
Communication Architecture Synthesis of Cascaded Bus Matrix

Junhee Yoo
Dongwook Lee

Seoul National University,
Seoul, Korea

ihavnoid@poppy.snu.ac.kr
peropero@poppy.snu.ac.kr

Sungjoo Yoo
Samsung Electronics,

Yongin, Korea
sungjoo.yoo@samsung.com

Kiyoung Choi
Seoul National University,

Seoul, Korea
kchoi@azalea.snu.ac.kr

Abstract – For high frequency on-chip communication
architecture design, we propose cascaded bus matrix-based
solutions. Due to the huge design space in cascaded bus
matrix design, it is crucial to perform an efficient design space
exploration. In our work, we present a simulated
annealing-based design space exploration method. For an
efficient representation of bus topology, we propose an
encoding method called traffic group encoding and apply it to
AMBA3 AXI-based bus system design. In addition, we
propose a method of two-step simulated annealing to improve
the quality of results. Experimental results show that the
proposed methods allow designing complex communication
architectures (ones with up to 31 masters and 71 slaves) with
high frequency constraints to which existing methods could not
give solutions.

I. Introduction

It is commonly predicted that a single SoC will have
hundreds of IPs (CPUs, DSPs, ASIPs, coprocessors, etc.)
and its operating frequency will continue to increase [1]. The
increasing number of IPs and operating frequency impose a
significant problem on on-chip communication architecture
design. Conventional designs based on shared bus have
limitations in accommodating a large number of IPs with
high operating frequency.

Recently, bus matrix based (or crossbar based) designs are
getting increasingly popular for on-chip communication, due
to its high throughput and support for various popular bus
protocols, such as for ARM’s PL300/301 [2], Synopsys
DesignWare AMBA 3 fabric,[3] and Sonics’ SonicsMX [4].

There have been several studies on bus matrix-based
communication architecture design [5]. However, their
approach is based on the usage of one central bus matrix,
along with many local shared buses. Although such a
configuration is practical in that it is a natural migration
from the multi-layer bus design, we predict that it will start
to suffer from new problems as the number of IP’s increases,
due to the following reasons:

A bus matrix’s size is proportional to the number of
masters times the number of slaves. Although it is
possible to build a sparse matrix to remove unnecessary
connections, and group several masters and/or slaves to
a local bus as in [5], a local bus’s size cannot increase
indefinitely, due to many problems such as bandwidth
and clock frequency. Therefore, the central bus matrix
may become too large when used in a large system with
many IP’s.

If the bus matrix’s size increases, the added logic delay
will lower the clock frequency of the bus matrix. This
is because as the number of ports connected to the bus
matrix increases, the logic depth of the bus increases.
Based on our experience, the logic depth in the arbiter
and the decoder of the bus matrix increases as the
number of IP’s increases.
Although higher clock frequency may be achievable by
pipelining the bus matrix’s internal architecture, existing
solutions have limitations in the pipelining. For instance,
ARM’s PL301 gives address decode as the only internal
pipeline option while pipeline points in Sonics’ SMX
affect only the interface timing between the bus matrix
(SMX) and the IP.

In order to resolve the problem of designing on-chip

5 ns

master slave

master

master

slave

slave

slave

slave

slave

master slave

(a)

(b) 4 ns
master slave

master

master

slave

slave

slave

slave

slave

master slave

(c)
3.3 ns 3.3 ns

master slave

master

master

slave

slave

slave

slave

slave
master slave

Figure 1. A motivational example.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

2B-3

171

communication architecture with high frequency constraints
and a large number of IP’s, we present a method of
designing communication architecture with a cascaded
matrix architecture, which consists of multiple smaller bus
matrices rather than one large bus matrix connecting the
local buses in the existing studies.

A. Motivational Example
Figure 1 shows an example system. The system consists

of one bus matrix, which connects 4 masters and 7 slaves. If
all components are directly connected to the bus matrix, the
bus matrix (shown as a dashed rectangle in the figure)
becomes excessively large. The logic delay will also be large
(e.g., 5ns). However, by grouping some of the slaves into
local buses and connecting it to the bus matrix, the bus
matrix size can be reduced. The logic delay may be reduced
(e.g., 4ns).

If we design the same system with multiple bus matrices
as shown in Figure 1 (c), we can see that the sizes of the bus
matrices decrease thereby giving a smaller logic delay (e.g.
3.3ns), at the expense of an additional cycle of latency.
Thus, a higher-frequency communication architecture can be
obtained.

B. Our Contribution
Cascaded bus matrix design has a huge design space since,

with a given number of IPs, the number of possible
compositions of small matrices is very large. Thus, we need
a method of efficiently exploring the huge design. In our
work, the design space exploration is based on simulated
annealing. In this paper, we propose two methods for
efficient design space exploration: bus topology encoding
and two-step simulated annealing.

C. Paper Organization
The paper is organized as follows. Section II will present

related work. Section III defines the problem, and Section
IV describes the overall architecture of the synthesis flow
for solving the problem. Section V explains the encoding
method – how to describe the system. Section VI shows
the experiment results, and Section VII concludes the paper,
along with some possible future work to be done.

II. Related Work

There have been many communication architecture
synthesis flows for conventional bus protocols [5,6,8,9] and
network-on-chips[7,10]. Many of these automated
synthesis flows focus on mapping each IPs on a pre-defined
interconnect topology, thus reducing the flexibility on
transforming the interconnect topology itself. Although
there also has been some researches on transforming the
interconnect topology itself, the amount of freedom on
topology generation is still limited.

An example is the FlexBus [8,9], which has multiple local
buses connected to each other via master-master bridges.
The IPs are connected to one of the local buses, and the
connectivity can be reconfigured on-the-fly. However, the
authors didn’t consider methods of changing the global

communication architecture’s topology, and uses a fixed
global communication topology.

Another example is the method described on [5]. The
authors generated a system with a single bus matrix, and
local buses are attached to each of the ports on the matrix.
We extend the approach proposed by [5], by synthesizing
communication architectures with multiple bus matrices
rather than only one. Although this will introduce
additional complexity on the synthesis flow, we expect that
this additional complexity will worth the cost on large
systems with hundreds of master/slave ports.

[13] also deals with a similar problem, which connects
components into smaller local buses, and uses switches to
forward traffic from one bus to another bus. Our work is a
more aggressive approach compared to [13], as their work
does not consider topologies with multiple cascaded
switches.

III. Problem Definition

Our problem is to find a cascaded bus matrix which
satisfies the given communication specification, i.e.
communication behavior and the requirements of bandwidth
and latency.

A. Communication trace graph
As the communication behavior, we use communication

trace graph. A communication trace graph CTG = (V, E) is a
directed graph, where each node of the graph is a port that
can be connected to the network, and the directed edge
represents a communication trace between the two nodes.
We use a CTG of a special case - a node may be an
‘outgoing’ node, which has outgoing edges only, or an
‘incoming node’, which has incoming edges only. Thus,
the CTG becomes a bipartite graph. For IPs with both
incoming communication and outgoing communication, the
IP can be modeled as two separate nodes. In this paper, the
edge direction represents the direction of the transaction.
Thus, masters are ‘outgoing’ nodes, and slaves are
‘incoming’ nodes.

There are two function that represents bandwidth and
latency. For every e,)(ebw denotes the bandwidth of the
traffic, and for every e,)(emaxdelay denotes the maximum
latency (in microseconds) of the traffic.

B. Implementation Graph and Path Function
To make a formal definition, we define the

implementation graph),(IEIVIG as a directed graph as
a graph which has the following properties;

IVV

For all Evve ji),(, There exists a path from
iv to

jv on IG . This path will be represented as)(ePATH ,
which will be defined later.

Implementation graphs represent the topology of the
communication architecture which satisfies the
communication requirements of the given CTG. The nodes

2B-3

172

represent the objects in the communication architecture, and
the edges represent the communication channel between the
objects. The first property means that the nodes of the
implementation graph includes the ports on the CTG, and the
second property shows that the implementation graph
requires being able to satisfy all the communication
requirements of the CTG.

Like the CTG, implementation graphs also have two
functions for bandwidth and latency. For each edge IGie ,

)(iemaxbw represents the bandwidth that the edge can
sustain, and)(iedelay represents the transmission delay
required for data transmission. In real world situations,

)(iemaxbw is determined by various variables, such as data
bus width or clock frequency, and)(iedelay is determined
by the latency caused by the various communication
components on the architecture.

Additionally, we define the path function
}{: IVEPATH , where)(ePATH is a path on the

implementation graph. The path function is the mapped
result of the CTG on the implementation graph – the path
function represents the path the traffic flows on the
communication architecture.

Figure 2 shows an example CTG and an example IG for
the CTG. For each edge on the CTG, there is a
corresponding path on the IG. For example, the CTG edge

from M1 to S1 corresponds to the path M1->X1->S1, and
the CTG edge from M1 to S3 corresponds to the path
M1->X1->X2->S3.

C. Problem definition
The communication architecture synthesis problem can be

defined as:
Given:

a communication trace graph CTG=(V,E)
the bandwidth function)(ebw , and
the latency requirement function)(emaxdelay ,

Find the),(IEIVIG for CTG and the corresponding
path function with the minimum cost, which

(latency requirement) for every CTG edge Ee ,

)()(
)(

emaxdelayiedelay
ePATHie

,

(bandwidth requirement) for every IG edge IEie ,
)()(

)(
iemaxbwebw

ePATHie

Informally, the goal of communication architecture
synthesis is to generate an implementation graph from the
given CTG, which satisfies the latency requirement and the
bandwidth requirement. The method of evaluating the
constraints will be case-dependent, and the later chapters
will explain it for our case.

IV. Communication Architecture Synthesis Flow

Figure 3 shows our communication architecture design
flow. The communication synthesis flow is a simulated
annealing flow, which tries to minimize the communication
architecture’s size, while meeting the latency requirement of
each of the traffics.

A. Input specification
The input specification of the design flow is given as a

CTG, which can be given by the designer or derived by
profiling the behavioral specification. In cases when
multi-mode specifications are given, methods proposed on
[10] can be used. The ports have additional properties such
as clock speed and data bus width, so that the synthesizer
can add clock conversion / data width conversion bridges on
points where it is required.

B. Encoding for bus topology exploration
The biggest problem on implementing the simulated

annealing flow is that it is difficult to implement a transition
function – that is, defining the neighbors of the annealing
state. This is mainly because an arbitrary topology cannot
be a feasible solution – the topology should at least have
communication paths that the CTG requires. Therefore,
applying arbitrary transformations will not work.

A possible solution would be by transforming the
topology randomly, and then repair the topology so that the
solution becomes feasible. However, this is also non-trivial,
since this will require a repair function which requires

M1

M2

M3

S1

S2

S3

(a)
M1

M2

M3

X1

X2

S1

S2

S3

(b)

Figure 2. (a) An example CTG, and (b) a IG for the CTG.

Initial
encoding

Transform
encoding

Encoding-to-IG

IG-to-arch.

Cost
evaluation

Use new
design?

Undo
transformation

Finish?

{a->c,a->e,b->d}
{a->e,b->d}

area=xxx
latency=yyy

Y

N

Y
N

Done

{a->c,a->e}
{a->e,b->d}

Figure 3. The communication architecture synthesis flow

2B-3

173

generating a solution that has a similar cost (i.e. the gate
count of communication architecture) to the original
topology.

In order to resolve this problem, we take an indirect
approach of using a different encoding method which always
yields a feasible solution. The IG is generated from the
encoding. Thus, a move in simulated annealing
corresponds to a transformation of the encoding, rather than
the transformation of the bus topology itself. The encoding
method and the detailed implementation will be discussed in
Section V.

C. Implementation graph to architecture
On each annealing phase, using the transformed IG, the

corresponding bus architecture is generated. Then, the
timing analysis of the bus architecture is performed. The
timing analysis of the logic delay of bus matrices is based on
the bandwidth requirements and data width of the bus
matrices. The timing analysis will determine (1) how to
apply existing pipelining solutions to the generated
architecture and (2) the penalty in the cost calculation of
Section IV.D.

For instance, in the case of AXI PL300-based cascaded
matrix architecture [2], register slices are added into the AXI
channels wherever the timing requirement cannot be met.
However, if there are any cases that the timing cannot be
fixed even with enough register slices, a penalty – the
negative slack of the channel multiplied by a constant value
– is added to the cost function.

The timing information of the bus matrix is prepared
before the communication architecture synthesis. We will
report how we prepared the timing information in our
experiments with ARM AXI bus components on Section VI.

D. Cost function of communication architecture
The objective of communication architecture design is to

find a communication architecture that minimizes the area
(in gate counts) while satisfying the latency and bandwidth
requirements of the CTG, and make all the communication
channels meet the timing requirements. The cost function
in simulated annealing is defined as:

penaltyecountgatecost _
where countgate _ represents the estimated gate count of the
communication architecture. penalty is the penalty value,
which is 0 when all the timing requirements and latency
requirements are satisfied, and increases linearly as the
number of paths that violates the timing and/or the number
of CTG edges that surpasses the latency requirement
increases.

Due to the exponential nature of the penalty value, the
annealing is likely to be stuck on a local optimum. Thus,
we use two cost functions during the simulated annealing.
Initially, the cost function in simulated annealing is penalty .
However, as soon as penalty converges to zero, the cost
function is changed to penaltyecountgate _ . This helps the
solution to converge more quickly to a feasible one.

V. The Encoding Method and Two-Step Simulated
Annealing

A. Defining the traffic group encoding
In order to define the encoding, we define two more

terms:
We define a Traffic group as an unordered set of edges
from the CTG – that is, for a traffic group TG, ETG .
We define a Traffic group encoding(TGE) as an ordered
set of traffic groups – that is,

}1,|{ niETGTGTGE ii

A traffic group corresponds to a switching element, such
as a bus, crossbar, or a router. A CTG edge in the traffic
group represents that the traffic represented by the CTG
passes the switching element.

The traffic group encoding represents all the switching
elements on the system. The order represents the direction
of traffic flow – that is, if

ji TGeTGe , and nji1 ,
the final system has a path from the node represented by

iTG to the node represented by
jTG .

We define that }1,|{ niETGTGTGE ii
 from the

CTG = (V, E) generates),(IEIVIG and the path
function)(ePATH , if and only if:

There is a one-to-one mapping between a node
iv and

TGETGi
, where IVvi

 and Vvi

For any Ee ,)(ePATHiv if and only if iTGe .

For any Ee , if)1(, njiTGeTGe ii
, there

exists a path from
iv to

jv .

For any Evve yx),(, if
iTGe , there exists a path

from
xv to

iv , and exists a path from
iv to

yv .

The first property means that every traffic group
corresponds to a node on the IG, which is an interconnect
component, such as crossbars, buses, or bus matrices.
The second property means that if the CTG edge exists on a
traffic group, the node is part of the path that the traffic takes.
The last two properties mean that the traffic flows only to
the increasing order of the node number, starting from the
source to the destination.

The advantage of using TGEs instead of IGs for general
optimization algorithms is that TGEs always lead to an
implementation that satisfies the CTG. This removes the
requirement of a repair function, which can be quite
complicated, because checking the CTG requirement for an
arbitrary graph may be quite expensive.

For example, the IG from Figure 2 is generated by the
following TGE:
TGE= {(M1->S1), (M1->S2), (M1->S3), (M2->S1), (M2->S3)},

{(M1->S2), (M1->S3), (M2->M3), (M3->S2), (M3->S3)}

B. Generating System Architecture from Encoding
Once the implementation graph and traffic group

encodings are defined, generating IGs from TGEs become

2B-3

174

trivial. Figure 4 shows the pseudo-code of tge2ig, which
generates an IG from TGE.

To support multiple data widths and multiple clock
domains, each group on the TGE has two additional
properties – clock speed and data width.

The simulated annealing starts with an empty TGE with
the default clock speed and default data width – that is, a
point-to-point communication architecture which resembles
a fully-connected bus matrix. During the simulated
annealing, the following transformations are randomly done:

Creating a random group with two random CTG edges
Removing a random edge from a random group
Merging two random groups into one
Adding all edges from a random group to another
random group (

jii TGTGTG)

Removing edges in a random group from a random
group (

jii TGTGTG)

Changing a random parameter (clock speed or data
width) of a random group. For changing clock speeds,
we determine the candidate clock speeds by using the
clock speeds of each individual IPs in the system, and
use the GCD (greatest common divisor) and LCMs
(least common multiplier) of each clocks’ pair. For
example, if some IPs operate on 200MHz while others
run on 300MHz, then the crossbars may use 100 MHz,
200MHz, 300MHz, or 600MHz.
Adding/removing all edges from the same random
master/slave, and
Changing the order of two random groups

Once the IG is generated, the system architecture is
generated from the IG. This step is done using these steps:

Each switching element on the IG is mapped to a PL300
interconnect. The edges are mapped to an AXI channel.
If the two AXI ports have different parameters (such as
different data widths), conversion bridges are added to
the communication channel. Figure 5 shows an
example case. For example, if there is a connection
between a 300MHz master with 32-bit data bus, and a
400MHz slave with 64-bit data bus, an asynchronous
bridge and a data width converter (expander) is added in
between the two components. Likewise, other types of
bridges are added in between ports with different
characteristics.
There are some cases that the required bandwidth of the

channel surpasses the channel’s capacity. For those
channels, another channel is replicated between the two
nodes on the IG. Although this practice is very rare in
real-world designs, we found that this is unlikely to be a
final solution, because a smaller design usually can be
generated by splitting one of the two PL300s into two
smaller ones.
Timing analysis is done. For paths that cannot meet the
timing requirement, register slices are added, thus
pipelining the communication path.

C. Alternative bus-matrix based implementation
As an alternative to the TGE-based method, we have

implemented two more methods:
(2-layer bus matrix) Implement the shared bus and the
bus matrix’s port using a PL300 bus matrix. This
method also uses cascaded bus matrices, but the number
of levels the crossbars are cascaded is limited to two.
(Figure 6 (a))
(single bus matrix) Implement the shared bus by using
bus matrices with one master port and multiple slave
ports, or bus matrices with one slave port and multiple
master ports. (Figure 6 (b))

Both use the same encoding method, which we will call
port partition encoding (PPE). We define the PPE as a pair
of sets, where the first set is the partition of all the outgoing

function tge2ig(Graph ctg, Array<Set<Edge> > tge)
{
 Graph ig;
 Hashtable<Edge,Vertex> positionTable;
 foreach(Edge e from ctg) {
 positionTable.add(e, e.source);
 ig.addNodeIfDoesntExist(e.source);

ig.addNodeIfDoesntExist(e.destination);
 }
 foreach(Set<Edge> set from tge) {
 ig.addNode(set);
 foreach(Edge e from set) {

Vertex prev = positionTable.get(e);
 ig.addEdgeIfDoesntExist(prev, set);
 positionTable.set(e, set);
 }
 }
 foreach(Edge e from ctg) {
 Vertex prev = positionTable.get(e);
 ig.addEdgeIfDoesntExist(prev,

e.destination);
}
return ig;

}

Figure 4. A C++-like pseudo-code of tge2ig

Figure 5. (a) an implementation graph, and (b) a corresponding architecture

M1
(200MHz,64bit)

M2
(300MHz, 32bit)

X1
(400MHz, 64bit)

S1
(300MHz, 64bit)

200MHz 400MHz

300MHz

300MHz

M1
(200MHz, 64bit)

M2
(300MHz, 32bit)

2x1 Crossbar
(400MHz, 64bit)

S1
(300MHz, 64bit)

async
bridge

2x up-converter

async
bridge

expander

(a)

(b)

2B-3

175

nodes (which are masters) from the CTG, and the second set
is the partition of all the incoming nodes (which are slaves)
from the CTG.

Generating the IG from PPE is trivial. For the 2-layer
bus matrix method, a group on the partition from the PPE
corresponds to a node of the IG, which connects the nodes in
the group, which is a PL300 on the final architecture. For
each partition, if a master on a group has traffic to a slave on
another group, a connection is made between the two
groups.

For the single bus matrix method, a group on the partition
on the PPE corresponds to the shared bus which is connected
to the ports on the partition. Each of the local buses is
connected to the central bus matrix.

D. Two-step Simulated Annealing
An ideal simulated annealing method gives the optimal

solution with a long runtime. However, if the solution
space is too large, it may require an infeasible amount of
computation power to search the large solution space.
Thus, we use a two-step simulated annealing. First, the
70% of the annealing is done within a restrictive set of bus
topologies. The first step may give a good starting solution
to the second step. Then, the last 30% is done starting with
the result of the first step, with a method that has a wider
design space. We found that this approach might help,
since TGE-based architectures have a large design space that
requires a large number of annealing steps to yield a good
enough solution. Using the two-step approach will help the
solution to converge more quickly.

The two step approach is done by first starting the
annealing using one of the PPE-based architectures. Then,
after the 70% of the annealing finishes, the architecture is
encoded to TGE, and the remaining 30% of the annealing is
done using the TGE representation.

VI. Experiment results

The communication architecture synthesis flow uses the
ARM’s AXI components [2]. The ARM AXI components
that we use for generating the system architecture include:

PrimeCell AXI Configurable Interconnect (PL300),
PrimeCell Infrastructure AMBA 3 AXI Asynchronous
Bridge (BP132), Downwards-synchronizing Bridge
(BP133), and Upwards-synchronizing Bridge (BP134)
for clock speed conversion,
PrimeCell Infrastructure AMBA 3 AXI Downsizer
(BP131) and Expander, for data bus width conversion,
and
PrimeCell Infrastructure AMBA 3 AXI Register Slice
(BP130) for pipelining the interconnect where the
critical path is too long, so that the timing can meet the
requirement.

The timing and area information of the ARM IPs were
obtained by synthesizing the RTL code using Synopsys
Design compiler using Samsung’s 90nm low-voltage ASIC
process. The gate counts and port I/O delays were obtained
from the synthesis reports of Design Compiler. The IPs
was synthesized using all possible combinations of
configuration parameters. For example, in the case of
PL300s, we synthesized 286 configurations with 1 to 9
master ports, 1 to 16 slave ports, and two possible data bus
widths (32 or 64).

Our experiment was done using 120 synthetic CTGs
generated using a CTG generator. This was mainly
because we could not find any publicly available CTG large
enough that our approach can be found useful. The CTGs
that we used consists of 6 masters and 11 slaves for the
smallest ones, and 31 master and 71 slaves for the largest
ones. The CTG generator first generates a reasonable
number of components – processors, DSPs, custom logic,
peripherals, or SRAM/DRAM blocks, and CTG edges are
generated according to each IP’s characteristic. For
example, DSPs typically have two master ports, where one
of them have a low-bandwidth read access path to a
SDRAM block (which represents instruction stream), and
the other port with high-bandwidth read/write accesses to
local buffers and global SDRAM blocks (which represents
data streams).

Each of the CTGs were synthesized using four synthesis
methods –TGE, single bus matrix (SBM), two-layers of bus
matrices(2BM), and an two-phase approach, where the first
70% of the annealing is done using either 2BM or SBM
(depending on the number of nodes), and the last 30% is
done using TGE. Each of the simulated annealing ran

)()()(10 trafficsizeofslavesizeofmastersizeof iterations,
where)(mastersizeof ,)(slavesizeof and)(trafficsizeof each
represents the number of masters, number of slaves, and the
number of CTG edges, respectively.

We have implemented the communication architecture
synthesis flow in Java 5.0, which executes on Sun’s Java
VM 5.0[11]. Since running 480 synthesis tasks requires a
lot of computation power, we implemented a simple

master slavePL300

master PL300

master PL300

PL300

PL300

slave

slave

slave

slave

slave

master
PL300

slave

(a)

master

master

master

master

(b)

slave

PL300

PL300

slave

slave

slave

slave

slavePL300

slave

PL300

Figure 6 Two alternative bus matrix architectures

2B-3

176

in-house synthesis farm, which consists of four x86
machines with different processors, different amount of
RAM, and different operating systems.

TABLE I
Synthesis result of 120 CTGs1

Method SBM 2BM TGE Two
phase

Average size
(geometric mean) - 6.403 7.172 5.325

Number of
successful
synthesizes

78 120 119 120All designs

number of best
results among 4
methods

33 1 31 55

Average size
(geometric mean) 2.991 3.641 3.097 3.159

Number of
successful
synthesizes

27 27 27 27
small 27
designs
(< 25 ports)

number of best
results among 4
methods

9 0 4 14

Average size
(geometric mean) - 9.434 15.799 8.309

Number of
successful
synthesizes

2 22 22 22
large 22
designs
(> 45 ports)

number of best
results among 4
methods

1 0 5 16

Table I shows the experiment results for the 120 designs.
The three methods that generate cascaded bus matrices
successfully generate designs that meet the timing
requirements for all 120 designs, while the SBM method
failed to generate a design for approximately half of the
CTGs. The situation became worse when the number of
components increased to more than 45, where almost none
of the CTGs could be successfully synthesized. This shows
that it is required to use multiple cascaded bus matrices
when the system gets larger.

Among the three cascaded bus matrix methods, the
two-phase approach’s result was better than both TGE-based
method and 2-layer bus matrix methods. The reason that
TGE’s average was much higher was because the TGE
method and 2BM method had a lower probability to
generate a reasonable solution – thus, the result was 10x
bigger for some CTGs, while other CTGs had marginal
difference (around 15% size difference).

For all four methods, execution time was tens of seconds
for the smallest designs, and around 2 hours for the largest
designs.

VII. Conclusions

In this paper, we present a novel approach based on
cascaded bus matrix to synthesize communication

1 The size of the generated architecture is in the number of gates
normalized to an arbitrary value. We could not release the
number of gates, due to the licensing agreements with our IP
vendor.

architectures for large systems with nearly 100 IP’s. We
present two methods, an encoding method and two-step
simulated annealing, for efficient design space exploration.
Experiment results show that our approach is able to
synthesize communication architectures with hundreds of
components, which none of the previous approaches were
capable.

Still, there is a lot of more research to do. Since our
optimization flow requires quite a lot of computation power,
and the architecture required to synthesize is expected to
grow exponentially, better optimization approaches are
needed. We plan to extend our approach using newer
meta-heuristic optimization algorithms, such as the popular
genetic algorithm, or ant colony optimization [12].

Additionally, since our flow does not run simulations on
every phase of performance and cost calculation, but
estimates, especially, the performance, there must be an
accurate system performance modeling method. We plan to
add statistical communication modeling methods, so that we
can obtain accurate communication architecture
performance without simulating the system within a small
error margin.

References

[1] International Technology Roadmap for Semiconductors 2005,
Design, http://public.itrs.net/

[2] ARM documents – System-on-chip
http://www.arm.com/documentation/SoC/index.html

[3] Synopsys DesignWare IP – AMBA solutions
http://www.synopsys.com/products/designware/amba_solutio
ns.html

[4] SonicsMX datasheet, available at
http://www.sonicsinc.com/documets/SMX_Data_Sheet.pdf

[5] S. Pasricha, N. Dutt, M. Men-Romdhane, “Constraint-Driven
Bus Matrix Synthesis for MPSoC”, in proc. of ASPDAC, Jan.
2006

[6] S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-Romdhane.
“Floorplan-Aware Automated Synthesis of Bus-based
Communication Architectures”, in proc. of DAC, June 2005

[7] K. Srinivasan and K. S. Chatha, “A Low Complexity
Heuristic for Design of Custom Network-on-Chip
Architectures”, in proc. of DATE, March 2006

[8] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey,
"FLEXBUS: A high-performance system-on-chip
communication architecture with a dynamically configurable
topology," in proc. of DAC, June 2005

[9] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, "Integrated
data relocation and bus reconfiguration for adaptive
system-on-chip platforms," in proc. of DATE, March 2006

[10] S. Murali, M. Coenen, A. Radulescu, K. Goossens and G. De
Micheli , “Mapping and Configuration Methods for
Multi-Use-Case Networks on Chips”, in proc. Of ASPDAC,
Jan 2006

[11] Java 2 SE from Sun Microsystems,
http://java.sun.com/javase/index.jsp

[12] M. Dorigo and T.Stützle, Ant Colony Optimization, MIT
Press, 2004

[13] T. van Meeuwen et al, “System-level Interconnect
Architecture Exploration for Custom Memory
Organizations”, in proc. Of ISSS, October 2001

2B-3

177

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

