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Abstract – Ideally, bit-width analysis methods should be able to 
find the most appropriate bit-widths to achieve the optimum 
bit-width-to-error tradeoff for variables and constants in high 
level DSP algorithms when they are implemented into 
hardware. The tradeoff enables the fixed-point hardware 
implementation to be area efficient but still within the allowed 
error tolerance. Unfortunately, almost all the existing static 
bit-width analysis methods are Interval Arithmetic (IA) 
based that may overestimate bit-widths and enable fairly 
pessimistic bit-width-to-error tradeoff. We have developed an 
automated and efficient bit-width optimization methodology 
that is Affine Arithmetic (AA) based. Experiments have proven 
that, compared to the previous static analysis methods, our 
methodology not only dramatically reduces the fractional 
bit-width by more than 35% but also slightly reduces the 
integer bit-width. In addition, our probabilistic error analysis 
method further enlarges the bit-width-to-error tradeoff.

I. Introduction 

 Most of the computational-intensive applications are 
initially developed with high-level standard programming 
languages where the variables and constants are possible to 
be described in high precision data types. While being 
implemented into hardware subjected to fixed-point 
restriction, these variables and constants prototyped in high 
precision must be re-defined to the fixed-point. The 
translation process from full to limited precision must be 
optimized to tradeoff precision for silicon area, latency, 
power consumption and etc. Unfortunately, choosing the 
most appropriate bit-width is a non-trivial task. Moreover, it 
is too burdensome for designers to translate them manually.  

Many researchers have focused their interests in 
developing tools that may help decide the bit-widths 
automatically. One category of techniques is based on 
detailed simulations. Kum et. al. [7] have used Monte 
Carlo-style statistical simulation to optimize word-length 
iteratively. This technique can get the optimum results but is 
quite inefficient since there is often a huge searching space 
to simulate with a full coverage of input vectors. Chang et al. 
[2] have developed a design-time tool, Precis, which 
provides designers with area-precision information by doing 
slack analysis and aids the designer in focusing their manual 
precision optimization. They have also presented a method 
that broadens their work in [2] to explore area-to-error 
tradeoffs by precision steering [3]. However their technique 
is semi-automated. The other category of techniques is based 

on static analysis. Stephenson et. al. [1] have formulated the 
bit-width analysis as a value range propagation problem and 
introduced a compiler Bitwise that extracts the value of each 
variable by seamlessly performing bi-directional propagation, 
but their compiler is limited to integers and pointers. Nayak 
et. al. [4] have used a precision analysis based on the method 
presented in [1] to infer the minimum number of bits for the 
integer part and a combined precision and error analysis to 
infer the fractional bit-width. However, their algorithm is 
restricted by the assumption that the number of fractional 
bits is constant for all variables.  

We observe that almost all the existing static bit-width 
optimization methods are Interval Arithmetic(IA) based, 
which may lead to the pessimism because the overestimation 
accumulates exponentially along the computation path. Fang 
et. al. [5][6] have introduced the Affine Arithmetic model 
into the verification of the finite-precision effects in DSP 
applications. Inspired by their work, we have extended the 
AA model to the bit-width analysis. A closely related but 
independent research has been simultaneously conducted by 
Lee et. al. [8], but their method uses the adaptive simulated 
annealing algorithm to find the optimum number of fraction 
bits, which is quite time consuming. Compared to their 
methodology, ours has the following features: 

• We use the hard error analysis to insure the output error 
not to exceed the designer-specified error tolerance.  
• In most of the DSP designs, the designer allows certain 
degree of error rate, which motivates us to explore a larger 
bit-width-to-error tradeoff than using hard error analysis. 
Our probabilistic error analysis almost insures that the 
probability for the output error to lie in the specified error 
tolerance is higher than the designer specified 
parameter λ .
• Decision time is greatly reduced since our approach 
iterates only once.   
• Our approach performs on the algorithm level, followed    
by high-level synthesis which is based on the bit-width 
optimization results. Therefore, our approach can be easily 
incorporated into the existing synthesis tools. 
 The remainder of the paper is organized as follows: 

Section II briefly gives the background of IA and AA models. 
Section III goes through our bit-width analysis methodology 
in detail. Section IV gives and analyzes the experimental 
results. Section V draws the conclusion of the work.  

                II. Background



  Interval arithmetic has been widely used in the range 
propagation analysis. However, IA model could lead to 
overestimations and such overestimations are exponentially 
accumulated along a computation path. As a consequence, 
the final intervals may be too large to be useful. 
  Affine Arithmetic (AA) model can overcome the 
overestimation explosion problem. In AA model, the 
uncertain variable x is expressed as: 

0 1 1 2 2ˆ n nx x x x xε ε ε= + + + ⋅⋅⋅ + ,   1 1iε− ≤ ≤                                                       
where 0x is the central value of the affine form of x̂ , iε is 
an independent noise symbol multiplied by the 
corresponding coefficient ix . Along the computation path, 

one symbol of iε may contribute to be uncertainties of two 
or more variables. When these variables are combined, the 
uncertainties may be cancelled out so as to make the results 
of range propagation analysis tighter than that of IA model.  

In order to present the mathematical reasoning behind 
our methodology, we briefly introduce the AA based 
operation models. Assume that there are variables ,x y and 
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cE are the error terms generated from quantization. Each of 

the error terms is expressed in the affine form as eE ε= ∆ ,

where ∆  is the upper bound for the quantization error. If 
we denote f as the bit-width for the fractional part, we 
have 2 f−∆ = in the case of truncation and ( 1)2 f− +∆ =  in 
the case of rounding. The noise symbol eε  indicates the 
uncertainty of the quantization error.  

The AA operation models for the addition, subtraction 
and multiplication are shown below. With the AA form 
operation models, the results are also in affine forms. The 
error that occurs after each operation is linear with respect 
to errors of its two operands and it shifts with a new 
quantization errorσ .
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is called the total deviation of x .

III. Bit-width Analysis Methodology 

Figure 1 gives a brief overview of our methodology. First, 
we accept the designer-specified constraints via a 
user-interface, and convert the input range into the AA 
format. Second, we run the program "symbolically" to get the 
output results in AA form. Third, we use the range analysis to 
determine the range of each variable (or constant) and the 
corresponding integer bit-width. The subsequent error 
analysis will return the optimized fractional bit-width. 

Convert IA Range to AA
Expression

    Run Program “Symbolically”

Probabilistic
Error Analysis

Probabilistic Error
Analysis

Yes

No

User
Interface

Range of Input Variables and
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Range Analysis

Integer Variable Bitwidth

Integer Part Bitwidth of
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Hard
Error

Analysis

           Fig. 1. Bit-width Optimization Flow 
Information Provided by Designer: 

To limit the complexity, we implemented our method 
using the multiple-input to single-output computational 



model. The designer provides the following 4 types of 
information using the interface shown in Figure 2: (1) the 
value range of all the input variables; (2) the output variable; 
(3)the absolute maximum error tolerance specE at the output; 
(4)optionally the probability parameter λ .

.      
Fig. 2. The User Interface    

Convert IA Range to AA Range:  
Since the ranges of input variables given by designers are 

in the form of interval range, for example, an input 
variable x is ranged in[ , ]a b . We first convert them to the AA 
form, so x  is expressed as ( ) / 2 ( ) / 2,xx a b a b ε= + + +
( 1 1xε− ≤ ≤ ), and xε  is the noise symbol introduced for 
representing the uncertainty of x .

Run Program “Symbolically”: 
We “symbolically” traverse the whole program from the 

entry to the exit in forward direction. Assume that there are 
totally N floating-point variables and constants whose upper 
quantization error bounds are expressed 
as 1 2 3, , N∆ ∆ ∆ ⋅⋅⋅ ∆ , respectively. When they are 
transformed to be fixed-point, the actual quantization errors 
incurred at each of them are expressed in affine forms 
as 1 1 2 2 3 3, , N Nε ε ε ε∆ ∆ ∆ ⋅⋅⋅ ∆ . With the operation models 
outlined in the background part, we get the results in 
symbolical affine form for all variables and floating-point 
constants. 

There are some rules of running the program: 
•For loop construct whose loop count has been 
prescribed, the variables in the body of the loop are 
calculated by thoroughly traversing the loop.  

•For a variable that is condition dependent, the 
variable’s range is refined based on the outcome of the 
conditional branch. For example, in Figure 3 the 
variable x  is condition dependent, so at the output 
of the condition branch( 0?x ≤ ), the range of x is 
refined with newly introduced affine form 
expressions. 

    •We do not do backward propagation because the affine 
form itself is not an efficient form for performing 
backward propagation.  

 Fig. 3. Range Refinement of Condition Dependent Variable 
             
Range Analysis: 

After “symbolically” running the program, we get all the 
variables and floating-point constants in the affine forms. 
By Equation (1), their ranges are bounded. Hence, the 
bit-width of the integer variables, the bit-width for the 
integer part of the floating-point variables and the 
floating-point constants are determined. Assume that the 
quantity x (either variable or constant) is translated to be 
fixed-point with m  bits to be its integer part bit-width, we 
obtain the minimum m by the following expression: 

12 1m x− − ≥                                  (2) 

Error Analysis: 
After “symbolically” running the program, we also get the 

error of the output variable. This output error is in the affine 
form as  

1 1 1 2 2 2 3 3 3output N N NA A A Aε ε ε ε∆ = ∆ + ∆ + ∆ + ⋅⋅ ⋅+ ∆     (3) 
' ' ' '

1 1 1 2 2 2 3 3 3 N N NA A A Aε ε ε ε= ∆ + ∆ + ∆ + ⋅⋅⋅ + ∆  (4) 

1 1 2 2 3 3 N NA A A A≤ ∆ + ∆ + ∆ + ⋅⋅⋅ + ∆           (5) 

Each independent term i i iA ε∆  in Equation (3) tells 
the contribution that a floating point variable or constant's 
quantization error makes to the overall error at the output, 
where iA  is an affine form expression. Since the 
designer-specified output error tolerance specE  is the upper 

bound of output∆ , we have: 

output specE∆ ≤                                   (6) 
And we assign non-negative weights to each term in 

Equation (5): 
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Through Equations (5) (6) and (7), once iW  is known, 
we can infer i∆ . At this moment, we simply assign each 

term with a equal weight, so /i i specA E N∆ ≤          (9) 

Now we have /( )i iEspec N A∆ ≤ ⋅ , and each variable’s 



fractional bit-width 1 2, ,... Nf f f can be decided: 
If the quantization is real rounding based,  

( 1)
22 log 1( 0)if

i i if f− + ≤ ∆ ⇔ ≥ − ∆ − ≥           (10) 
if the quantization is truncation based, 

22 log ( 0)if
i i if f− ≤ ∆ ⇔ ≥ − ∆ ≥               (11) 

For the experimental results presented in this paper, we 
employ real rounding. 
  To further explore the bit-width-to-error tradeoffs, after 

1 2, ... Nf f f  are obtained, we use the following “greedy 
algorithm” to optimize the bit-width: 

           

  We call the aforementioned fractional bit-width analysis 
method as the “hard” error analysis because it fully insures 
the output error not to exceed the designer-specified error 
tolerance. 

However, we note that in Equation (4) when N  gets 
large, it is quite unlikely for all the '

iε to simultaneously take 
extreme values and push the output error to its upper bound. 
[6] has introduced a probabilistic model to estimate the error 
of a affine form variable. Our probabilistic error analysis 
method is partially based on their idea. 

Since we have i i i i i iA A A k∆ = ∆ = ⋅⋅⋅ = ∆ = , so 
Equation (4) depicts a sum of many statistically independent 
and identically distributed terms. By the central limit 
theorem, the Equation (4) approaches a Gaussian CDF as the 
parameter N  increases. We have 

(0,1)output

N Variance

∆
→ Ν                         (12) 

Where (0,1)Ν  is a standard normal distribution, and the 
2 2/ 3 ( ) / 3i iVariance k A= = ∆                   (13) 

We have the designer-specified parameter λ , which 
bounds the probability that the output error lies within the 
designer-specified error tolerance. For example, if the 
designer sets 0.999λ = , then the chance for the output error 
to exceed specE  is only once in 310  times of simulation. 

( )output specprob E λ∆ ≤ ≥                       (14) 

The probabilistic error analysis is quite straightforward: 
Step 1:

Look up the Gaussian approximation statistical table 
according toλ . Since output∆ and N  are known, we can get 

the variance and k by Equation (12). 
Step 2: 

Determine i∆ by Equation (13), so if can be determined.  

        IV. Experimental Results and Analysis 

We use an example to prove the strength of our 
methodology. The signal flow of a butterfly part in IDCT is 
shown in Figure 4 and such kinds of computations are 
common in DSP. To explain explicitly, the data flow graph 
is shown in Figure 5. We set 1Const = 2Const = 2 / 2 . 
Since C/C++ is the most popular general purpose language 
[13-15], the algorithm is initially described in C++ with all 
the variables and constants set to be in 64-bit long double 
precision.  

X1

X2

Adder1

Const1

-1Mult1 Sub1

Const2
Y2

Y1

Adder2

Fig. 4. Signal Flow Graph

 We apply our bit-width analysis methodology to this 
example. We first provide the value range of all the input 
variables 1X and 2X : 1 [ 128,127]X ∈ − and 2 [ 128,127]X ∈ − ,
then specify the maximum error tolerance at 2Y to be 1.0. In 
probabilistic error analysis, the probability λ is 0.999.  
We compared our bit-width optimization results with the 
results generated from using the method presented in [4] 
which is considered so far as the best fully automated IA 
based static bit-width analysis approach to optimize the 
word-length for the algorithms described in MATLAB.  

X1 X2

Adder1

Mult1

Const1

Sub1

X1

Const2

Y2

           Fig. 5. Data Flow Graph  

Bit-width optimization results and Analysis: 

1. Sort 1 2, , ... Nf f f  and map them to a new array [ ]X N

according to their decreasing order.  

  2.  for ( j=0;j++j<N)  
{
    for ( i=0;i++;i<N) 
      { 

         ( [ ] 1)

1

2
N

X i
residue

i

E Espec − +

=

= − ;

      }       
    ( [ ] 1) ( [ ] 1)2 2 ( / );X j X j

residue KE A− + − += +

  // assume that kf  is mapped to [ ]X j

  Recalculate [ ]X j  Recalculate kf ;    
  } 



                     TABLE I   
                Bit-Width Analysis Results 

  Table I lists the bit-width analysis results. For the integer 
part, we see that at nodes 1Sub and 2Y , the IA based range 
analysis cannot consider the range cancellation among 
variables such that the pessimistic results are occurred. With 
our AA based method, the integer bit-width can be 
optimized. Considering the efficiency reflected by this 
simple example, it is predicted that in a large scale 
computation where many variables may have correlations, 
our method can save considerable integer bit-width. For the 
fractional part, we see that IA based bit-width analysis 
returns a large overestimation in terms of the bit-width. At 
most of the nodes, our method results in much less 
bit-width than the IA method. However, we notice that at 
the nodes 1Const  and 2Const  our method results in a 
little larger or equal bit-width compared to the IA based 
method. Note that in the current stage we simply assign the 
same weight to each node, but actually we can adjust the 
weights. For example, we assign larger weights to the nodes 
who need more bit-width, such as 1Const  and 2Const , and 
the bit-width for these nodes can be reduced while the 
bit-width of other nodes only suffer slight increase.  

   With the similar approach used for the first example, we 
have experimented on a 4th order polynomial and a FIR 
low-pass filter to test our methodology. The polynomial 
equation in our benchmark is 4 3 2 1y x x x x= + + + + , where 
x is initialed as a floating point variable and [ 16,15]x ∈ − .
The FIR filter is implemented according to the architecture 
shown in Figure 6, where we set all nX to be in the floating 
format, [ 64,63]nX ∈ −  and the floating constants a0 to a4 
to be in long format obtained from the command firpm() in 
MATLAB. For each example, we specify the error tolerance 
to be 1.0. 

        Fig. 6.  Architecture of the FIR filter  

The average bit-widths for the fractional part of these 
benchmarks are listed in Figure 7. They are normalized with 
respect to the IA based fractional bit-width. We see that with 
our hard error analysis, we can achieve a more than 35% 
resource saving in terms of the bit-width for the fractional 

part compared to the IA based fractional bit-width analysis. 
Therefore, our method has achieved a much larger 
bit-width-to-error tradeoff than previous IA based method. 
In addition, with our probabilistic error analysis, the 
bit-width can be even reduced by 50%. As we gradually 
release the probabilistic restriction, the tradeoff keeps on 
going upwardly.  

       Fig. 7. Average Bit-width for Fractional Part  

Verification: 
To verify the correctness of our method, for the hard 

error analysis, we check whether the maximum output error 
lies within the specified error tolerance after implementing 
the algorithms into hardware that is subjected to fixed-point 
restriction. For the probabilistic error analysis, we check that 
whether the probability for the output error to lie in the 
specified error tolerance can be higher than the probability 
specified by the designer. We execute the program written in 
C++ with 32 10×  random input data sets that are uniformly 
distributed within their ranges. Then we modify the C++ 
programs linking with the compiled SystemC library, set the 
quantization option to be real rounding and set each variable 
to be fixed-point data type with the bit-width calculated by 
our method. We use the same input data sets to get the 
results. We compare the results to obtain the simulated 
maximum output error and the simulated probability that the 
error lies in the specified error. The experimental results for 
all the examples are shown in Table II. 
                   TABLE II 
                   Verification Results 

Test- 
bench 

Bit-width 
analysis 
methods 

Simulated 
output  
error 

Specified 
probability 
λ

simulated 
probability 

'λ
IA based 0.02 N/A 1 

0.22 N/A 1 
0.47 0.99 1 

Example1 

AA based 
0.33 0.999 1 

IA based 0.09 N/A 1 
0.15 N/A 1 
0.58 0.99 1 

FIR 
filter 

AA based 

0.58 0.999 1 
IA based 0.88 N/A 1 

0.93 N/A 1 
1.10 0.99 0.999 

4thorder 
Poly- 
nomial AA based 

0.95 0.999 1 
  In Table II, the 3rd column gives the simulated maximum 



output error. The 4th column gives the parameter λ , which is 
the designer-specified probability for the output error to lie in 
the specified error tolerance. Note that when the parameter is 
not available (N/A), we use the hard error analysis. The 5th

column gives the simulated probability 'λ . Table II shows 
that, while our hard error analysis fully insures that the 
output error will not exceed the designer specified error, the 
probabilistic error analysis can almost guarantee that the 
probability for the output error to lie in the specified error 
will be higher than the specified probability. However, since 
we have used Gaussian approximation during the analysis, 
theoretically it is difficult to fully guarantee the error 
probability to be bounded by a designer, even in our 
experiments it works quite well. Therefore, we suggest that 
the specified probability should be flexibly restricted.  

V. Summary and Conclusions 

We have presented an automated and efficient static 
bit-width optimization methodology which is based on the 
affine arithmetic model. While our AA based range analysis 
can slightly reduce the integer part bit-width, the AA based 
hard error analysis can dramatically reduce the fractional 
bit-width. In addition, we have proposed the probabilistic 
error analysis method which can further shorten the 
bit-width. Our experimental results have proven that our 
approach can explore a larger bit-width-to-error tradeoff. 

However, we also note the limitations of our methodology. 
First, we bear the same drawback as mentioned in [6] that 
we assume that all the input variables are independent while 
this is not always the case. The future work can model the 
correlations explicitly from start. Second, our method lies at 
the algorithm level which does not consider the hardware 
sharing and hardware cost function. Our ongoing research 
will further explore the solutions for these problems. 
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