
Topology exploration for energy efficient intra-tile communication

Jin Guo1,2, Antonis Papanikolaou1, Francky Catthoor1,2

1IMEC v.z.w., Kapeldreef 75, 3001 Leuven, Belgium
2Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

Abstract— With technology nodes scaling down, the energy
consumed by the on-chip intra-tile interconnects is beginning to
have a significant impact on the total chip energy. The Energy-
optimal Sectioned Bus (ESB) template is an energy efficient ar-
chitecture style for on-chip communication between components.
To achieve minimum energy operation, the netlist topology of the
ESB bus should however be optimized accordingly. In this pa-
per we present a strategy for the definition of an energy optimal
netlist for the ESB bus. An initial floorplanning stage provides
information about the eventual lengths of the interconnect wires
and a subsequent exploration step defines the optimal topology for
the communication architecture. We motivate that a star topol-
ogy generated using wire length prediction can be up to a factor 4
more energy efficient compared to standard linear bus topologies.

I. INTRODUCTION

Scaling to Deep Sub-Micron technology nodes is shifting the
major energy consumption contribution from the active area to
the on-chip interconnect wires, due to the deficient scaling of
the wires. Thus the communication networks which are mainly
composed of long interconnects can become a significant por-
tion of the total chip energy consumption. Percentages of up to
40% have been reported [1] [2].

Because the interconnect energy is directly influenced by the
wire length, which is decided during the placement and routing
phases of physical design, many efforts focus on these lower
levels of the design trajectory to optimize the interconnect en-
ergy. The most popular methods are revolving around activity
aware floorplanning techniques [3]. The wire energy is pro-
portional to the product of the wire length and the activity of
the wire. The basic idea of the activity aware floorplanning is
to minimize the activity weighted wire length to achieve the
globally energy optimal placement and routing.

However it is not enough to only optimize the interconnects
at the physical design stage. Predictions about the intercon-
nects at higher abstraction levels can help to limit the search
space for the lower level exploration, without removing the op-
timal solutions. During high-level synthesis, the interconnect
energy optimization is normally based on the estimation of the
interconnect wirelength [4] [5]. The well known Rent’s rule is
used for standard cell based designs. It estimates the number
of pins of a logic circuit given the average number of pins per
cell and the number of cells. Then the average wire length is
predicted using techniques such as the hierarchical placement
of the cells. The target is to gain a fundamental insight in the
average wire length distribution during logic synthesis.

With the increasing design complexity, macro block based
design with reuse of IP blocks is becoming more popular in

order to reduce the time-to-market. In a macro block based de-
sign, the lengths of the interconnects between the macro blocks
are easier to predict at a higher abstraction level, because much
fewer connections exist than those in standard cell based de-
signs. By pre-placing the macro blocks, the Manhattan distance
is an accurate enough estimation for the prediction of the length
of the global wires. The accurate estimation of the global wire
length makes it possible to evaluate the energy consumption
based on the individual interconnect length estimation, as op-
posed to the statistical nature of Rent’s rule. To achieve the wire
length estimation, an estimation of the floorplan is required to
determine the relative locations of the macro blocks.

Our design domain focuses on one tile in the System-On-
Chip (SOC) system (Fig. 1). The SOC system in our target
domain is typically composed of a mass storage memory block
and a set of other tiles. The mass storage memory dominates
the chip area. The other tiles are clusters which consist of
distributed processing elements and a heavily distributed local
memory organization. For energy purposes, the number of the
local memories can go up to dozens for real life designs [1].
We target the global wires which transfer the data between the
memories and the PEs inside the tile. They comprise the intra-
tile communication network. We do not consider the local in-
terconnects inside the macro blocks, they are optimized by the
designers of the macro blocks.

Mass storage memory Inter tile communication network

…

PE PE PE PE

L2 memory

L1mem

Intra tile communication network

tile tile

…tile tile

L1mem L1mem L1mem L1mem

L2 memory

tile

System-On-Chip template

Heavily
distributed
local memories

Distributed
processing
elements

tile

Fig. 1. SOC template for the embedded system

Various communication architectures for the macro blocks
in the SOC template have been studied, such as the shared
bus, the segmented bus [6] [7] [8] (ESB bus), multiple-bus net-
work (based on crossbar structures) and the Network-On-Chip
(NOC) [9]. The software controlled ESB bus is a very energy
efficient architecture (Fig. 2). It partitions the bus into a large
number of segments using switches and the minimal communi-
cation paths are used by controlling the switches. Only the seg-
ments that are required are activated during each data transfer,
thus isolating the activity and the switching to the minimum

1-4244-0630-7/07/$20.00 ©2007 IEEE.

2B-4

178

number of segments necessary. As a result, the communica-
tion energy can be significantly reduced, even thought a small
area penalty exists due to the insertion of the switches. The
switches are asynchronous and software controlled, so the end-
to-end transfer over the bus takes a single cycle. The energy
consumed to configure the switches is about an order of mag-
nitude lower than the energy gain obtained by using the ESB
bus [10]. In this paper we will not elaborate further on the con-
trol plane issues, for instance the additional energy required to
design a more complex switch in order to implement the tree
topology of the netlist.

Mem1
Mem2 PE1

Mem3 PE2 Mem4

S1 S4S2 S3

contr
oller

control
decoding

logic

control

Switches

Fig. 2. ESB bus architecture

II. MOTIVATING EXAMPLE
The netlist topology of the ESB bus describes how the

switches are connected to each other. They can be connected
in series which results in a linear topology or in a tree-like
manner which yields a star topology (see Fig. 3). The energy
consumption of each topology is proportional to activity multi-
plied by wire length for each segment and can vary significantly
based on the connectivity. In Fig. 3 we assume all the memo-
ries have the same activity α and each segment has the same
wire length L. The linear connection has an energy cost of
Cost = α×(3L+4L+5L+6L) = 18αL. The star connection
only has a cost of Cost = α× (3L+3L+4L+4L) = 14αL.
In general, a star topology can minimize the average number of
segments each transfer needs to activate. Thus, the total wire-
length per transfer will be decreased.

PE

memory1

memory2

memory3

memory4

PE

memory1 memory2

memory3 memory4

L

L

L

L

L L

L L

Linear
connection

Star
connection

L

L

L

L

L

L

L L

L

L

Fig. 3. Netlist decisions influence the communication cost

However in a real design, the memory activity can vary a
lot and the wirelengths of the segments are also quite dif-
ferent, because they are determined by the locations of the
switches/memories/PEs. To design a globally optimal netlist,
we need to consider these two factors simultaneously. This ne-
cessitates the introduction of a floorplan estimation step before
the connectivity of the netlist is finalized. In Section IV, we
will introduce the ESB bus and its netlist topology in more de-
tail and present our methodology to implement the ESB bus
architecture in real life designs.

III. RELATED WORK
Alternative on-chip communication network topologies have

already been exploited. Various bus architectures such as
SPIN [11], AMBA bus [12] and FLEXBUS [13] (a dynamical
configurable topology performed on AMBA bus) have been de-
signed to improve the system performance. These architectures
do not take the physical effects into account and they only per-
form architecture exploration for performance. Ekpanyapong
et al. [14] have introduced a profile-guided micro-architectural
floor planner which considers both the impact of the physical
wire length and the architecture behavior to reduce the latency
of frequent routes inside a processor.

The interconnect energy estimation step has been integrated
into high-level synthesis to have an early sight on the global
power dissipation. Buyuksahin et al. [4] have presented an
approach to estimate the interconnect power during synthesis
based on Rent’s rule for standard cells with an average error
of 25.8%. Lin Zhong et al. [5] have presented a methodol-
ogy to predict interconnect power consumption in high-level
synthesis by taking physical design into account. They floor-
planned the RTL datapath units, assumed the data transfer be-
tween the datapath units be center-to-center and then estimated
the wire length. Jimenez et al. [15] on the other hand, have
introduced a placement methodology for power optimization
of macro block-based VLSI layouts for a fixed topology, by
means of reducing the capacitance of highly active networks.

Pasricha et al. [16] have introduced an automated flow to
generate values for bus architecture parameters such as bus
widths and bus speeds to meet the performance constraints, ig-
noring energy consumption. They use a floorplanning engine
to estimate the wire length, and calculate the delay to check
for bus cycle time violations. They use the AMBA bus archi-
tecture [12] consisting of a high performance AHB bus and
a low bandwidth APB bus. It is very coarsely segmented, in
contrast to our ESB bus architecture which is much more heav-
ily segmented. This technique is an incremental performance
optimization for the AMBA bus. We exploit the fine grain seg-
mentation of our communication architecture and the topology
itself (by changing the netlist connectivity) to find the energy
optimal solution.

In the paper of Chen et al. [7], the implementation of the
segmented bus to reduce the network energy has been demon-
strated. They use the Gomory-Hu method to generate the bus
topology at the architecture level. However, they only min-
imize the number of the traversed bus segments for the data
communication, thus only the switching frequency of the wire
was considered. The physical properties of the wires are not
taken into account. Guo et al. [6] presents a methodology to
optimize the on-chip ESB bus by two steps: the linear netlist
optimization and the activity aware floorplanning. The netlist
is fixed only based on access activity without low level physi-
cal information using a linear topology. Our paper is a further
extension of [6]. In this paper, we provide a better coupling be-
tween the communication topology exploration and the physi-
cal design steps in order to achieve further energy optimization.

IV. NETLIST OF THE ESB BUS ARCHITECTURE

The ESB bus architecture introduces many switches in the
netlist. The connectivity between them defines the topology
of the communication network. In order to find the topology

2B-4

179

that optimizes the metrics, such as critical path delay, energy
consumption or even area occupation, an exploration step is
needed. Especially, the network energy is closely related to the
netlist topology. It decides the communication path for each
data transfer. Furthermore, it also has an impact on the acti-
vation frequency of each segment for very segmented architec-
tures like the one in Fig. 2. A well designed topology together
with an efficient placement and routing, should produce a solu-
tion where the short segments are frequently used and the long
segments are seldom accessed.

An energy aware netlist for the communication network can
be decided at relatively high level without physical/geometrical
information. For instance, a linear netlist topology based on
the memory activities for the ESB bus can be identified at high
level (the left graph in Fig. 4). After the netlist topology de-
cision, the design is mapped to the layout (the right graph in
Fig. 4). This netlist decision reduces the number of segments
that need to be traversed for the data transfers which have the
highest activities. Though the wire length for each segment is
not known yet, it is clear that such decision reduces the en-
ergy consumption. Such an approach can achieve up to 44.6%
of estimated energy gains compared to a netlist ordered ran-
domly [6].

However, this approach has two major drawbacks. Firstly,
due to the fact that the linear topology is 1-dimensional, while
the layout is 2-dimensional, the mapping step from the netlist
to a floorplan is not quite compatible and consistent in the ge-
ometrical point of view. As a result, the wires after routing are
usually not as short as they can be. Secondly, this approach
fixes the netlist without the physical level information, such as
wire lengths. Therefore, an accurate enough estimation of the
communication energy during the exploration phase of this ap-
proach is not possible. Hence the real globally energy efficient
solution cannot be found.

mem2

mem6 mem4

mem3

PE

mem5

mem1

memory5

memory2

memory6

PE

memory1

memory3

memory4

Netlist definition according
to the activities alone

high
active

low
active

low
active

layout mapping

Fig. 4. Linear netlist for ESB bus

In this paper, we propose two extensions to improve the en-
ergy efficiency of the previous approach. The netlist is ex-
tended from a linear to a tree structure, which fits better the
2-dimensional nature of floorplanning. Furthermore, we intro-
duce a floorplanning estimation step before the final netlist is
fixed. This step will provide accurate information about the
length of the wires needed to interconnect the blocks and the
switches. As presented in Fig. 5, at first, a floorplan is gen-
erated according to the blocks’ communication activities: the
highly active memories are placed close to the PE and the less
active memories are placed farther away following an activity
aware template for floorplanning. Then, the four-port switches
are added into the floorplan and connected between them in an
energy optimal manner. The connection topology is a binary

tree structure. The PE is the root node and it has two child
nodes memory1 and memory2, which satisfy the two require-
ments to be chosen: high access frequency and adjacent to the
root node physically in the floorplan. Each of the child nodes
can have at most two of their own child nodes. In case of multi
PEs, multi root nodes are made and each of them is correspond-
ing to one of the PEs.

m
em

or
y5

memory2

m
em

or
y6

PE

memory1

m
em

or
y3

m
em

or
y4

tree structure for the
netlistfloorplanning estimation

mem2

mem6 mem4

mem3

PE

mem5

mem1

Fig. 5. Energy optimal tree topology for ESB bus based on activity and layout
information

V. THE OPTIMAL COMMUNICATION SPANNING TREE

PROBLEM

Finding the optimal communication topology for any opti-
mization criterion in the context of this paper can be tackled us-
ing the Optimal Communication Spanning Tree (OCST). The
solution to the OCST problem [17] consists of finding a span-
ning tree that connects all the given nodes and satisfies their
communication requirements for a minimum total cost.
A. Problem formulation

Assume a weighted and undirected graph G = (V, E),
where n = |V | denotes the number of nodes and e = |E|
denotes the number of edges of the graph (Fig. 6). Commu-
nication might take place between any of the n nodes, thus
communication paths may exist between all the communicat-
ing nodes. The amount of data transferred between nodes is
specified by an n × n demand matrix R = (rij), where rij is
the communication activity between node i and node j. rij = 0
if i=j. Additionally, an n × n distance matrix W = (wij)
specifies the distance weights (which correspond to the phys-
ical distance between the ports of the two components on the
floorplan). They are associated to the edge e, e ∈ E for each
pair of components. The weight wij is equal to zero, if i = j
or if no edge exists between node i and node j in the graph.

V1 V2

V3

V5

V4

R=

Communication demands:

V1-->V3: 10.2 V1-->V5: 6.8

V2-->V4: 7.5 V2-->V5: 3.2

0 0 10.2 0 6.8

0 0 0 7.5 3.2

10.2 0 0 0 0

0 7.5 0 0 0

6.8 3.2 0 0 0

W=

0 0 1.2 0 0.3

0 0 0 1.5 0.8

1.2 0 0 6.5 2.6

0 1.5 6.5 0 2.8

0.3 0.8 2.6 2.8 0

Fig. 6. The weighted and undirected graph

A tree T = (V, F) in which F ⊆ E and |F | = |V | − 1
is called a spanning tree of G if it connects all the nodes. In
the spanning tree, a unique path from node i to node j ex-
ists, which is composed of a set of edges connecting node i
and node j directly or indirectly. This set is defined as the

2B-4

180

communication path set Pij . The communication cost from
node i to node j is the product of the communication distance∑

Emn⊆Pij ,m,n∈V Wmn and the communication demand rij .
The communication cost of the whole spanning tree T is

CostT =
∑

i,j∈V

((
∑

Emn⊆Pij ,m,n∈V

Wmn) × rij) (1)

T is the optimal communication spanning tree if CostT ≤
CostT ′ for any other spanning tree T ′.

Like other constrained spanning tree problems, the OCST
problem is NP-hard. In the OCST problem, the weight of one
edge (the amount of the communication on this edge) varies
for the different tree structures, because the communication of
other nodes might also use this edge as the part of the path.
The tree structure decides how often this edge is used during
the communication. In other words, the weight of the edge is
dynamic. As a result, the popular optimization algorithms such
as Kruskal’s algorithm and Prim’s algorithm for fixed weight
spanning tree are not appropriate to solve the OCST prob-
lem. A large number of evolutionary algorithms using different
types of search operators and representations have been pro-
posed for solving the OCST problem [18] [19]. Although the
evolutionary algorithms can find a solution very close to the op-
timal one, they are not time efficient. In modern VLSI design,
reducing the time-to-market is a key issue of concern for de-
signers. An efficient approach to obtain the near-optimal solu-
tion will be preferred for most of the commercial products’ de-
signs. In the following section, a dedicated greedy method will
be introduced to generate a topology that is a near-optimal so-
lution for energy based on the binary tree structure efficiently.
The quality of the greedy method is evaluated in Section VII.B.

B. Greedy solution

Starting from the weighted and undirected graph G =
(V, E) we divide the node set V into the set P, which contains
the root nodes, and the set M containing the rest of the nodes to
be connected. Table I illustrates our greedy algorithm. At first,
we evaluate the connections from any node X in M to any node
Y in P. The evaluation cost function is based on the entries in
the demand matrix R and the distance matrix W corresponding
to each pair of nodes. The cheapest connection between any
node in the two sets is found, assume it connects node X̃ in set
M with node Ỹ in set P. Node X̃ is added to set P and deleted
from set M. The above step is repeated until set M becomes
empty.

In the implementation of the greedy strategy in our design
approach, the initial set P is the set of PEs and set M is
the set of memories. The evaluation cost function is set as
Costedge = Comm. length/Comm. activity. This corre-
sponds to dividing the entry of the distance matrix with the
entry of the demand matrix. By applying this cost function, the
memories which are highly active and close to the PEs have the
highest priority to be chosen to connect to the processing ele-
ments first. This intuitively favors energy optimization since
the very active memories will get shorter connections. The
constraint of the connection degree (the number of the edges
one node can have) N is determined by the number of the ports
of the switches. In this paper we use the four-port switches,
which result in binary tree topologies. This algorithm can also

TABLE I
GREEDY ALGORITHM

Greedy Algorithm:

P = push(root nodes);
M = push(the other nodes);
N = Degree constraint;
Initialization of demand matrix R and distance matrix W

While (M is not empty);
for each node X in M do

for each node Y in P do
if the node degree of Y is less than N

calculate the cost of connecting X to Y:
Costconnection = WXY /RXY

end if
end for
keep the minimum cost connection X̃toỸ ;

end for
add X̃ to P;
increase the node degree of Ỹ by 1;
delete X̃ in M;

end while

find solution of higher degree, but as we will see in the results,
the energy consumption of the binary tree is already very close
to the theoretical optimum.

VI. SYSTEMATICAL DESIGN FLOW

This section introduces our methodology of tool support
which optimizes the netlist topology for the ESB bus architec-
ture. After the high level synthesis step, the system comprises
IP blocks like memories and PEs. The communication charac-
teristics such as the access frequency, the master and slave of
each communication are identified in the RTL description. The
activities of the communication from the master to the slave
are specified as the communication demand matrix R = (rij)
mentioned in Section A. The physical characteristics of the
macro blocks such as the width and the height are also fixed,
which is realistic for our tile domain with many small mem-
ories (up to 50) and a small number of customized datapath
macros. Before deciding on the topology of the communica-
tion architecture, we add an activity aware floorplanning step
in order to obtain a realistic estimate of the distance between
the various blocks on the final layout, see Fig. 7. The activ-
ity information we use is the Master-to-Slave communication
frequency. At this stage this abstract representation of the inter-
block activity is sufficient. It specifies the frequency that each
two blocks need to talk to each other. The public domain floor-
planner Parquet [20] is adapted to perform the floorplanning
estimation step.

High level
synthesis

Activity aware
floorplanning

RTL description

Netlist topology decision

Segmented bus implementation
(switches insertion)

Master-Slave
communication

activities

Geometrical
characteristics

Placement

Routing

Layout

Fig. 7. The framework of the netlist optimization for ESB bus architecture

2B-4

181

In our approach, we import the Master-to-Slave communi-
cation demand matrix R = (rij) into Parquet and let the floor-
planner minimize the total activity annotated Manhattan dis-
tance from each master to each slave. After this step, the highly
active memories are placed close to the PEs as a result of the
optimization. With the floorplan we obtain, the distance matrix
W = (wij) (see Section V.A) can be constructed by calcu-
lating the distance from the master’s communication ports to
the slave’s communication ports. Based on the demand ma-
trix R and the distance matrix W, the netlist topology is fixed
applying the greedy algorithm introduced in section V.B. The
topology can be a linear connection or a binary tree or any other
tree structure. It depends on the degree constraints given to the
topology generation. After the netlist generation, we add the
necessary switches to the floorplan in order to implement the
ESB bus architecture. The locations of the switches have an
impact on the later routing step, thus influence the final energy
consumption. Because the netlist topology decision is based
on the distance matrix W, which specifies the distance between
the block communication ports, we insert the switches close
to each block’s communication ports. Such a switch insertion
strategy has a limited impact on the distance matrix W, there-
fore preserves the optimal decision made at the netlist topology
generation step. Finally we perform the low level physical de-
sign such as the placement and the detailed routing using the
commercial tool from MAGMA [21] framework.

The chip area and the wire length for each segment are re-
ported in the MAGMA framework. Using the activity infor-
mation of each memory from high-level synthesis results, the
activity of each segment and the energy consumption of the
wires can be calculated. We assume the wires are buffered in a
delay optimal way [22]. The energy consumed by the buffers
is included in the calculations. We have used the high-level
analytical formulas of [22] to estimate energy consumption.

VII. EXPERIMENTAL RESULTS

The experiments shown throughout this section have been
performed on two custom designs that implement real-life
applications namely the MPEG4 encoder and the Quad-tree
Structured Different Pulse Code Modulation (QSDPCM) video
encoder.

A. Comparison against state-of-the-art

To assess the impact of using geometry information during
communication synthesis and the impact of the topology deci-
sions, we compared four different approaches in Fig. 8. The
communication network of the QSDPCM video encoder de-
sign is used for this evaluation. We evaluate these four ap-
proaches without performing the detailed routing step. The
Half Perimeter Wire Length HPWL (Manhattan distance be-
tween the ports to be connected) is used as the estimation of
the real interconnect length, and the cost is calculated via the
equation Cost = HPWL×Activity, which is proportional to
the wire energy consumption, neglecting the energy consumed
by the buffers.

We use the activity aware floorplanning techniques [20] to
optimize the Master-to-Slave connection cost (see Section VI).
Four floorplans are tested for each case to make sure that the
unpredictability of the simulated annealing approach imple-
mented in the floorplanner does not influence the results. For

each floorplan, four netlist topologies are designed. The first
topology we use is the linear bus topology only based on the
activities of the components (introduced in Fig. 4). The sec-
ond and the third approach use the design flow illustrated in
Fig. 7 to generate the netlist. The difference between these two
approaches is that the former uses a linear topology while the
latter uses the binary tree structure. The last column in Fig. 8
corresponds to the theoretically minimal energy consumption
for the given floorplan. We obtain it by multiplying the Man-
hattan distance between all the communicating pairs of blocks
by the respective activity and then summing for all the pairs of
communicating blocks. It can be visualized as an ideal case of
point-to-point (P2P) connection scheme, without the area over-
head and the wire congestion issues of the real P2P topologies.

0
0.2
0.4
0.6
0.8

1
1.2

Floorplan1 Floorplan2 Floorplan3 Floorplan4

Co
m

m
un

ic
at

io
n

co
st

activity ordered linear connection floorplan related linear connection

floorplan related binary tree connection theoretical minimum

Fig. 8. Communication cost for different netlist topologies at high level

The second approach (linear topology with geometry infor-
mation) which followed our methodology introduced in Sec-
tion VI can reduce nearly 40% energy cost in average com-
pared to the first (linear topology without geometry informa-
tion). Comparing the third approach to the second approaches,
the binary tree structure can reduce the energy cost even further
compared to the linear connection approach. It incurs an over-
head of only about 10% in average compared to the minimum
energy reference. These results indicate that our methodology
performed on the binary tree topology is a better candidate than
the linear topologies for energy optimal communication, if the
communication architectures allows to control which parts of
the architecture are activated per transfer.
B. Optimality of greedy solution

Table II illustrates how far the greedy approach is from
the optimal solution for the binary tree topology. We have
used an exhaustive search method to enumerate all the possi-
ble binary tree structures and find the one which has the low-
est associated abstract (energy) cost. This method has been
tested on small netlists, because the complexity of the exhaus-
tive search increases exponentially with the increasing num-
ber of communicating components. We have used parts of the
MPEG4 design. Each part corresponds to an individual ker-
nel of the MPEG4 encoder: Motion Estimation (ME), Motion
Compensation (MC), Text Coding (TC), Variable Length Cod-
ing (VLC). Each kernel is mapped on a processing element
with a local memory organization comprising 6 � 9 memories.
The design flow illustrated in Fig. 7 is used in both cases. In
order to compare the two approaches, greedy and optimal, we
plug the appropriate algorithm in the Netlist topology decision
step. The CPU time for the execution of the two algorithms is
provided in Table II. In each experiment for the exhaustive ap-
proach, we use the same floorplan that was used for the greedy

2B-4

182

approach and then enumerate all the legal binary tree structures
to find the one with the lowest cost. This step takes a few min-
utes up to several hours depending on the number of memories
in the netlists. To estimate the reported energy consumption,
see Table II, we perform the remaining physical design steps
using the communication topology decided by the exhaustive
and the greedy approaches.

TABLE II
GREEDY APPROACH VS. EXHAUSTIVE APPROACH

Exhaustive approach Greedy approach Energy
Energy CPU Energy CPU overhead

arbitrary unit time arbitrary unit time (%)
ME 5.6 258 min. 5.94 1.5 sec. 6.1%
MC 3.52 236 min. 3.68 1.5 sec. 4.6%
TC 1.04 312 min. 1.12 2 sec. 7.3%

VLC 1.37 5 min. 1.42 0.5 sec. 3.8%

The greedy approach has less than 7.3% energy overhead
compared to the exhaustive approach which finds the optimal
netlist topology for energy. The greedy approach is time effi-
cient, especially in case the number of communicating compo-
nents is large, like the SOC template which might have dozens
of macro blocks. Its energy overhead is small because of the
design flow we are using (Fig. 7). The floorplanning estima-
tion step has already placed the highly active memories close
to the PEs and the less active memories farther away from the
PEs. At the netlist topology decision step, it is intuitive that
connecting the high active and adjacent memory first to the PE
is mostly probably the best choice for the global energy opti-
mization. Thus the greedy approach of always taking the next
local minimum yields results very close to the global optimum.

C. Comparison of binary tree and linear topologies
Finally we have compared our methodology results to the

conventional linear netlist for ESB bus on the real-life netlists
coming from the high-level synthesis of custom designs for
the QSDPCM and MPEG4 applications in Fig. 9. Three ap-
proaches are tested. In the first approach, the netlist is fixed
based only on the communication activities and area is mini-
mized at the floorplanning stage. The second approach has the
same netlist as the first approach, but uses the activity aware
floorplanning to optimize the network energy. The third ap-
proach follows the proposed design flow (Fig. 7) using the ac-
tivity aware floorplanning to obtain the floorplan and using the
greedy approach to fix the binary tree netlist. It has the same
floorplan as the second approach. The normalized energy con-
sumption is calculated after physical design. The activity aware
floorplanning approach (the second approach) network energy
is around half of the energy of the area optimal solution (the
first approach). The tile area overhead is less than 15% in av-
erage (Fig. 9). Comparing the second approach with the third
approach, nearly an additional factor of 2 for the energy gain
is achieved by introducing the binary tree topology. Therefore,
by generating the optimal netlist topology, the third approach
can improve the network energy significantly at a reasonable
tile area penalty. That penalty is even smaller at global chip
level because the area is dominated by the large memory blocks
(Fig. 1).

VIII. CONCLUSIONS

We have introduced a methodology to design the netlist
topology for the implementation of the ESB bus communica-

0

0.2

0.4

0.6

0.8

1

1.2

QSDPCM MPEG4

Co
m

m
un

ic
at

io
n

en
er

gy
co

st

Area optimized
floorplanning & activity
aware linear netlist

Activity aware
floorplanning & linear
netlist using geometry
information

Activity aware
floorplanning & binary
tree netlist using
geometry information

tile area: 1 tile area: 1

tile area: 1.20 tile area: 1.09

Fig. 9. Energy comparison of linear connection and binary tree connection

tion architecture. We have demonstrated that a factor of 2 for
energy gain is achieved applying our methodology on the lin-
ear netlist compared to state-of-the-art implementation of the
linear topology. An additional factor of 2 energy gain can be
achieved by using a binary tree topology.

REFERENCES

[1] A. Papanikolaou, K. Koppenberger, and M. Miranda, “Memory communication net-
work exploration for low-power distributed memory organisations,” in Proc. IEEE
Wsh. on Signal Processing Systems (SIPS). IEEE Press, Oct. 2004, pp. 176–181.

[2] A.Papanikolaou, F.Starzer, M.Miranda, F.Catthoor, and K. Bosschere, “Architec-
tural and physical design optimizations for effi cient intra-tile communication,” in
Proc. Intnl. System-on Chip Symp (SoC), Nov. 2005.

[3] H. Jingcao, D. Yangdong, and R.Marculesu, “System-level point-to-point commu-
nication synthesis using floorplanning information,” in Proc. ASP-DAC 2002, Jan.
2002, pp. 573–579.

[4] K.M.Buyuksahin and F. Najm, “High-level power estimation with interconnect ef-
fects,” in Proc. ISLPED, 2000, pp. 197–202.

[5] L. Zhong and N. Jha, “Interconnect-aware high-level synthesis for low power,” in
Proc. ICCAD-2002, 2002, pp. 110–117.

[6] P. F. J. Guo, A.Papanikolaou, “Physical design implementation of segmented buses
to reduce communication energy,” in Proc. ASPDAC-2006, 2006, pp. 42–47.

[7] J. Y. Chen, W.B.Jone, J.S.Wang, and T. H.-I.Lu, “Segmented bus design for low-
power system,” IEEE Trans. VLSI Systems., vol. 7, no. 1, pp. 25–29, Mar. 1999.

[8] W.-B. Jone, J. S. Wang, H. l Lu, I. P. Hsu, and J.-Y. Chen, “Design theory and im-
plementation for low-power segmented bus systems,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 8, pp. 38–54, Jan. 2003.

[9] L. Benini and G. D. Micheli, “Networks on chips:a new soc paradigm,” IEEE com-
puter, vol. 35, no. 1, pp. 70–79, Jan. 2002.

[10] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, and W. Philips, “Energy
costs of transporting switch control bits for a segmented bus,” in proRISC 2005
Conference Proceedings, 2005, pp. 77–81.

[11] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. Zeferino, “Spin:
a scalable, packet switched, on-chip micro-network,” in Proc. Design, Automation
and Test in Europe Conference and Exhibition, 2003, 2003, pp. 70–73.

[12] Arm amba bus specifi cation. [Online]. Available:
http://www.arm.com/armwww.ns4/html /AMBA?OpenDocument

[13] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, “Flexbus: a high-performance
system-on-chip communication architecture with a dynamically confi gurable topol-
ogy,” in Proc. Design Automation Conference,2005.42nd, June 2005, pp. 571–574.

[14] M. Ekpanyapong, J. Minz, T. Watewai, H.-H. Lee, and S. K. Lim, “Profi le-guided
microarchitectural floor planning for deep submicron processor design,” IEEE
Trans. Computer-Aided Design, vol. 25, pp. 1289–1300, July 2006.

[15] M.A.Jimenez and M.Shanblatt, “Integrating a low-power objective into the place-
ment of macro block-based layouts,” in Proc. MWSCAS 2001, Aug. 2001, pp. 62–
65.

[16] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “Floorplan-aware
automated synthesis of bus-based communication architectures,” in Proc. Design
Automation Conference,2005.42nd, June 2005, pp. 565–570.

[17] T. Hu, “Optimum communication spanning trees,” SIAM Journal on Computing,
vol. 3, pp. 188–195, Sept. 1974.

[18] Y. Li and Y. Bouchebaba, “A new genetic algorithm for the optimal communication
spanning tree problem,” in Proc. Artificial Evolution: Fifth European Conference,
1999, pp. 162–173.

[19] D. Peleg and E. Reshef, “Deterministic polylog approximation for minimum com-
munication spanning trees,” in Proc. ICALP, Lecture Notes in Computer Science,
1998, pp. 670–679.

[20] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning through better local
search,” in Proc. International Conference On Computer Design (ICCD). Austin,
2001, pp. 328–333.

[21] “Blast chip 4.0 user guide,” Magma Design Automation, pp. 271–351.
[22] J. M. Rabaey, Digital integrated circuits: a design perspective. Prentive Hall:

Upper Saddle River (N.J.), 2003.

2B-4

183

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

