
An Automated, Efficient and Static Bit-width Optimization Methodology
 Towards Maximum Bit-width-to-Error Tradeoff

With Affine Arithmetic Model

 Yu Pu and Yajun Ha
 Department of Electrical and Computer Engineering
 National University of Singapore, Singapore, 119260
 {Yu_Pu, elehy}@nus.edu.sg

Abstract – Ideally, bit-width analysis methods should be able to
find the most appropriate bit-widths to achieve the optimum
bit-width-to-error tradeoff for variables and constants in high
level DSP algorithms when they are implemented into
hardware. The tradeoff enables the fixed-point hardware
implementation to be area efficient but still within the allowed
error tolerance. Unfortunately, almost all the existing static
bit-width analysis methods are Interval Arithmetic (IA)
based that may overestimate bit-widths and enable fairly
pessimistic bit-width-to-error tradeoff. We have developed an
automated and efficient bit-width optimization methodology
that is Affine Arithmetic (AA) based. Experiments have proven
that, compared to the previous static analysis methods, our
methodology not only dramatically reduces the fractional
bit-width by more than 35% but also slightly reduces the
integer bit-width. In addition, our probabilistic error analysis
method further enlarges the bit-width-to-error tradeoff.

I. Introduction

 Most of the computational-intensive applications are
initially developed with high-level standard programming
languages where the variables and constants are possible to
be described in high precision data types. While being
implemented into hardware subjected to fixed-point
restriction, these variables and constants prototyped in high
precision must be re-defined to the fixed-point. The
translation process from full to limited precision must be
optimized to tradeoff precision for silicon area, latency,
power consumption and etc. Unfortunately, choosing the
most appropriate bit-width is a non-trivial task. Moreover, it
is too burdensome for designers to translate them manually.

Many researchers have focused their interests in
developing tools that may help decide the bit-widths
automatically. One category of techniques is based on
detailed simulations. Kum et. al. [7] have used Monte
Carlo-style statistical simulation to optimize word-length
iteratively. This technique can get the optimum results but is
quite inefficient since there is often a huge searching space
to simulate with a full coverage of input vectors. Chang et al.
[2] have developed a design-time tool, Precis, which
provides designers with area-precision information by doing
slack analysis and aids the designer in focusing their manual
precision optimization. They have also presented a method
that broadens their work in [2] to explore area-to-error
tradeoffs by precision steering [3]. However their technique
is semi-automated. The other category of techniques is based

on static analysis. Stephenson et. al. [1] have formulated the
bit-width analysis as a value range propagation problem and
introduced a compiler Bitwise that extracts the value of each
variable by seamlessly performing bi-directional propagation,
but their compiler is limited to integers and pointers. Nayak
et. al. [4] have used a precision analysis based on the method
presented in [1] to infer the minimum number of bits for the
integer part and a combined precision and error analysis to
infer the fractional bit-width. However, their algorithm is
restricted by the assumption that the number of fractional
bits is constant for all variables.

We observe that almost all the existing static bit-width
optimization methods are Interval Arithmetic(IA) based,
which may lead to the pessimism because the overestimation
accumulates exponentially along the computation path. Fang
et. al. [5][6] have introduced the Affine Arithmetic model
into the verification of the finite-precision effects in DSP
applications. Inspired by their work, we have extended the
AA model to the bit-width analysis. A closely related but
independent research has been simultaneously conducted by
Lee et. al. [8], but their method uses the adaptive simulated
annealing algorithm to find the optimum number of fraction
bits, which is quite time consuming. Compared to their
methodology, ours has the following features:

• We use the hard error analysis to insure the output error
not to exceed the designer-specified error tolerance.
• In most of the DSP designs, the designer allows certain
degree of error rate, which motivates us to explore a larger
bit-width-to-error tradeoff than using hard error analysis.
Our probabilistic error analysis almost insures that the
probability for the output error to lie in the specified error
tolerance is higher than the designer specified
parameter λ .
• Decision time is greatly reduced since our approach
iterates only once.
• Our approach performs on the algorithm level, followed
by high-level synthesis which is based on the bit-width
optimization results. Therefore, our approach can be easily
incorporated into the existing synthesis tools.
 The remainder of the paper is organized as follows:

Section II briefly gives the background of IA and AA models.
Section III goes through our bit-width analysis methodology
in detail. Section IV gives and analyzes the experimental
results. Section V draws the conclusion of the work.

 II. Background

 Interval arithmetic has been widely used in the range
propagation analysis. However, IA model could lead to
overestimations and such overestimations are exponentially
accumulated along a computation path. As a consequence,
the final intervals may be too large to be useful.
 Affine Arithmetic (AA) model can overcome the
overestimation explosion problem. In AA model, the
uncertain variable x is expressed as:

0 1 1 2 2ˆ n nx x x x xε ε ε= + + + ⋅⋅⋅ + , 1 1iε− ≤ ≤
where 0x is the central value of the affine form of x̂ , iε is
an independent noise symbol multiplied by the
corresponding coefficient ix . Along the computation path,

one symbol of iε may contribute to be uncertainties of two
or more variables. When these variables are combined, the
uncertainties may be cancelled out so as to make the results
of range propagation analysis tighter than that of IA model.

In order to present the mathematical reasoning behind
our methodology, we briefly introduce the AA based
operation models. Assume that there are variables ,x y and

constant ,c we have 0
1

,
n

i i x
i

x x x Eε
=

= + +

0
1

,
n

i i y
i

y y y Eε
=

= + + and 0 ,cc c E= + where xE , yE and

cE are the error terms generated from quantization. Each of

the error terms is expressed in the affine form as eE ε= ∆ ,

where ∆ is the upper bound for the quantization error. If
we denote f as the bit-width for the fractional part, we
have 2 f−∆ = in the case of truncation and (1)2 f− +∆ = in
the case of rounding. The noise symbol eε indicates the
uncertainty of the quantization error.

The AA operation models for the addition, subtraction
and multiplication are shown below. With the AA form
operation models, the results are also in affine forms. The
error that occurs after each operation is linear with respect
to errors of its two operands and it shifts with a new
quantization errorσ .

Addition and Subtraction:

0 0
1

() ,
n

i i
i

x c x c x ε
=

± = ± + + Φ

Where x cE E σΦ = ± +

0 0
1

() () ,
n

i i i
i

x y x y x y ε
=

± = ± + ± + Φ

Where x yE E σΦ = ± +
Multiplication:

0 0 0
1

,
n

i i
i

x c c x c x ε
=

⋅ = + + Φ

Since we know that [1,1]xE ∈ − and [1,1],cE ∈ − so
2 2 / 2 () / 2x c x c x cE E E E E E≤ + ≤ + �then we have

0 0
1

() () / 2
n

x c i i c x
i

E c E x x E Eε σ
=

Φ ≤ ⋅ + + + + +

Similarly,

0 0 0 0
1 1 1

()
n n n

i i i i i k
i i i

x y x y y x x y x yε ε
= = =

⋅ = + + + + Φ

0 0
1 1

() () () / 2
n n

y i x i x y
i i

E x x E y y E E σ
= =

Φ ≤ + + + + + +

A quantity in the affine form can be bounded by

0 0
1 1

n n

i i i
i i

x x x x x xε
= =

= + ≤ + = (1)

where the term
1

n

i
i

x
=

is called the total deviation of x .

III. Bit-width Analysis Methodology

Figure 1 gives a brief overview of our methodology. First,
we accept the designer-specified constraints via a
user-interface, and convert the input range into the AA
format. Second, we run the program "symbolically" to get the
output results in AA form. Third, we use the range analysis to
determine the range of each variable (or constant) and the
corresponding integer bit-width. The subsequent error
analysis will return the optimized fractional bit-width.

Convert IA Range to AA
Expression

 Run Program “Symbolically”

Probabilistic
Error Analysis

Probabilistic Error
Analysis

Yes

No

User
Interface

Range of Input Variables and
Designer-Specified Error Constraints

Range Analysis

Integer Variable Bitwidth

Integer Part Bitwidth of
Floating Variable

Integer Part Bitwidth of
Floating Constant

Fractional Part Bitwidth
of Floating Variable

Fractional Part Bitwidth
of Floating Constant

End

Error
Analysis

Program described in high
level standard language

Hard
Error

Analysis

 Fig. 1. Bit-width Optimization Flow
Information Provided by Designer:

To limit the complexity, we implemented our method
using the multiple-input to single-output computational

model. The designer provides the following 4 types of
information using the interface shown in Figure 2: (1) the
value range of all the input variables; (2) the output variable;
(3)the absolute maximum error tolerance specE at the output;
(4)optionally the probability parameter λ .

.
Fig. 2. The User Interface

Convert IA Range to AA Range:
Since the ranges of input variables given by designers are

in the form of interval range, for example, an input
variable x is ranged in[,]a b . We first convert them to the AA
form, so x is expressed as () / 2 () / 2,xx a b a b ε= + + +
(1 1xε− ≤ ≤), and xε is the noise symbol introduced for
representing the uncertainty of x .

Run Program “Symbolically”:
We “symbolically” traverse the whole program from the

entry to the exit in forward direction. Assume that there are
totally N floating-point variables and constants whose upper
quantization error bounds are expressed
as 1 2 3, , N∆ ∆ ∆ ⋅⋅⋅ ∆ , respectively. When they are
transformed to be fixed-point, the actual quantization errors
incurred at each of them are expressed in affine forms
as 1 1 2 2 3 3, , N Nε ε ε ε∆ ∆ ∆ ⋅⋅⋅ ∆ . With the operation models
outlined in the background part, we get the results in
symbolical affine form for all variables and floating-point
constants.

There are some rules of running the program:
•For loop construct whose loop count has been
prescribed, the variables in the body of the loop are
calculated by thoroughly traversing the loop.

•For a variable that is condition dependent, the
variable’s range is refined based on the outcome of the
conditional branch. For example, in Figure 3 the
variable x is condition dependent, so at the output
of the condition branch(0?x ≤), the range of x is
refined with newly introduced affine form
expressions.

 •We do not do backward propagation because the affine
form itself is not an efficient form for performing
backward propagation.

 Fig. 3. Range Refinement of Condition Dependent Variable

Range Analysis:

After “symbolically” running the program, we get all the
variables and floating-point constants in the affine forms.
By Equation (1), their ranges are bounded. Hence, the
bit-width of the integer variables, the bit-width for the
integer part of the floating-point variables and the
floating-point constants are determined. Assume that the
quantity x (either variable or constant) is translated to be
fixed-point with m bits to be its integer part bit-width, we
obtain the minimum m by the following expression:

12 1m x− − ≥ (2)

Error Analysis:
After “symbolically” running the program, we also get the

error of the output variable. This output error is in the affine
form as

1 1 1 2 2 2 3 3 3output N N NA A A Aε ε ε ε∆ = ∆ + ∆ + ∆ + ⋅⋅ ⋅+ ∆ (3)
' ' ' '

1 1 1 2 2 2 3 3 3 N N NA A A Aε ε ε ε= ∆ + ∆ + ∆ + ⋅⋅⋅ + ∆ (4)

1 1 2 2 3 3 N NA A A A≤ ∆ + ∆ + ∆ + ⋅⋅⋅ + ∆ (5)

Each independent term i i iA ε∆ in Equation (3) tells
the contribution that a floating point variable or constant's
quantization error makes to the overall error at the output,
where iA is an affine form expression. Since the
designer-specified output error tolerance specE is the upper

bound of output∆ , we have:

output specE∆ ≤ (6)
And we assign non-negative weights to each term in

Equation (5):

1

i N

i i i output
i

W A
=

=
∆ = ∆ (7)

1
1

N

i
i

W
=

= (8)

Through Equations (5) (6) and (7), once iW is known,
we can infer i∆ . At this moment, we simply assign each

term with a equal weight, so /i i specA E N∆ ≤ (9)

Now we have /()i iEspec N A∆ ≤ ⋅ , and each variable’s

fractional bit-width 1 2, ,... Nf f f can be decided:
If the quantization is real rounding based,

(1)
22 log 1(0)if

i i if f− + ≤ ∆ ⇔ ≥ − ∆ − ≥ (10)
if the quantization is truncation based,

22 log (0)if
i i if f− ≤ ∆ ⇔ ≥ − ∆ ≥ (11)

For the experimental results presented in this paper, we
employ real rounding.
 To further explore the bit-width-to-error tradeoffs, after

1 2, ... Nf f f are obtained, we use the following “greedy
algorithm” to optimize the bit-width:

 We call the aforementioned fractional bit-width analysis
method as the “hard” error analysis because it fully insures
the output error not to exceed the designer-specified error
tolerance.

However, we note that in Equation (4) when N gets
large, it is quite unlikely for all the '

iε to simultaneously take
extreme values and push the output error to its upper bound.
[6] has introduced a probabilistic model to estimate the error
of a affine form variable. Our probabilistic error analysis
method is partially based on their idea.

Since we have i i i i i iA A A k∆ = ∆ = ⋅⋅⋅ = ∆ = , so
Equation (4) depicts a sum of many statistically independent
and identically distributed terms. By the central limit
theorem, the Equation (4) approaches a Gaussian CDF as the
parameter N increases. We have

(0,1)output

N Variance

∆
→ Ν (12)

Where (0,1)Ν is a standard normal distribution, and the
2 2/ 3 () / 3i iVariance k A= = ∆ (13)

We have the designer-specified parameter λ , which
bounds the probability that the output error lies within the
designer-specified error tolerance. For example, if the
designer sets 0.999λ = , then the chance for the output error
to exceed specE is only once in 310 times of simulation.

()output specprob E λ∆ ≤ ≥ (14)

The probabilistic error analysis is quite straightforward:
Step 1:

Look up the Gaussian approximation statistical table
according toλ . Since output∆ and N are known, we can get

the variance and k by Equation (12).
Step 2:

Determine i∆ by Equation (13), so if can be determined.

 IV. Experimental Results and Analysis

We use an example to prove the strength of our
methodology. The signal flow of a butterfly part in IDCT is
shown in Figure 4 and such kinds of computations are
common in DSP. To explain explicitly, the data flow graph
is shown in Figure 5. We set 1Const = 2Const = 2 / 2 .
Since C/C++ is the most popular general purpose language
[13-15], the algorithm is initially described in C++ with all
the variables and constants set to be in 64-bit long double
precision.

X1

X2

Adder1

Const1

-1Mult1 Sub1

Const2
Y2

Y1

Adder2

Fig. 4. Signal Flow Graph

 We apply our bit-width analysis methodology to this
example. We first provide the value range of all the input
variables 1X and 2X : 1 [128,127]X ∈ − and 2 [128,127]X ∈ − ,
then specify the maximum error tolerance at 2Y to be 1.0. In
probabilistic error analysis, the probability λ is 0.999.
We compared our bit-width optimization results with the
results generated from using the method presented in [4]
which is considered so far as the best fully automated IA
based static bit-width analysis approach to optimize the
word-length for the algorithms described in MATLAB.

X1 X2

Adder1

Mult1

Const1

Sub1

X1

Const2

Y2

 Fig. 5. Data Flow Graph

Bit-width optimization results and Analysis:

1. Sort 1 2, , ... Nf f f and map them to a new array []X N

according to their decreasing order.

 2. for (j=0;j++j<N)
{
 for (i=0;i++;i<N)
 {

 ([] 1)

1

2
N

X i
residue

i

E Espec − +

=

= − ;

 }
 ([] 1) ([] 1)2 2 (/);X j X j

residue KE A− + − += +

 // assume that kf is mapped to []X j

 Recalculate []X j Recalculate kf ;
 }

 TABLE I
 Bit-Width Analysis Results

 Table I lists the bit-width analysis results. For the integer
part, we see that at nodes 1Sub and 2Y , the IA based range
analysis cannot consider the range cancellation among
variables such that the pessimistic results are occurred. With
our AA based method, the integer bit-width can be
optimized. Considering the efficiency reflected by this
simple example, it is predicted that in a large scale
computation where many variables may have correlations,
our method can save considerable integer bit-width. For the
fractional part, we see that IA based bit-width analysis
returns a large overestimation in terms of the bit-width. At
most of the nodes, our method results in much less
bit-width than the IA method. However, we notice that at
the nodes 1Const and 2Const our method results in a
little larger or equal bit-width compared to the IA based
method. Note that in the current stage we simply assign the
same weight to each node, but actually we can adjust the
weights. For example, we assign larger weights to the nodes
who need more bit-width, such as 1Const and 2Const , and
the bit-width for these nodes can be reduced while the
bit-width of other nodes only suffer slight increase.

 With the similar approach used for the first example, we
have experimented on a 4th order polynomial and a FIR
low-pass filter to test our methodology. The polynomial
equation in our benchmark is 4 3 2 1y x x x x= + + + + , where
x is initialed as a floating point variable and [16,15]x ∈ − .
The FIR filter is implemented according to the architecture
shown in Figure 6, where we set all nX to be in the floating
format, [64,63]nX ∈ − and the floating constants a0 to a4
to be in long format obtained from the command firpm() in
MATLAB. For each example, we specify the error tolerance
to be 1.0.

 Fig. 6. Architecture of the FIR filter

The average bit-widths for the fractional part of these
benchmarks are listed in Figure 7. They are normalized with
respect to the IA based fractional bit-width. We see that with
our hard error analysis, we can achieve a more than 35%
resource saving in terms of the bit-width for the fractional

part compared to the IA based fractional bit-width analysis.
Therefore, our method has achieved a much larger
bit-width-to-error tradeoff than previous IA based method.
In addition, with our probabilistic error analysis, the
bit-width can be even reduced by 50%. As we gradually
release the probabilistic restriction, the tradeoff keeps on
going upwardly.

 Fig. 7. Average Bit-width for Fractional Part

Verification:
To verify the correctness of our method, for the hard

error analysis, we check whether the maximum output error
lies within the specified error tolerance after implementing
the algorithms into hardware that is subjected to fixed-point
restriction. For the probabilistic error analysis, we check that
whether the probability for the output error to lie in the
specified error tolerance can be higher than the probability
specified by the designer. We execute the program written in
C++ with 32 10× random input data sets that are uniformly
distributed within their ranges. Then we modify the C++
programs linking with the compiled SystemC library, set the
quantization option to be real rounding and set each variable
to be fixed-point data type with the bit-width calculated by
our method. We use the same input data sets to get the
results. We compare the results to obtain the simulated
maximum output error and the simulated probability that the
error lies in the specified error. The experimental results for
all the examples are shown in Table II.
 TABLE II
 Verification Results

Test-
bench

Bit-width
analysis
methods

Simulated
output
error

Specified
probability
λ

simulated
probability

'λ
IA based 0.02 N/A 1

0.22 N/A 1
0.47 0.99 1

Example1

AA based
0.33 0.999 1

IA based 0.09 N/A 1
0.15 N/A 1
0.58 0.99 1

FIR
filter

AA based

0.58 0.999 1
IA based 0.88 N/A 1

0.93 N/A 1
1.10 0.99 0.999

4thorder
Poly-
nomial AA based

0.95 0.999 1
 In Table II, the 3rd column gives the simulated maximum

output error. The 4th column gives the parameter λ , which is
the designer-specified probability for the output error to lie in
the specified error tolerance. Note that when the parameter is
not available (N/A), we use the hard error analysis. The 5th

column gives the simulated probability 'λ . Table II shows
that, while our hard error analysis fully insures that the
output error will not exceed the designer specified error, the
probabilistic error analysis can almost guarantee that the
probability for the output error to lie in the specified error
will be higher than the specified probability. However, since
we have used Gaussian approximation during the analysis,
theoretically it is difficult to fully guarantee the error
probability to be bounded by a designer, even in our
experiments it works quite well. Therefore, we suggest that
the specified probability should be flexibly restricted.

V. Summary and Conclusions

We have presented an automated and efficient static
bit-width optimization methodology which is based on the
affine arithmetic model. While our AA based range analysis
can slightly reduce the integer part bit-width, the AA based
hard error analysis can dramatically reduce the fractional
bit-width. In addition, we have proposed the probabilistic
error analysis method which can further shorten the
bit-width. Our experimental results have proven that our
approach can explore a larger bit-width-to-error tradeoff.

However, we also note the limitations of our methodology.
First, we bear the same drawback as mentioned in [6] that
we assume that all the input variables are independent while
this is not always the case. The future work can model the
correlations explicitly from start. Second, our method lies at
the algorithm level which does not consider the hardware
sharing and hardware cost function. Our ongoing research
will further explore the solutions for these problems.

 References

[1] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth
analysis with application to silicon compilation,”
Proceedings of the SIGPLAN conference on Programming
Language Design and Implementation, June 2000.
[2] Mark L. Chang and S. Hauck, “Precis: A design-time
precision analysis Tool,” IEEE Symposium on
Field-Programmable Custom Computing Machines,
pp.229-238, 2002.
[3] M. L. Chang and S. Hauck, “Variable Precision Analysis
for FPGA Synthesis,” Nasa Earth Science Technology
Conference 2003.
[4] A. Nayak, M. Haldar, A. Choudhary and P. Banerjee,
“Precision and error analysis of MATLAB applications
during automated hardware synthesis for FPGAs,” Design
Automation & Test, March 2001.

[5] C. F. Fang and R. A. Rutenbar and M.Puschel and T.
Chen, “Towards efficient static analysis of finite precision
effects in DSP applications via affine arithmetic modeling,”
Design Automation Conference, 2003.
[6] C. F. Fang, R. A. Rutenbar, M. Puschel and T. Chen,
“Fast, accurate static analysis for fixed-point finite-precision
effects in DSP designs,” Proceedings of the International
Conference on Computer Aided Design (ICCAD’03).
[7] K. Kum and W. Sung, “Combined word-length
optimization and high-level synthesis of digital signal
processing systems,” IEEE Trans. on Computer-Aided
Design, Aug, 2001.
[8] D-U. Lee, A. A. Gaffar, O. Mencer, W. Luk, “MiniBit:
bitwidth optimization via affine arithmetic,” Proceedings of
the 42nd annual conference on Design automation.
[9] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point
optimization utility for C and C++ based digital signal
processing programs,” Workshop on VLSI and Signal
Processing, Osaka, 1995.
[10] N. Shirazi, A. Walters and P. Athanas, “Quantitative
analysis of floating point arithmetic on FPGA based custom
computing machines,” IEEE Symposium on FPGAs for
Custom Computing Machines, April, 1995.
[11] J. Stolfi and L.H. de Figueiredo, “An introduction to
affine arithmetic,” TEMA Tend. Mat. Apl. Comput., 4, Vol.3,
pp. 297-312, 2003.
[12] http://www.systemc.org
[13] D. Galloway, “The Transmogrifier C Hardware
Description Language and Compiler for FPGAs,” FCCM’95
[14] G. Doncev, M. Leeser and S. Tarafdar, “High-Level
Synthesis for Designing Custom Hardware,” Proc.
Field-Programmable custom Computing Machines, April
1998.
[15] B. L. Hutchings and B. E. Nelson, “Using General -
Purpose Programming Languages for FPGA Design,”
Proc.37th Design Automation Conference, June 2000.
[16] Mark Stephenson, “Bitwise: Optimization Bitwidths
Using Data-Range Propagation,” Master’s thesis.
Massachusetts Institute of Technology, May 2000.
[17] K. Bondalapati and V. K. Prasanna, “Dynamic precision
management for loop computations on reconfigurable
architectures,” IEEE Symposium on Field-Programmable
Custom Computing Machines, April 1999.
[18] W. Sung and K. I. Kum. “Simulation-based word-length
optimization method for fixed-point digital signal processing
systems,” IEEE Transactions on Signal Processing, vol. 43,
no.12, pp.3087-3090, December 1995.
[19] J. Patterson, “Accurate Static Branch Prediction by
Value Range Propagation,” Proc.of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pp. 67 – 78, June 1995.
[20] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I.
Bolsens, “A methodology and design environment for DSP
asic fixed-point refinement,” Design, Automation and Test in
Europe Conf., 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

