
Abstract - We present a bus arbitration scheme for soft 
real-time constrained embedded systems. Some masters in such 
systems are required to complete their work for given timing 
constraints, resulting in the satisfaction of system-level timing 
constraints. The computation time of each master is predictable, 
but it is not easy to predict its data transfer time since the 
communication architecture is mostly shared by several masters. 
Previous works solved this issue by minimizing the latencies of 
several latency-critical masters, but the side effect of these 
methods is that it can increase the latencies of other masters, 
hence they may violate the given timing constraints. Unlike 
previous works, our method uses the concept of “slack” in order 
to make the latency as close as its given constraint, resulting in 
the reduction of the side effect. The proposed arbitration 
scheme consists of bandwidth-conscious arbiter and scheduler. 
The arbiter can be any existing bandwidth-conscious arbiter 
and the scheduler implements the latency-awareness proposed 
in this paper. The scheduler is involved in the arbitration only 
when it observes a request whose slack is not sufficient for the 
given timing constraint. The experimental results show that our 
method outperforms the conventional round-robin arbiter by 
more than 100% in the best case in terms of the longest violated 
cycles. 

I. Introduction 

As the semiconductor technology develops rapidly, it is 
possible to integrate billions of transistors on a single silicon 
die. System-on-Chip (SoC) is a typical example. As of today, 
many embedded systems using processing cores are designed 
as SoCs. A major challenge in SoC design is that it is 
difficult to meet Time-To-Market (TTM) requirement due to 
increasing die size and design complexity. Therefore, the 
concept of design reuse becomes extremely important and 
platform-based design methodology has been widely 
accepted [1][2]. Even though Intellectual Property (IP) 
components can be reused for different designs, the 
communication architecture connecting those components 
must be carefully designed in order to satisfy all the given 
constraints, since each design may have different performance 
specifications and constraints. Suppose an MPEG decoder 
which can manipulate various picture sizes. Digital Media 
Broadcast (DMB) applications require the decoder to process 
15 frames (picture size: CIF) per second while a high-end 
Potable Media Player (PMP) requires the decoder to handle 
30 frames per second even within a larger picture size. 
Clearly, bandwidth and latency requirements are different in 
these two cases. Therefore, the communication architecture 

must be tuned to be suitable for each application. For this 
reason, the communication architecture design is one of the 
time-consuming steps in SoC design [3]. 

Multi-layer bus architecture was proposed as a solution to 
meet both bandwidth and latency requirements [4][5]. In this 
architecture, the buses that bind closely coupled components 
are connected through bridges, which improve both bandwidth 
and latency. However, the number of bus layers is limited by 
routing density and the number of external pins for the DRAM 
access. Even in multi-layer bus architecture, an appropriate 
arbitration scheme is needed to handle the concurrent data 
transfer requests from multiple masters in each layer. 

Classical arbitration schemes such as round-robin, fixed 
priority and hybrid of them are still used popularly. But, they 
ignore the latency issue or assume that the latency 
requirement is proportional to the bandwidth requirement. 
Time-Division- Multiple-Access (TDMA) scheme is another 
bandwidth-conscious arbitration scheme. It can provide 
guaranteed throughput and increase the overall throughput 
by allowing the unused timing slots to be filled with best 
effort traffic. Recently, latency-conscious [6][7][8][9] or 
QoS-aware [7][10][11] arbitrations are introduced. 
LOTTERYBUS [6] extends the TDMA scheme by using a 
statistical method and resolves the long latency issues. Weber 
et al. proposed a QoS-aware arbitration scheme which 
introduces the concept of “epoch” [7]. Epoch is a group of 
requests and its size can be different for each master. The 
arbiter allocates bandwidth and service order (e.g. latency) 
per epoch basis. These approaches resolve the latency issues 
by minimizing the latency. However, these methods focused 
more on guaranteeing bandwidth allocation and often tried to 
minimize the latency beyond their latency requirements. 
Excessive reduction in the latency of a certain master may 
increase the latencies of other masters. There have also been 
many efforts to overcome the latency and bandwidth 
problems by improving bus architecture, such as SAMBA 
BUS [8] and FLEXBUS [9]. In [8], their bus is a single-layer 
bus, but it can behave like a multi-layer bus system when 
concurrent requests on a single bus do not require the same 
physical resources. In [9], their bus system can be 
dynamically configured to balance the traffic load of busses. 
Their objective is to improve the bandwidth utilization by 
efficient use of hardware resources, thus the latency is 
improved as a side effect. In this paper, we especially focus 
on the latency and propose a latency-aware arbitration 
scheme by using the concept of “slack”. The goal of our 
method is not to minimize the latency but to adjust the 

Minje Jun 

School of Electrical and 
Electronic Engineering,  

Yonsei University,  
Republic of Korea 

jjuninho@yonsei.ac.kr 

Kwanhu Bang 

School of Electrical and 
Electronic Engineering, 

Yonsei University, 
Republic of Korea 

lamar49@yonsei.ac.kr 

Hyuk-Jun Lee 

Cisco Systems 
Incorporation, 

U.S.A. 
hyukjunl@yahoo.com 

Eui-Young Chung 

School of Electrical and 
Electronic Engineering, 

Yonsei University, 
Republic of Korea 

eychung@yonsei.ac.kr 

Naehyuck Chang 

School of Computer 
Science & Engineering, 

Seoul National University 
Republic of Korea 

naehyuck@snu.ac.kr

Slack-based Bus Arbitration Scheme for  
Soft Real-time Constrained Embedded Systems 

1-4244-0630-7/07/$20.00 ©2007 IEEE.

2B-1

159



latency to the given constraint by minimizing the slack with 
minor hardware overhead and no change in bus protocol. We 
introduced the basic concept in [12]. In this paper, we further 
extend the method and our contributions are two folds. First, 
the extended method can dynamically change the latency 
constraint of each master to support various operation 
scenarios. Second, time-critical requests can termi- nate the 
request being served and this extension can reduce the 
overall deadline misses. These new features differentiate our 
method from the Earliest Deadline First(EDF) by providing 
more on-line properties. 

Section 2 explains the motivation of our method, Section 
3 describes the basic architecture of our arbitration scheme 
and the experimental results are shown in Section 4 followed 
by conclusions in Section 5. 

II. Motivation

A. Keeping Constraints, Not Minimizing 

Latency becomes critical when many masters are sharing 
a common bus and their workload is heavy enough to cause 
bus contentions frequently in real-time systems. Minimizing 
the latency of specific masters is the traditional method to 
handle this issue. However, it will increase the latency of 
other masters. In systems requiring real-time constraint, it is 
unnecessary to minimize the latencies of some masters 
beyond their time constraints.  

Fig. 1 depicts an example. In this example, service latency 
for Master 1, 2, and 3 span 4, 8, and 2 cycles respectively. 
The requests for three masters are all initiated at cycle 0, and 
M3 is the most latency sensitive master. Fig. 1 (a) shows an 
arbitration scheme which does not use latency constraints for 
scheduling. Masters 2 and 3 violate the latency constraint as 
the bus is granted in ascending order. Only M1 meets the 
constraint. Fig. 1 (b) shows the scheduling of a typical 
latency-minimizing arbiter. It minimizes the latency of the 
most latency-sensitive module, M3, causing M2 to violate its 
constraint. While neither of two arbitration schemes can 

meet the latency constraints for all three masters, in the 
latency-aware arbitration, as shown in Figure 1 (c), all the 
masters are granted the bus without violation by not 
minimizing latency but making latency as close to the 
constraints as possible. 

B. Lead Latency and Transfer Latency 

At the time when a master requests to get permission to 
use the bus, the bus can be occupied with another master. In 
this case, the requesting master must wait until it is granted 
to use the bus. We define this latency as lead latency for the 
requesting master. Even after the master is granted to use the 
bus, the transfer latency, which is usually called ‘burst 
length’ in bus-based system, is needed to transfer all the data. 
The total latency is the sum of these two latencies. 

In the past, many schemes were proposed to guarantee the 
bandwidth or minimize the latency in interconnection field. 
However, they have focused mostly on reducing only lead 
latency. There has been no approach to take into account the 
transfer latency and their latency limits of various masters 
and arbitrate based on them. Moreover, it is practically more 
desirable to meet the latency limit of each master than to 
minimize the latency of overall system or some latency- 
sensitive modules. In order to satisfy each constraint, it is 
necessary to be aware of the current latencies and reflect 
them in the arbitration. In the following section, we present 
the latency-aware arbitration scheme which keeps track of 
the current latencies of masters and use them for scheduling. 

III. Latency-Aware Arbiter 

A. Architecture overview 

The simplified structure of the proposed scheme is 
depicted in Fig. 2. As shown in Fig. 2, the arbiter consists of 
a conventional bandwidth-conscious arbiter and a scheduler.  

The proposed architecture can be incorporated with any 
bandwidth-conscious arbiter and the quality of bandwidth 
allocation is determined by the arbiter. This part is not a 
focus of this paper and we only concern at the scheduler for 
latency constraints. The scheduler is implemented in an 
augmented fashion so that the change of the conventional 
arbitration scheme is minimized. Its major function is to 
compute the slack of each request. “Slack” is defined as the 
maximum number of clock cycles to complete the service of 
a given request without violating the given latency constraint. 
The scheduler needs the burst length of each request as well 
as the latency constraint information for the slack computation 
which will be discussed in part B of this section. 

Latency-Limit
of M1

(a) No Consideration of Latency Constraint Arbitration Scheme

Grant M1 M2 M3

Latency-Limit
of M2

Latency-Limit
of M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14Cycle

(b) Latency-Minimizing Arbitration Scheme

Grant M3

Latency-Limit
of M2

Latency-Limit
of M3

Latency-Limit
of M1

1 2 3 4 5 6 7 8 9 10 11 12 13 14Cycle

M1 M2

(c) Latency-Aware Arbitration Scheme

Grant M1

Latency-Limit
of M2

Latency-Limit
of M3

Latency-Limit
of M1

1 2 3 4 5 6 7 8 9 10 11 12 13 14Cycle

M2 M3

Fig. 1 Example of three arbitration schemes 

Fig. 2 The basic architecture of latency-aware arbiter 

2B-1

160



For the slack computation, the latency constraint of each 
latency-sensitive master can be programmed either statically 
at design time or dynamically in run-time through the bus by 
considering the scheduler as a normal slave, which is just as 
a normal write operation supported by most of bus protocols. 
Such implementation strategy does not increase the number 
of wires for the scheduler and it is possible to keep the wire 
density as same as the conventional arbitration scheme. As 
far as the burst length is concerned, each bus request includes 
this information in case of most bus protocols, so we just 
feed this information to the scheduler as well as to the arbiter.  

However, we need additional local wires for the 
communication between the scheduler and the arbiter. There 
are two signals – “State” and “Next grant” from the 
scheduler to let the arbiter know which requests are in 
urgency in terms of latency constraint. The signal “State” 
indicates the level of urgency for the selected request which 
is the most critical in terms of slack among the pending 
requests. The signal “Next grant” informs the master ID of 
the selected request. The signal “State” requires two-bits to 
represent the urgency which we will discuss in detail in Part 
C. Also, the number of bits for the signal “Next grant” is 
logarithmically proportional to the number of latency-critical 
masters. Note that these two signals are not globally routed, 
hence the impact on the routing is marginal. Since the 
scheduler has three levels of state, only two bits are necessary 
for the ‘State’ signal. The arbiter finally selects a request to be 
granted depending on the information from the scheduler. 

B. Scheduler architecture 

The slack counter and the scheduler architectures are shown 
in Fig. 3 (a) and (b), respectively. As shown in Fig. 3 (a), the 
slack counter consists of several elementary components 
including two registers-one for the latency constraint and the 
other for the slack. The latency constraints are at most a few 
hundred cycles and, therefore, each register needs less than 10 bits 
in most cases. The scheduler consists of slack counters as many as 
the number of latency sensitive masters, and two comparators, as 
shown in Fig. 3 (b). Only a multiplexer is required to decide the 
final bus winner. 

Each latency-critical master can set its latency constraint into 
a corresponding latency constraint register, if necessary, through
a normal write operation, thus the overhead for the constraint 
setting is a single write transfer from the system perspective. 

When a master issues a request, the slack for the request is 
computed (refer to Part C) and stored in the corresponding 
slack register. As the time advances in terms of clock cycle, 
the slack should be reduced, hence the slack counter 
decrements the slack. The most significant bit of the slack 
counter is used as a valid bit to represent whether the current 
value in a slack counter is valid or not. The valid bit is only 
set when a corresponding master issues a request. The valid 
bit is reset after the request is completely serviced. 

The comparator controls the urgency of requests. By 
comparing the slacks of valid slack counters, the request 
whose slack is the smallest is selected as the most urgent 
request. The master information is delivered to the arbiter 
through the signal “Next grant” and the urgency of the 
selected request is delivered to the arbiter through the signal 

“State” in parallel. The urgency is determined by pre- 
programmed threshold values and the details are in Part D.  

C. Slack computation 

Whenever any latency-critical master issues a request, the 
scheduler receives the burst length information and computes 
the slack using Equation (1) and loads it into the 
corresponding slack counter.  

jiiii STBLSlack −×−=            (1) 
where, Slacki is the slack of the request from master i, Li is 
the latency constraint of master i, Bi is the burst length of the 
request, Ti is the transfer time per beat, and Sj is the latency 
of a target slave j. The slack counter is decremented every 
clock cycle as mentioned in Part B and thus the scheduler 
updates slack information every clock cycle. Ti is 1 cycle in 
most cases and thus multipliers are not needed. 

In many cases, the slave latency is not fixed and varies 
depending on the workload and its internal states. For 
instance, DRAM memory controller has a variable latency 
depending on the addresses of memory references. Bank 
conflicts or same row accesses could dramatically change the 
memory access time. Furthermore, it may have internal 
memory access scheduler to maximize its bandwidth 
utilization. In this work, we conservatively assume the worst 
case slave latency to compute the data transfer latency. 

In this work, we define a slack as the remaining clock 
cycles to complete the service for the given request without 
the constraint violation. But our method is flexible enough to 
be adjusted depending on the purpose of the constraint. For 
instance, we can omit the second term in Equation (1) if the 
initial latency is mostly concerned.  

D. Urgency control 

Latency constraint

SlackSlackBusreq

Burst length

1

Clock

toggle to 1 at 
rising edge

Current slack

Subtractor

(a) Slack counter architecture 

Slack 
Counter

Slack 
Counter

Slack 
Counter

Slack 
Counter

comparator : min( )

minimum slack

Comparator
most urgent 
master

state

Warning thresholdWarning threshold

Emergency thresholdEmergency threshold

Arbiter

arbiter-chosen 
master

bus winner

(b) Scheduler architecture 
Fig. 3 Slack counter and scheduler architectures

2B-1

161



As mentioned in Part B, the urgency of each request is 
controlled by the pre-programmed threshold pair – T(W, E). 
The threshold pair is globally applied to every request. T(W) 
indicates that a request whose slack is less than or equal to 
T(W) should be serviced very soon, otherwise the request 
has a high probability to miss the given latency constraint. 
On the other hand, T(E) means that the a request whose slack 
is less than or equal to T(E) will miss the given latency 
constraint if it is not serviced right now. Thus, T(W) is 
always greater than T(E). Based on T(W, E), the scheduler 
assigns one of three states to each request depending on their 
slacks. Three states are defined as “safe”, “warning”, and 
“emergency”. We say that the state “warning” is deeper than 
the state “safe” and similarly for the state “emergency” based 
on the amount of the slack. Fig. 4 shows the relation between 
those states and slack of a request. A request moves from the 
shallower state to the deeper state as time advances. In our 
scheduler, a request in the state “emergency” is the most 
urgent request to be serviced. When every request is in the 
state “safe”, the scheduler delivers null information to the 
arbiter, meaning that there is no urgent request by setting the 
signal “State” to “00”. The signal “State” is set to “01” when 
the request in the state “warning” is selected and to “10” 
when the request in the state “emergency” is selected. We 
can add one more state to exploit the state “11” if necessary. 
We select a request in the order of the state depth when a 
single request is in the deepest state. An arbiter behaves in a 
different manner depending on the state urgency of the 
selected request. When a selected request is in the state 
“warning”, it gives a grant to the request right after the 
current service is completed. However, when a selected 
request is in the state “emergency”, the arbiter takes a more 
aggressive approach by stopping the current service and 
hand over the ownership to the request informed by the 
scheduler. This will degrade the bus performance from the 
bandwidth perspective, but it will reduce the peak latency 
violation since the preempted request is in the state 
“emergency”. The kicked-out request is treated as same as 
other pending requests with the same arbitration policy. 
When it is selected and serviced again, it completely resends 
the data using “retry” feature which is supported by many 
contemporary bus protocols. Note that such preemption can 
occur repeatedly and the overall bandwidth utilization will 
be degraded by resending a large amount of data. To avoid 
such disaster, we lock the transfer of the request in the state 
“emergency” not to be kicked-out by any other requests. This 
strategy aims at the trade-off between the bandwidth 
utilization and minimizing the peak value of the violated 
cycles. When there are several requests in the same level of 
urgency (“warning” or “emergency”), the request which has 
the smallest slack is selected by the scheduler and its 
information is passed to the arbiter.  

Note that even though this scheme can surely increase the 

probability in which the latency constraints of the masters 
are met, the constraint violation is inevitable in some 
situations, especially when we consider very heavy workload. 
For this reason, the proposed arbitration scheme is more 
appropriate for the soft real-time constraint rather than the 
hard real-time constraint. However, it is true that most of IP 
components have in/out buffers to avoid the disaster due to 
constraint violation. Thus, our scheme can be applicable to 
hard real-time applications if the violated interval is 
reasonably small so that the in/out buffers can afford to. The 
quality of bandwidth allocation is mainly determined by the 
bandwidth-conscious arbiter. The scheduler has very little 
impact on it, since it involves in the arbitration only when 
there are latency-critical requests observed.  

IV. Experiment Result 

A. Experiment Setting 

To verify our method, we implemented AHB [13] bus 
model with the proposed scheme in SystemC, with four 
masters and a single slave. For comparison purpose, we 
implemented round-robin (R-R) arbiter and fixed-priority 
(F-P) arbiter both with and without the scheduler. The 
workload used in this experiment is shown in TABLE I.  

It is assumed that all masters require the same bandwidth, 
that is 25% for ideal bandwidth, but we choose 35% for each 
so that the total required bandwidth is 140% of the ideal bus 
bandwidth which is heavy enough to verify our method. The 
ideal bandwidth is defined as the bandwidth when the bus is 
fully utilized for data transfer without any protocol overhead 
or contention. The slave latency is assumed to be 8 cycles and, 
therefore, the minimum latency for a request is 9 cycles, 1 for 
the grant and 8 for the slave latency. The average burst length 
is 12, hence the average service time is 21 cycles, 9 for the 
minimum latency, and 12 for 12-beat transfer. On this basis, 
we set the latency constraint of M1 and M3 to 30 cycles. A 
request has to wait for 21 cycles, on average, when other 
requests are concurrently issued with this request and one of 
other requests is granted. Even when the request is granted at 
the next arbitration round, the master has to wait for 9 cycles 
to observe its first data coming from the slave. As far as M2 
and M4 are concerned, we set much loose latency constraint 
which is 72 cycles. In other words, the requests from these 
masters can satisfy the latency constraint even when they lose 
the winning chances of the arbitration three times. 

First, we will show the average latencies and the average 
violated cycles of all masters for six different arbitration 
schemes: R-R and F-P without scheduler, R-R and F-P with 
only “warning” state (labeled as RR-W and FP-W), and R-R 
and F-P with both “warning” and “emergency” state(labeled 

TABLE I 
Workload summary 

 Bandwidth 
requirement 

Burst length Latency 
constraint(cycles) 

M1 35% 8 30 
M2 35% 8 72 
M3 35% 16 30 
M4 35% 16 72 

Fig. 4 State assignment for each request 

2B-1

162



as RR-E and FP-E). Second, the longest violated cycles 
versus total bandwidth requirement will be shown. Third, we 
will show how well the proposed scheme reacts to the 
dynamic change of latency constraint of masters. All data are 
obtained by averaging the results from ten simulations. 

B. Experiment Result

Fig. 5 shows the average latencies of all masters. Even 
though it seems that R-R shows the smallest overall latency, 
M1 and M3 do not meet its latency constraint by more than 10 
cycles. On the other hand, the proposed scheme makes almost 
all masters meet the latency constraints except for M1 (which 
shows a slight violation). 

Fig. 6 depicts the average violated cycles that are measured 
as additional cycles taken beyond the given constraints. It can 
be said that the proposed scheme balances out the violated 
cycles of the masters so that one master does not violate its 
latency constraint too much. 

From Fig. 5 and Fig. 6, it is not clear to see the advantage of 
using an “emergency” state in addition to a “warning” state. It 
can be seen in Fig. 7 which shows the longest violated cycles 
versus total bandwidth requirement. The longest violated cycles 
for the R-R arbiter without scheduler are rapidly saturated to its 
maximum as the bandwidth requirement increases. On the other 
hand, RR-W and RR-E arbiter are saturated to their maximum 
values much more slowly than the R-R arbiter, and you can find 
that RR-W is worse than RR-E for all data points.  

To see how well the proposed scheme supports the latency 
constraint change, we changed the latency constraints of M2 
and M3 from 72 to 51 and from 30 to 51, respectively, in the 
middle of the simulation. Changing the latency constraints of 
masters does not violate or need extra signals added to AHB 
protocol. It can be done with a normal write transfer by treating 

the scheduler as a slave of the system. The result is shown in Fig. 
8 and you can easily find the changed latency constraints are 
applied correctly. 

To verify robustness of our method to the traffic variation, 
this time we change the bandwidth requirement of M3 in the 
middle of simulation. From 15000th cycle to 35000th cycle 
(between 3 and 7 on x-axis in Fig. 8), M3 changes its band- 
width requirement to 50%. Note that the default traffic is 
already quite heavy and, therefore, the increasing bandwidth 
requirement for M3 makes the traffic even heavier. The result is 
shown in Fig. 9. The R-R arbiter not only shows the highest 
latency at all data points, but also is much influenced by 
bandwidth requirement change. On the other hand, the proposed 
scheme is less influenced by the bandwidth requirement change.  

Next, in order to show that scheduler rarely affects the band- 
width characteristics of the arbiter, the bandwidth utilization of 
R-R, RR-W, and RR-E is shown in Fig. 10. You can find that 
the bandwidth utilization is not or rarely degraded. This is 
because the scheduler in “warning” state does not affect the 
current transfer but only informs the arbiter which one to be 
granted next. Even in “emergency” state, in which the current 
transfer can be preempted and retransferred later, the number of 
retry is small, therefore, the bandwidth degradation is negligible. 

Fig. 7 Longest violated cycles versus total bandwidth requirement 

80.1

Fig. 6 Average violated cycles 

Fig. 8 Effect of latency constraints change 

Fig. 5 Average latency in four different arbitration schemes 

Fig. 9 The latency variation on a dynamic traffic pattern 

2B-1

163



The ratio of the number of retried transfers to that of the total 
requests is shown in Fig. 11. The total retry ratio is bound to 
2.5%, and the maximum retry ratio is 5.5% for M3, which is so 
small that its effect on total bandwidth utilization is negligible, 
as shown in Fig. 10. 

V. Conclusion 

We propose a latency-aware arbitration scheme which 
introduces a latency-aware scheduler in addition to an existing 
bandwidth-conscious arbiter. The bandwidth utilization is not 
degraded in “warning” state, and rarely degraded in “emergency” 
state, but making the latency properties even better, as shown in 
the experimental results. The scheduler can be augmented with 
any bandwidth-conscious arbiters such as round-robin, fixed 
priority, TDMA. Latency constraints of each master can be 
updated without additional signal wires but just as a normal 
write transfer to the scheduler. Also, it can be further extended 
to support multi-thread communication fabrics including 
Network-on-Chip (NoC) switching elements. 

Acknowledgement 

This work was partially supported by grant No. R01-2006- 
000-10156-0 from the Basic Research Program of the Korea 
Science & Engineering Foundation, by IT R&D Project funded 
by Korean Ministry of Information and Communications, and 
by The Korean Intellectual Property Office. 

References 

[1] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. 

Sgroi, “Benefits and challenges for platform-based design”, DAC 
2004, pp.409-414, 2004. 

[2] K. Keutzer, A. R. Newton, J. M. Rabaey and A. Saniovanni- 
Vincentelli, “System-level design: orthgonalization of concerns 
and platform-based design”, IEEE TCAD, vol. 19, no. 20, pp. 
1523-1543, 2002. 

[3] U. Y. Ogras, J. Hu, and R. Marculescu, “Communication- centric 
SoC design for nanoscale domain”, ASAP 2005, pp. 73-78, 2005. 

[4] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. 
Paviot, S. Yoo, A. A. Jerraya,  and M. Diaz-Nava, 
“Component-Based Design Approach for Multicore SoCs”, DAC 
2002, pp. 789-794, 2002. 

[5] K. Ryu and V. Mooney, “Automated Bus Generation for 
Multiprocessor SoC Design”, DATE 2003, pp. 282-287, 2003. 

[6] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, 
“LOTTERYBUS: A new high-performance communication 
architecture for system on chip designs”, DAC 2001, pp.15-20, 
2001. 

[7] W. D. Weber, J. Chou, I. Swarbrick, and D. Wingard, "A quality of 
service mechanism for interconnection networks in system on 
chips", DATE 2005, pp. 1232-1237, 2005. 

[8] R. Lu and C.K. Koh, "SAMBA-BUS : A high Performance bus 
architecture for system on chips", ICCAD 2003, pp.8, 2003. 

[9] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, “FLEXBUS-A 
high performance system-on-chip communication architecture 
with a dynamically configurable topology”, DAC 2005,
pp571-574, 2005. 

[10] A. R dulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. 
Wielage, “An efficient on-chip network interface offering 
guaranteed services, shared-memory abstraction, and flexible 
network configuration”, DATE 2004, vol.2,, pp878-883, 2004. 

[11] K. Kim, S.J. Lee, K. Lee, and H.J. Yoo, “An arbitration look-ahead 
scheme for reducing end-to-end latency in networks on chip”, 
IEEE, 2005. 

[12] M. Jun, K. Bang, H.J. Lee, and E.Y. Chung “Latency-aware Bus 
Arbitration for Real-time Embedded Systems”, accepted for 
IEICE transaction. 

[13] ARM, Limited. AMBA Specification, 1999.

Fig. 10 Bandwidth utilization versus bandwidth requirement

Fig. 11 The ratio of retried transfer to the total transfers 

2B-1

164



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


