins in each cell into the center of the cell. The centers 

make up the global routing graph (GRG). We introduce the 

following concepts in the context of routability driven global 

routing. 

Given ce as the capacity of a GRG edge, de as the routing 

demand for edge e, the overflow of edge e is defined as fol-

lows. 
,

0,

e e e e
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d c if d c
overflow

otherw ise              (1) 

The total overflow of the entire routing area is as follows. 

e

e E

tof overflow

                             (2) 

Segment: a segment is a horizontal or vertical edge line on 

GRG connecting its two endpoints. 

Edge of a tree: an edge of a tree is the routing between 

two vertexes in this tree. Note that the difference between 

edge of a tree and edge on GRG. As shown in Fig.1.(b), A 

and D are pins, B and C are Steiner points, the edge con-

necting AB consists of two segments, AE and EB. 

Topology: for a given RST, there is a corresponding graph 
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G(T,E) called topology, where T is the set of pins and Steiner 

points and E is the set of edges between the vertexes in T.

For a given topology for a netlist, there may exist many em-

bedded Manhattan trees. 

[11] presented the definition of flexible edges. A flexible 

edge is an edge by which two vertexes are connected by 

more than one segment. Flexible edges allow more than one 

minimum length routing solution, which is more suitable for 

global routing than non-flexible edges. As shown in Fig.1, 

the tree in Fig.1(b) has two flexible edges (AB and CD), 

whereas the tree in Fig.1(a) has no flexible edges at all. So 

the tree in Fig.1(b) can avoid congested grey area by ex-

ploiting flexible edges to achieve the minimum length, 

whereas the tree in Fig.1(a) can not. Therefore we should 

exploit the flexibility of each tree as much as possible to 

gain better routing solutions. 

(a) No flexible edge in tree  (b) Two flexible edges in tree 

Fig.1. RST with or without flexible edges 

 (gray area indicates congestion). 

(a) POWV (1, 1, 1, 1, 2, 1)  (b) POWV (1, 2, 1, 1, 1, 1) 

Fig.2. Different POWVs for a given net 

B. Flute Technique 

[10] presented a fast and accurate rectilinear Steiner 

minimal tree (RSMT) algorithm based on lookup table, 

called FLUTE. In FLUTE, the set of all degree n nets are 

partitioned into n! categories according to their relative posi-

tions of pins. For every category, several potentially optimal 

wire length vectors (POWVs, i.e., the different linear com-

binations of distance between adjacent Hanan grid lines [12]) 

are stored in a lookup table to give a fast estimation of 

minimal wire length. As shown in Fig.2, two POWVs, (1, 1, 

1, 1, 2, 1) and (1, 2, 1, 1, 1, 1), for one category of 4-pin net 

are stored in a look up table. Then, the minimal wire length 

can be estimated by calculating the wire length considering 

the real distance between adjacent Hanan grid lines. For 

high-degree nets, the table size will become impractical 

large. So a net-braking technique is used to divide the net 

into sub-nets recursively to find an approximated minimal 

wire length. 

For every POWV, one tree topology is also stored in 

FLUTE. However, in global routing, only one tree topology 

is not enough. So we present a fast search technique to con-

sider all possible routing solutions for every POWV, which 

will be introduced in Section III and Section IV. 

III. Dynamic Pattern Routing 

In global routing, researchers often decompose a tree to-

pology into 2-pin nets. Then they use pattern routing or 

maze routing to route each 2-pin net separately. But the 

searching space of L- or Z-shape pattern routing is too small 

and the time complexity of maze routing is too high. Here 

we present a new and flexible technique to connect a 2-pin 

net, called dynamic pattern routing (Dpr). Compared with L- 

or Z-shape pattern routing, this technique can explore pat-

terns with more than 2 bends and search the solution space 

of all routings with minimal wire length and low time com-

plexity. 

A. Pattern Routing 

As shown in Fig.3, the L-shape (1-bend) pattern routing 

only allows routing on the bounding box, while Z-shape 

(2-bend) pattern routing only allows routing with two bends 

on or inside the bounding box. So compared with maze 

routing, the L- or Z-shape pattern routing’s time complexity 

is much lower. However, in the routability driven routing 

problem, especially in the case of high congestion, L- or 

Z-shape pattern routing can not avoid some congested area, 

as shown in Fig.4(a). Therefore, new fast pattern routing 

technique with more-than-2-bend is needed for routability 

driven routing as shown in Fig.4(b). 

(a) L-shape   (b) Z-shape (a) Z-shape  (b) 3-bend 

Fig.3. L- and Z-shape pat-

tern routing 

Fig.4. Pattern routing in con-

gested area 

B. Dynamic Pattern Routing Algorithm 

We present an algorithm called dynamic pattern routing 

(Dpr) to search for more-than-2-bend routings with low time 

complexity. 

Theorem 1: There are C(m+n, m) different routing solu-

tions to connect an edge with minimal wire length, where m
and n are the vertical and horizontal distances of the edge, 

respectively. 

Proof: Every routing solution can be formulated as 

choosing m vertical steps out of total m+n steps. That is just 

C(m+n, m) different combinations              

We employ a linear function to estimate the routing cost 

of every edge on GRG, while considering congestion and 

other information. Then routability driven routing problem is 

then formulated to find the routing solution with minimal 

cost. This function (formula (3)) is given in Sub-Section 

IV.E. However, it is too costly to consider all possible solu-

tions. So we utilize dynamic programming in Dpr. 

Theorem 2: With the linear cost function, the optimal 
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routing solution must be optimal in its sub routings. 

Proof: (By way of contradiction) Suppose that the routing 

with minimal cost has a sub-routing which is not optimal. 

Then, this sub-routing can be replaced with another routing 

with a lower cost. Since the cost function is linear, the 

so-obtained new routing would have a lower cost than be-

fore, which is contradictory to the assumption that the origi-

nal solution is optimal. Therefore, all sub-routings of the 

optimal routing must be optimal too.              

The key of dynamic programming is that the sub-solution 

of the optimal solution must be optimal too. Therefore, with 

Theorem 2, we can utilize dynamic programming to find the 

optimal routing of an edge. The idea is illustrated in Fig.5. 

To find an optimal routing from A to B, we only need to find 

the optimal routings form A to C and from A to D. Then, by 

adding the routing cost for CB and DB, we can choose the 

optimal routing from A to B out of the two candidates, which 

is ACB in the figure. 

Fig.5. Dynamic pattern routing 

(a) Dpr algorithm      (b) Dpr-M algorithm 

Fig.6. Dpr and Dpr-M algorithm  

Algorithm 1 Dpr algorithm 

Input: Routing graph G, a 2-pin net n={(x1, y1), (x2,y2)} 

Output: Optimal routing solution for n

1: if x1 equals to x2, or y1 equals to y2 then

2:   return the straight line routing from (x1, y1) to (x2,y2);

3: end if;

4: for dy from 0 to y2 - y1 do

5:   for dx from 0 to x2 - x1 do

6:    current position is (x1+dx, y1+dy), namely p;

7:    get two points and corresponding segments left and below p;

8:    calculate the corresponding cost for routings from  

(x1, y1) to p that pass these two points; 

9:    choose one with lower cost as p’s parent, record the cost; 

10:  end for;

11: end for;

12: back trace from (x2,y2) to (x1, y1), get the routing solution s;

13: return s;

Fig.7. The pseudo-code of Dpr algorithm 

With the above idea, we can find all optimal routing solu-

tions from A to all vertexes on or inside the area of ACBD, 

shown in Fig.6.(a). The pseudo-code of Dpr is shown in 

Fig.7. Dpr first finds optimal routings for vertexes on line 

AD, then extend to the line just above AD. The iteration 

goes on until finally extend to CB.

Theorem 3: The time complexity of Dpr is the same as 

Z-shape pattern routing. 

Proof: Given n={(x1,y1),(x2,y2)}, let Z be the segments on 

and within the bounding box of n, L be the segments on the 

bounding box of n, then |Z|= 2 |x1-x2| |y1-y2|+|x1-x2|+|y1-y2|,

|L|= 2 (|x1-x2|+|y1-y2|). For L-shape pattern routing, time 

complexity is O(|L|), while for Z-shape pattern routing it is 

O(|Z|). With analysis of Dpr algorithm, we can find that each 

segment on or within the bounding box is only calculated 

once. So time complexity of Dpr is O(|Z|), which is the same 

as Z-shape pattern routing.                      

Dpr is very powerful for routability driven global routing, 

because compared with Z-shape routing, with the same time 

complexity, the searching space of Dpr routing is much lar-

ger. Dpr obtains the optimal routing solution with minimal 

length by considering all possible C(m+n, m) minimal 

wire-length routing solutions, while Z-shape only considers 

m+n routing solutions. Our experimental results also con-

firm this analysis. 

C. Extension of Dpr 

Dpr technique is very flexible, and it enables us to solve 

the routing problem with movable endpoints (Dpr-M) effi-

ciently. In this case, the endpoint of an edge is allowed to 

move in some directions. For example, as shown in Fig.6(b), 

we may first find optimal routings from A to all vertexes in 

rectangle ACBD. If the end point moves from B to E, we 

only need to extend the calculation to green (BCFG) and red 

areas (BHID). In another word, only the calculation to find 

the optimal routings for vertexes in the extended area is 

needed, hence saving much runtime.  

In Section IV.B, we use a segment-move technique to ex-

plore such flexibility for better routability. 

IV. Global Routing Algorithm DpRouter 

A. Global Routing Flow 

We present a global router based on the combination of 

Dpr and segment-move technique. 

In our algorithm, the initial routing solution is found by 

Dpr and segment-move technique. After initial routing, first 

we rip-up and reroute by using Dpr and segment-move to 

reroute every congested net for several iterations. Then we 

use maze routing. The notion is that maze routing got a 

much higher time complexity and a larger searching space 

than Dpr and segment-move do. Therefore, we first use the 

quicker method to reduce congestion keeping short wire 

length. Then we use maze routing to reduce congestion of 

the nets that need to be detoured. This strategy can reduce 

run time while keeping good routability. 

In our algorithm, we order the nets by size of the bound-

ing box. In the initial routing step, the order is from small to 

large, while in the rip-up and rerouting the order is from 

large to small. The notion is that net with bigger bounding 

box is more flexible than net with a smaller one. So, in ini-

tial routing, big ones are routed after the small ones to avoid 

congestion. In rerouting, the information of congestion is 

enough. So, big nets should be rerouted firstly to quickly 
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reduce congestion. 

The flow of the routing algorithm DpRouter is shown in 

Fig.8. The detailed introduction of DpRouter will be given 

in the following. 

Algorithm 2 DpRouter 

Input: Routing graph G and nets set N

Output: Routing solutions for every net in N

1:  congestion estimation; 

2:  for every net list l in N do

3:      get the POWVs set P of l;

4:      for every POWV v in P do

5:          use FLUTE to get the original topology t for vector v of 

net list l;

6:          find independent movable segment sets M of t;

7:      use Dpr and Segment-Move techniques to move segments 

in M to find the best routing solution s for v, put s in set S;

8:      end for;

9:      select the best solution s’ in S, route it; 

10:  end for;

11: rip-up and reroute every net in congested area, using method the 

same of line 3-8, for several iterations; 

12: rip-up and reroute every net in congested area, tree topology is se-

lected using method of line 3-8, but maze routing is utilized in rout-

ing;

13: return;

Fig.8. Pseudo-code of DpRouter. 

B. Segment-Move Technique 

As discussed in Sub-Section II.B, only one topology for 

each POWV is stored in FLUTE, which is not sufficient for 

global routing. Searching all solutions with minimal length 

for each POWV is needed by routability driven global rout-

ing. Then every different topology should be given. 

This problem is shown in Fig.9, where the red square 

points are Steiner points, the dotted edge indicates this edge 

is a flexible one, the green edge (light color) indicates this 

edge is a movable segment and the gray area indicates con-

gestion. Fig.9(a) is the original tree topology, stored by 

FLUTE. We can only search some of the solution space by 

giving different routing solutions for this topology, one of 

them is shown Fig.9(d). This is not enough for avoiding 

congestion. Note that some other tree topologies are trans-

formable from the original one by moving the green segment 

up, as shown in Fig.9(b) and Fig.9(c). Then, a Dpr search of 

each edge in Fig.9(b) and Fig.9(c) can cover all the other 

solution space of this POWV, two of them are shown in 

Fig.9(e) and Fig.9(f). Finally, Fig.9(f) shows the best routing 

solution. 

Fig.9. Different routing solutions for one POWV 

We firstly try to find all the movable segments of the 

original tree topology and move them to new positions. Then 

the Dpr technique is utilized to search all edges to give the 

best routing for new topologies. But using Dpr to every to-

pology separately is too costly. So, segment-move and Dpr 

should be combined to reduce the time complexity. 

C. Combination of Dpr and Segment-Move 

We first try to find all the movable segments of the origi-

nal tree topology and move them to new positions. Then the 

Dpr technique is utilized to search all edges to give the best 

routing for new topologies. In another word, segment-move 

and Dpr are combined to further reduce the time complexity. 

Three types of movable edges are shown in Fig.10. 

Type A: the movement of the movable segment will not 

reduce the flexibility of its adjacent edges, which is shown 

in Fig.10(a) and Fig.10(b). In Fig.10(a) the movement of the 

segment will not influence the flexibility of other edges. In 

Fig.10(b), upwards movement will increase the flexibility of 

edge BA as shown in Fig.10(b’). 

Fig.10. Different types of movable edges 

Type B: movement of the movable segment will decrease 

flexibility of its adjacent edges, as shown in Fig.10(c). Up-

wards movement will decrease DC’s flexibility and increase 

AB’s. 

Type C: movement of the movable segment will cause the 

change of connection relationship among the vertexes. As 

shown in Fig.10(d), downward or upward movement of the 

movable segment will increase the number of Steiner points 

and connection relationships of these vertexes. 

For Type A, we first put the segment on one end of its 

movable range. In Fig.10(a), it can be the segment AB or CD. 

In Fig.10(b), it is the segment BC. Then the movable seg-

ment will move along its movable direction. We calculate 

the corresponding cost at each position. If the movement 

extends the flexibility of an edge, such as AB’ in Fig.10(b’), 

then the Dpr-M algorithm will be used to find the changed 

optimal routing solution for this changed flexible edge. 

For Type B, we use the similar method. If two flexible 

edges are impacted by the movement shown in Fig.10(c), we 

first use Dpr for each of the two flexible edges. Assume that 

its movable end point (i.e., the interconnect point) is on its 

maximum movable position, in this way we can get optimal 
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routing of each possible position. When moving the segment, 

both edges’ corresponding optimal routings are already 

known based on previous computation. 

For Type C, we first change the tree topology. Then, the 

problem can be reclassified to either Type A or Type B. 

D. Overlap of Movable Segments 

We can move every movable segment with the combina-

tion of Dpr and segment-move. However, sometimes mov-

able segments overlap so we cannot move them independ-

ently. Based on our analysis of all the relative positions of 

two movable segments, we summarize two types of overlap 

and show them in Fig.11. 

Type A is shown in Fig.11(a). For this type, movement of 

one segment will not influence the flexible edges of the other. 

So movement is independent. But the tree topology may 

have to be changed as the point of B and C in Fig.11(b). 

Type B is shown in Fig.11(c). For this type, the intercon-

nected point A is the endpoint of both movable edges. Then, 

movement of these two movable segments is not independ-

ent. As shown in Fig.11(c), the maximum movable position 

for the interconnected point A is B. So A is movable in the 

gray area. We adopt Dpr-M in this case. When A is moving, 

both Steiner point C and D are moving too, shown in 

Fig.11(d). So incremental Dpr-M will be applied to these 

three flexible edges to find the optimal routing solution. 

Fig.11. Two types of overlaps 

E. Selection of Tree Routing Solution 

A cost function is employed to select the best tree routing 

solution. We first find all movable segments and then divide 

them into independent movable sets. After that, we use 

Dpr-M to move every segment in independent movable set 

to minimize the total cost, which is defined as follows. 

* * * *f a ov b mid c net d esti                  (3) 

where a, b, c, and d are coefficients, ov represents overflow, 

net and esti represent real routed and estimated number of 

nets on these GRG edges, respectively, mid is the number of 

nets over lower capacity (To avoid congestion, we often give 

a lower capacity for each GRG edge, which is T% of its 

original capacity) of these GRG edges. The tree topology 

with the minimal cost is selected for the net list to be routed. 

The coefficients were different in different steps of rout-

ing. Before maze routing, we give T as 50% and give a, b a 

small number. When performing maze routing, we raise T to 

95% and raise a, b too. The idea is that, in maze routing, the 

weight of congested should be bigger to avoid congested 

area.

F. Congestion estimation 

We use Dpr to do congestion estimation. To reduce run-

time, we only choose the tree topology with minimal wire 

length from FLUTE and route it only using Dpr. After that, 

we record the routed net number on each GRG edge as the 

estimated congestion information. 

The coefficient d in formula (3) is deceasing when more 

and more nets are routed, and finally down to zero in the 

rip-up reroute and maze routing steps. The reason is that in 

the last moment of routing, the routed nets will give more 

accurate congestion information than the estimated informa-

tion. 

V. Experimental Results 

A. Experiments Setup 

We implement our algorithm in C++, and we test our 

global router on ISPD’98 benchmarks. TABLE I shows the 

characteristics of all benchmarks. 

We compare our router with two latest academic 

state-of-the-art ones, labyrinth 1.1 and Fengshui 5.1 (newest 

implementation of Chi dispersion router). The total overflow 

(tof), total wire length (twl) and runtime (CPU) of the rout-

ing results are compared and shown in TABLE II. Experi-

ments in this paper are performed in 1.6GHz CPU Linux PC. 

B. Wire Length and Congestion Comparisons 

The comparison of test results is shown in TABLE II, 

from which we can find that DpRouter achieves high speed 

up with a great congestion reduction. Compared with Laby-

rinth 1.1, DpRouter reduces on average total overflow by 

89.76%, total wire length by 14.49%, and a 64x speed up. 

Compared with Fengshui 5.1, DpRouter reduces total over-

flow by 51.71%, total wire length by 1%, and a 38x speed 

up. 

C. Congestion Reduction of Dpr 

We compared Dpr with L- or Z-shape pattern routing on 

tof and runtime. To demonstrate the optimization capability 

of Dpr, we choose the topology given by FLUTE with mini-

mal wire length for all the 3 pattern routing techniques and 

give 5 iterations of rip-up and rerouting. 

The results are shown in TABLE III. Dpr can reduce more 

than 30% overflow than L- or Z-shape pattern routing do 

with shorter runtime. The reason for longer runtime of 

Z-shape pattern routing is that it shares the same complexity 

with Dpr but has to route more congested nets than Dpr does 

in the rerouting step. 
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TABLE I 

Benchmark Data 

Circuits Net# Grids Circuits Net# Grids

ibm01 13k 64×64 ibm06 34k 128×64

ibm02 19k 80×64 ibm07 46k 192×64

ibm03 26k 80×64 ibm08 49k 192×64

ibm04 31k 96×64 ibm09 59k 256×64

ibm05 30k 128×64 ibm10 66k 256×64

TABLE III 

Comparison with L- and Z-shape Pattern Routing (PR)

L-shape PR Z-shape PR Dpr 
circuit

tof cpu(s) tof cpu(s) tof cpu(s)

ibm01 2118 0.13 2053 0.18 1636 0.15 

ibm02 4081 0.37 4030 0.45 3585 0.37 

ibm03 1016 0.27 983 0.42 480 0.27 

ibm04 3163 0.32 3151 0.46 2356 0.31 

ibm05 51 0.44 94 0.73 0 0.37 

ibm06 3424 0.55 3083 0.82 2210 0.57 

ibm07 2789 0.60 2644 0.84 2073 0.57 

ibm08 2690 0.98 2580 1.45 1229 0.94 

ibm09 4065 0.86 3528 1.62 1656 1.09 

ibm10 3576 1.00 3306 1.84 2343 1.29 

Total 26973 5.52 25452 8.81 17568 5.93 

*Norm 1.54 0.93 1.45 1.49 1.00 1.00 

* Normalized to Dpr’s tof and CPU. 

VI. Conclusions

This paper presents a very fast global routing algorithm. A 

dynamical pattern routing (Dpr) technique is presented to 

achieve optimal routing solutions for an edge with low time 

complexity. A segment-move technique is developed to 

search more solution space for routability driven RST prob-

lem. Based on the combination of Dpr and segment-move 

techniques, a global router called DpRouter is developed. 

We believe, though not verified, that this algorithm can be 

further leveraged in other routing applications, such as 

FPGA routing. 
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TABLE II 

Comparison between Labyrinth 1.1 and Fengshui 5.1.

circuit Labyrinth 1.1 Fengshui 5.1 DpRouter Improve on Labyrinth Improve on Fengshui 

name twl tof cpu(s) twl tof cpu(s) twl tof cpu(s) twl(%) tof(%) spd(x) twl(%) tof(%) spd(x)

ibm01 76517 398 35.1 66006 189 25.0 63857 125 0.94 16.55 68.59 37.3 3.26 33.86243 26.6 

ibm02 204734 492 58.9 178892 64 81.8 178261 3 2.34 12.93 99.39 25.2 0.35 95.3125 35.0 

ibm03 185116 209 63.7 152392 10 61.8 150663 0 1.44 18.61 100.00 44.2 1.13 100 42.9 

ibm04 196920 882 145.5 173241 465 94.3 172608 165 3.58 12.35 81.29 40.6 0.37 64.51613 26.3 

*ibm05 420583 0 108.1 412197 0 191.4 413496 0 1.49 - - - - - - 

ibm06 346137 834 171.6 289276 35 131.8 286025 14 4.46 17.37 98.32 38.5 1.12 60 29.6 

ibm07 449213 697 408.4 378994 309 218.8 379133 99 5.44 15.60 85.80 75.1 -0.04 67.96117 40.2 

ibm08 469666 665 417.5 415285 74 199.0 412308 56 6.18 12.21 91.58 67.6 0.72 24.32432 32.2 

ibm09 481176 505 673.1 427556 52 234.4 419199 47 4.74 12.88 90.69 142.0 1.95 9.615385 49.5 

ibm10 679606 588 789.6 599937 51 467.9 598460 46 7.66 11.94 92.18 103.1 0.25 9.803922 61.1 

Average 14.49 89.76 63.73 1.01 51.71 38.16

* The result comparison did not include the case ibm05 since it is a trivial case. 
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