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Abstract— Memory system presents one of the critical chal-
lenges on embedded system design and optimization. This is
mainly due to ever-increasing code complexity of embedded ap-
plications and exponential increase witnessed in the amount of
data they manipulate. As a result, reducing memory space oc-
cupancy of embedded applications is very important and will be
even more important in the next decade. Motivated by this ob-
servation, this paper presents and evaluates a compiler-driven
approach to data compression for reducing memory space occu-
pancy. Our goal in this paper is to study how automated com-
piler support can help in deciding the set of data elements to
compress/decompress and the points during execution at which
these compressions/decompressions should be performed. The
proposed compiler support achieves this by analyzing the source
code of the application to be optimized and identifying the or-
der in which the different data blocks are accessed. Based on
this analysis, the compiler then automatically inserts compres-
sion/decompression calls in the application code. The compres-
sion calls target the data blocks that are not expected to be used in
the near future, whereas the decompression calls target those data
blocks with expected reuse but currently in compressed form.

I. INTRODUCTION

Most embedded systems have very tight constraints on
memory space, power consumption, and performance. In par-
ticular, memory constraints are getting increasingly important
as both code complexity of embedded applications and amount
of data they process in a typical execution are increasing. Prior
research on memory systems proposed and evaluated several
techniques which can potentially improve the memory perfor-
mance of embedded software. Power and memory space effi-
ciency, on the other hand, took relatively less attention so far.

One of the techniques that can be used to reduce memory
space consumption (occupancy) of embedded applications is
data compression. The goal of data compression is to repre-
sent an information source (e.g., a data file, a speech signal,
an image, or a video signal) as accurately as possible using
the fewest number of bits. Previous research considered ef-
ficient hardware and software based data compression tech-
niques and applied compression to different domains. While
data compression can be an effective way of reducing memory
space consumption of embedded applications, it needs to be
invoked with care since performance and power costs of de-
compression (when we need to access data stored currently in
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the compressed form) can be overwhelming. Therefore, com-
pression/decompression decisions must be made based on a
careful analysis of data access pattern of the application.

Our goal in this paper is to study how automated compiler
support can help in deciding the set of data elements to com-
press/decompress and the points during execution at which
these compressions/decompressions should be performed. The
proposed compiler support achieves this by analyzing the
source code of the application to be optimized and identifying
the order in which different data blocks are accessed. Based on
this analysis and data reuse information, the compiler then au-
tomatically inserts compression and decompression calls in the
application code. The compression calls target the data blocks
that are not expected to be used in the near future, whereas
the decompression calls target those data blocks with expected
reuse but currently in compressed form. We discuss our com-
piler algorithm in detail and explain how it operates in prac-
tice. In providing compiler support for data compression, we
want to achieve two objectives. First, we want to enable mem-
ory space savings without the involvement of the application
programmer; that is, the programmer gets the benefits of re-
ducing the memory space consumption without any effort on
her part. Second, we want to minimize the potential impact of
compression on performance. To do this, our automated ap-
proach makes use of data reuse analysis. It needs to be empha-
sized that in this paper we do not propose a new data compres-
sion technique. Instead, we demonstrate how an optimizing
compiler for embedded systems can schedule data compres-
sions and decompressions intelligently to minimize memory
space occupancy at runtime while also minimizing the associ-
ated performance overheads.

The remainder of this paper is structured as follows. In the
next section, we give a discussion of the related work on com-
pression. In Section III, we define concept of memory space
consumption (occupancy). In Section IV, we present our com-
piler algorithm. Finally, we conclude the paper in Section V
with a summary.

II. RELATED WORK

Compression techniques have been used for both program
code and application data to reduce the memory footprint and
the energy consumption. RISC processors have been the main
focus for code compression techniques. To reduce the size
of a program’s code segment, [9] uses pattern-matching tech-
niques that identify and coalesce together repeated instruction
sequences. A RISC system that can directly execute com-



Fig. 1. An example memory space consumption curve and MMO and AMO
metrics.

pressed programs is presented in [17]. VLIW (Very Long In-
struction Word) processors are now being considered in this
area as well. Ros and Sutton [15] present code compression
algorithms applied to instruction words. Profile-driven meth-
ods that selectively compress code segments in VLIW archi-
tectures have also been proposed [18, 10]. Code compression
schemes for VLIWs that use Variable-to-fixed (V2F) coding
was investigated by [16, 19]. Variable-sized-block method
for VLIW code compression has been introduced by Lin et
al [12]. Data compression has been used to reduce storage
requirements, bus bandwidth, and energy consumption in the
past [1, 5, 6]. In [5], a hardware-assisted data compression for
on-the-fly data compression and decompression has been pro-
posed. In their work, compression and decompression takes
place on the cache-to-memory path. Lee et al [11] use com-
pression in an effort to explore the potential for an on-chip
cache compression to reduce cache miss ratio and miss penalty.
Abali et al [1] investigate the performance impact of hardware
compression. Compression algorithms that would be suitable
to use in a compressed cache have been presented in [2]. Apart
from memory subsystems, data compression has also been
used to reduce the communication volume. For example, data
compression has been proposed to reduce the communication
latency and energy consumption in sensor networks [7]. Our
work is different from all these prior efforts since we give the
task of management of the compressed data blocks to the com-
piler. In deciding the data blocks to compress and decompress,
our compiler approach makes use of the data reuse informa-
tion extracted from the array accesses in the application source
code.

III. MEMORY SPACE OCCUPANCY

Memory space occupancy indicates the memory space oc-
cupied by an application data at each point during the course
of execution. There are two important metrics associated
with memory space occupancy. The first one is the maxi-
mum memory occupancy (MMO), which gives the maximum
memory space occupied by data during the course of execu-
tion when considering all execution cycles. The second met-
ric is the average memory occupancy (AMO), which gives
the memory occupancy when averaged over all execution cy-
cles. Figure 1 illustrates these two metrics for an example
case. Note that, the drops in the memory occupancy curve
indicate either some application-level dead memory block re-
cycling or system-level garbage collection. Both these met-

rics, MMO and AMO, can be important targets for optimiza-
tions. MMO is critical since it captures the amount of memory
that needs to be allocated for the application if the applica-
tion is to run successfully without an out-of-memory excep-
tion. The AMO metric on the other hand can be important
in a multi-programming based embedded environment where
multiple applications compete for the same memory space.
The goal behind our compiler-directed approach is to reduce
both MMO and AMO for array/loop-intensive embedded ap-
plications. Note that, array/loop-intensive applications are fre-
quently used in embedded image/video processing.

IV. COMPILER ALGORITHM

Employing data compression in managing the memory
space of the system requires a careful analysis of the data
access pattern of the application being considered. This is
because using data compression in an untimely manner can
cause significant performance and power penalties. For exam-
ple, compressing data blocks with short reuse distances can
increase the number of decompressions dramatically. Also,
decompressing data blocks with long reuse distances prema-
turely can increase memory space consumption unnecessarily.
Therefore, one needs to be very careful in deciding both the set
of data blocks to compress/decompress and the points in exe-
cution to compress/decompress them. Clearly, this is an area
that can benefit a lot from automation. Our goal is to reduce
MMO and AMO as much as possible, with as little perfor-
mance penalty as possible.

A. Data Tiling and Memory Compression

Our scheme compresses only the arrays that can benefit from
data compression (this can be determined either through profil-
ing or via programmer annotations). These arrays are referred
to as the “compressible” arrays in this paper. We do not com-
press scalar variables or incompressible arrays (i.e., the arrays
that cannot benefit from data compression). Figure 2 shows the
organization of the memory space for supporting our compiler-
directed data compression approach. We divide the memory
space into three parts: compressed area, decompression buffer,
and static data area. The static data area contains scalar vari-
ables, incompressible arrays, and the directories for compress-
ible arrays. The data entities in the static area are statically
allocated at compilation time. The compressed area and the
decompression buffer, however, are dynamically managed at
runtime based on the compiler-determined schedule for com-
pressions and decompressions.

We divide each compressible array into equal-sized tiles
(blocks). An element of a tiled array X can be indexed using
the following expression: X [[�I]][ �J ], where �I is the tile subscript
vector, which indexes a tile of array X ; and �J is the intra-tile
subscript vector, which indexes an element within a given tile.
For example, Figure 3 shows an array X that has been divided
into nine (3 × 3) tiles, and each tile contains sixteen (4 × 4)
elements. X [[2, 3]] refers to the tile at the second row, third col-
umn; and X [[2, 3]][3, 2] refers to the data element at the third
row, second column of tile X [[2, 3]].

Figure 2 shows how we store tiled arrays in the memory.
For each compressible array X , our compiler creates a direc-
tory, each entry of which corresponds to a tile of array X , and



can be indexed using a tile subscript vector. Each entry in the
directory of array X , denoted as X [[�I]] (�I is a tile subscript vec-
tor), contains a pointer to the memory location where the cor-
responding tile is stored. As mentioned above, the directory of
each array is stored in the static data area of the memory space.

An array tile can either be compressed or uncompressed.
Uncompressed tiles are stored in the decompression buffer, and
compressed tiles are stored in the compressed area. The de-
compression buffer is divided into equal-sized blocks, and the
size of a block is equal to that of a tile. We use a free table
to keep track of the free blocks in the decompression buffer.
When we need to decompress a tile, we first need to allocate a
free block in the decompression buffer.

Compressed tiles are stored in the compressed area. The
memory in this area is divided into equal-sized slices. The size
of a slice is smaller than that of a block in the decompression
buffer. In our implementation, a slice is equal to a quarter of
a block. Although the size of tiles is a constant, the compres-
sion ratio depends on the specific tile. Therefore, the number
of slices required to store a compressed tile may vary from one
tile to another. In Figure 2, we can observe that the slices of the
same tile form a link table. Like in the case of the decompres-
sion buffer, the compressed area also has a free table keeping
all free slices.

Figure 4 shows the architecture of our system. When the
program starts its execution, all tiles are in the compressed for-
mat and are stored in the compressed area. A compressed tile
is decompressed and stored in the the decompression buffer by
a decompressor before it is accessed by the program. If this
tile belongs to an array that is not written (updated) by the cur-
rent loop nest, the compressed version of this tile remains in
the compressed area. On the other hand, if this tile belongs to
an array that might be written by the current loop nest, we dis-
card the compressed version of this tile, and return the slices
occupied by this tile to the free table of the compressed area.
When we need to decompress a new tile but there is no free
space in the decompression buffer, we select a set of old tiles
in the decompression buffer and discard them to make space
for the new tile. If a victim tile (the tile to be evicted) belongs
to an array that might be written by the current loop nest, we
must decompress and store its compressed version in the com-
pressed area before we evict its uncompressed version. On the
other hand, if this tile belongs to an array that is not written
by the current loop nest, we can discard the uncompressed ver-
sion of this tile without recompressing it. The important point
to emphasize here is that our approach is not tied to any spe-
cific compression/decompression algorithm, and the compres-
sor and decompressor can be implemented either in software
or hardware. In our current implementation, however, we use
only software compression/decompression.

It should be emphasized that data tiling is required by our
implementation of memory compression, not by the logic of
the application. Therefore, we do not require the program-
mer to be aware of data tiling. Our compiler automatically (in
a user-transparent manner) tiles every array that needs to be
compressed. Data tiling requires two mapping functions p and
q that map an original array subscript vector to a tile subscript
vector and an intra-tile subscript vector, respectively. That is,
we map X [�I] into X [[p(�I)]][q(�I)]. In this paper, given a tile

Fig. 2. Memory organization.

size T , we use the following mapping functions:

p((i1, i2, ..., in)) = (�i1/N1�, �i2/N2�, ..., �in/Nn�);
q((i1, i2, ..., in)) = (i1 mod N1, i2 mod N2, ..., in mod Nn);

where N1, N2, ..., Nn are magnitudes (extents) of each dimen-
sion subscript vector such that N1N2...Nn = T . When an ar-
ray is tiled, our compiler also rewrites the program statements
that access this array accordingly.

B. Loop Tiling

While data tiling transforms memory layout of each com-
pressible array, loop tiling (iteration space blocking) trans-
forms the order in which the array elements are accessed within
a loop nest. If used appropriately, loop tiling can significantly
reduce the number of decompressions invoked during the ex-
ecution of a loop nest. Figure 5 gives such an example. Fig-
ure 5(a) is the original code of a loop nest, which accesses a
600 × 600 array X . We apply data tiling to array X such that
the size of each tile is 100 × 100. Figure 5(b) shows the code
after data tiling. For illustration purposes, let us assume that
the decompression buffer can contain up to three tiles, and that
we use an LRU based policy to select the victim tiles in the
decompression buffer. We can compute that, during the exe-
cution of this loop nest, we need to invoke the decompressor
100 times for each tile. Hence, the decompressor is invoked
100 × 36 = 3600 times. By applying loop tiling to the loop
nest shown in Figure 5(b), we obtain the tiled loop nest in Fig-
ure 5(c). In this tiled code, loop iterators i and j are the inter-
tile iterators and the loop nest formed by them is referred to as
the inter-tile loop nest. Similarly, the iterators ii and jj are the
intra-tile iterators and the loop nest formed by them is referred
to as the intra-tile loop nest. During the execution of this loop
nest, the decompressor is invoked only 36 times, once for each
i, j combination. Loop tiling has been widely studied in the lit-
erature (e.g., [20]). Due to the space limitation we have, we do
not discuss the details of loop tiling. In the rest of this paper,
we assume that the loop nests in the application program have
been appropriately tiled according to the layout of the arrays
imposed by data tiling. It is to be mentioned however that our
compiler uses loop tiling for a different purpose than most of
the commercial and academic compilers.

C. Compression-Based Space Management

Our compiler inserts buffer management code at each loop
nest that uses the decompression buffer. For ease of discussion,



Fig. 3. Data tiling for array X.

Fig. 4. Architecture supporting memory
compression.

for i = 0 to 599
for j = 0 to 599 {

...X[i, j]...
}

for i = 0 to 5
for j = 0 to 5

for ii = 0 to 100
for jj = 0 to 10 {

...X[[i, j]][ii, jj]...
}

(a) Original loop nest. (c) With both data tiling and loop tiling.

for i = 0 to 599
for j = 0 to 599 {

...X[[�i/100�, �j/100�]][i mod 100, j mod 100]...
}

(b) With data tiling only.

Fig. 5. Code transformation for data tiling and loop tiling.

we use the following abstract form to represent a tiled loop
nest:

for �I = �L to �U {
T1(R1(�I), W1(�I));
T2(R2(�I), W2(�I));
... ...

Tn(Rn(�I), Wn(�I));
}

where �I is the iteration vector, �L and �U are the lower and upper
bound vectors for the loop nest. Ti (i = 1..n) represents an
intra-tile loop nest. Since we focus on the access pattern of
each array at a tile level, we treat each intra-tile loop nests as
an atomic operation. Ri(�I) is the set of tiles that might be read,
and Wi(�I) is the set of tiles that might be written in the intra-
tile loop nest Ti at the inter-tile iteration �I . Ri(�I) and Wi(�I)
can be computed as follows:

Ri(�I) = {Xk [[f
(i)
j (�I)]] | “... = ...Xk[[f

(i)
j (�I)]][...]...” appears in Ti},

Wi(�I) = {Xk [[f
(i)
j (�I)]] | “Xk[[f

(i)
j (�I)]][...] = ...” appears in Ti},

where Xk is an array accessed by Ti, and f
(i)
j (�I) is a map-

ping function that maps inter-tile iteration vector �I into a tile
of array Xi. Note that, we must be conservative in computing
Ri(�I) and Wi(�I).

For intra-tile loop nest Ti, let us assume:

Wi(�I) = {Xk1 [[f
(i)
1 (�I)]], Xk2 [[f

(i)
2 (�I)]], Xkj

[[f
(i)
j (�I)]]}

Ri(�I) − Wi(�I) = {Xkj+1 [[f
(i)
j+1(

�I)]], Xkj+2 [[f
(i)
j+2(

�I)]], Xkm [[f
(i)
m (�I)]]}.

Figure 6 shows a transformed loop nest augmented with the
decompression buffer management code. In the transformed
code, we use counter c to count the number of intra-tile loop
nests that have been executed up to a specific point. B is the
set of tiles that are currently in the decompression buffer. Be-
fore entering intra-tile loop nest Ti, we need to decompress all
the tiles in the set Ri(�I) ∪Wi(�I)−B. That is, all the the tiles
that will be used by Ti must be available in the uncompressed
format before we start executing Ti. When decompressing
a tile t, we may need to evict a tile from the decompression
buffer if there is no free block in the decompression buffer
(indicated by |B| = D). Each tile t in the decompression
buffer is associated with an integer t.r, indicating when this
tile will be reused in the future. Specifically, t1.r < t2.r
indicates that tile t1 will be reused earlier than t2. When
evicting a tile, we select the one that will be reused in the
furthest future. Each tile t in the decompression buffer also
has a flag t.w indicating whether this block has been written

since its last decompression. If this victim tile has been
written, we need to recompress this tile. Before entering
Ti, we also update the next reuse time (t.r) for each tile (t)
used by Ti. The next reuse time of tile t is computed using
t.r = c + di(t), where c is number of intra-tile loop nests that
have been executed, and di(t) is the reuse distance of tile t at
intra-tile loop nest Ti. The reuse distance of tile is the number
of intra-tile loop nests executed between the current and the
next accesses to this tile.

We use a compiler-based approach to compute di(t)–the
reuse distance of tile t at intra-tile loop nest Ti. In the fol-
lowing discussion, we explain how di(t) can be computed at
compilation time. The tiles in Ri(�I) ∪ Wi(�I), the set of tiles
used by the ith intra-tile loop nest at inter-tile loop iteration �I ,
can be divided into three types: (1) the tiles that will be reused
by another intra-tile loop nest at the same inter-tile iteration �I ,
(2) the tiles that will be reused by some intra-tile loop nest at
another inter-tile iteration �I ′ (�I ≺ �I ′), and (3) the tiles that will
never be reused. The set of tiles belonging to the first type, i.e.,
the tiles that will be reused at the same inter-tile loop iteration,
can be computed as follows:

Ui(�I) = (Ri(�I) ∪ Wi(�I)) ∩ Sn
j=i+1(Rj(�I) ∪ Wj(�I)),

where n is the number of intra-tile loop nests in the body of the
inter-tile loop nest. For each tile t ∈ Ui(�I), the reuse distance
can be computed as:

di(t) = j − i,

where j is the minimum integer greater than i such that t ∈
Rj(�I) ∪ Wj(�I).

For the tiles in the set Vi(�I) = (Ri(�I) ∪ Wi(�I)) − Ui(�I),
i.e., the tiles of types (2) and (3), our compiler computes their
reuse distances by executing the loop nest below (this loop nest
is generated by the compiler using Omega library [14],1 and it
is executed only once at the compilation time):

V = Vi(�I0); c = 0;

for �I = �I0 + (0, 0, ..., 0, 1)T to �IN {
c = c + n;
for i = 1 to n {

for each t ∈ V ∩ (Rj(�I) ∪ Wj(�I)) { dj(t) = c + j − 1; }
V = V − (Rj(�I) ∪ Wj(�I));

}
}
for each t ∈ V { di(t) = ∞; }

1The Omega Library is a tool that provides functions for manipulating sets
and relations that are defined using Presburger formulas. Presburger formu-
las are logical formulas that are built using affine expressions and univer-
sal/existential quantifiers.



for �I = �L to �U {
... ...

Ti(Ri(�I), Wi(�I));
... ...

}
(a) Original loop nest.

B — the set of tiles in the buffer;
D — the size of buffer;
t — the tile to be loaded;
⇒ procedure load(t) {
⇒ if(t �∈ B) {
⇒ if(|B| = D) {
⇒ for each v ∈ B such that v.r < c
⇒ v.r = ∞; // the next use time of v has been mispredicted
⇒ select v ∈ B such that
⇒ the directory for v is not marked and v.r is maximized;
⇒ if(v.w = 1) compress(v);
⇒ evict(v); B = B − {v};
⇒ }
⇒ decompress(t); B = B + {t};
⇒ }
⇒ t.r = c + di(t);
⇒ }

for �I = �L to �U {
... ...

⇒ c = c + 1;
⇒ // mark the tiles in Wi(�I) ∪ Ri(�I),
⇒ // preventing these tiles from being evicted.
⇒ mark directory entry(Xk1 [[f

(i)
1 (�I)]]);

⇒ mark directory entry(Xk2 [[f
(i)
2 (�I)]]);

⇒ ... ...

⇒ mark directory entry(Xkm [[f(i)
m (�I)]]);

⇒ // load tiles in Wi(�I)

⇒ load(Xk1 [[f
(i)
1 (�I)]]); Xk1 [[f

(i)
1 (�I)]].w = 1;

⇒ load(Xk2 [[f
(i)
2 (�I)]]); Xk2 [[f

(i)
2 (�I)]].w = 1;

⇒ ... ...

⇒ load(Xkj
[[f

(i)
j (�I)]]); Xkj

[[f
(i)
j (�I)]].w = 1;

⇒ // load tiles in Ri(�I)

⇒ load(Xkj+1 [[f
(i)
j+1(�I)]]);

⇒ load(Xkj+2 [[f
(i)
j+2(�I)]]);

⇒ ... ...

⇒ load(Xkm [[f(i)
m (�I)]]);

⇒ // unmark the tiles in Wi(�I) ∪ Ri(�I),
⇒ // allowing these tiles to be evicted.
⇒ unmark directory entry(Xk1 [[f

(i)
1 (�I)]]);

⇒ unmark directory entry(Xk2 [[f
(i)
2 (�I)]]);

⇒ ... ...

⇒ unmark directory entry(Xkm [[f(i)
m (�I)]]);

Ti(Ri(�I), Wi(�I));
... ...

}

(b) The transformed loop nest augmented with the decompression buffer management
code. The lines marked with “⇒” are inserted by our compiler.

Fig. 6. Code transformation employed by our compiler.

In the above compiler-generated code, �I0 and �IN are two vec-
tors such that |�IN − �I0| = N and �L � �I0 ≺ �In � �U , where
|�IN −�I0| denotes the number of loop iterations between �I0 and
�IN , and �L and �U are, respectively, the lower and upper bound
vectors for the target inter-tile loop nest for which we compute
the reuse distances. �I0 can be any vector between �L and �U .
Note also that integer N is a threshold, and n is the number
of intra-tile loop nests in the body of the inter-tile loop nest.
The reuse distances larger than nN are treated as infinity (∞).
Note that an inaccuracy in computing the reuse distance may
lead to performance penalties when the program is executed;
however, it does not cause any error in the program execution

(i.e., it is not a correctness issue), since we are conservative in
computing the set of of tiles that are used in each intra-tile loop
nest.

D. Exploiting Extra Resources

While the compiler approach presented above schedules
compressions and decompressions such that memory space
consumption is reduced without excessively increasing the
original execution time, we can still incur performance penal-
ties. This is because the decompression activities can occur on
the critical path of execution and this in a sense symbolizes the
tradeoff between memory savings and performance overheads
due to data compression. In this section, we show how we can
make use of extra resources available in our approach.

In a multiprocessor environment, we can reduce the perfor-
mance overheads incurred by data compression by overlapping
the execution of compression and decompression procedures
with that of the computing loop nest. Specifically, for each
inter-tile loop nest, our compiler generates two threads: the
computing thread and the buffer management thread. In a mul-
tiprocessor based environment, these two threads can be exe-
cuted in parallel. Figure 7 shows the code our compiler gen-
erates. Figure 7(b) gives the code for the buffer management
thread. For each intra-tile iteration Ti at each inter-tile itera-
tion �I , the buffer management thread decompresses each tile
t in the set Ri(�I) ∪ Wi(�I) if t is not in the buffer. The man-
agement thread increases t.c, the reference counter associated
with tile t, by one for each t ∈ Ri(�I) ∪ Wi(�I). The reference
counter associated with each tile t ∈ Ri(�I) ∪ Wi(�I) will be
decreased by the computing thread after the execution of intra-
tile Ti. A non-zero value in the reference counter t.c indicates
that tile t is being used or will be used by the computing thread,
and consequently, t cannot be evicted from the buffer. On the
other hand, when the buffer management thread needs to evict
a tile from the buffer to make space for a new tile, it can evict
any tile whose reference counter is zero (nevertheless, for bet-
ter performance, as discussed in Section C, we also require v.r
be maximized). After increasing the reference counter for each
tile in Ri(�I)∪Wi(�I), the management thread performs a V op-
eration on a counting semaphore named “Iteration”. The value
of this semaphore (Iteration.v) indicates the number of intra-
tile loop nests that the computing thread can execute without
being blocked. If the value of this semaphore is zero, the com-
puting thread cannot continue with its execution due to the fact
that some tiles required by the computing thread are not yet
ready in the buffer. After the V operation on semaphore “It-
eration”, the management thread starts to decompress the tiles
that will be used by the next intra-tile loop nest, without further
synchronization with the computing thread.

Figure 7(c) gives the code (with necessary instructions in-
serted by our compiler) for the computing thread. Before exe-
cuting each intra-tile loop nest Ti, the computing thread per-
forms a P operation on the semaphore “Iteration”. This P
operation blocks the computing thread if some tiles that will
be used by Ti are not ready in the buffer. In this case, the
computing thread has to wait until the management thread de-
compresses all the required data tiles. After executing intra-
tile loop nest Ti, the computing thread decreases the reference
counter for each tile used by Ti. As discussed above, if the



// definition of semaphore operations
Struct Semaphore {
int v;
ThreadQueue q;
}

P(s) {
s.v = s.v − 1;
if(s.v < 0)
block in s.q;

}

V(s) {
s.v = s.v + 1;
if(s.v ≤ 0)
unblock one thread in s.q;

}

// semaphores for synchronizing the
// computing and management threads
Iteration – counting semaphore,

Iteration.v is initialized to 0;
Counters – binary semaphore,

Counters.v is initialized to 1;

for �I = �L to �U {
for i = 1 to n {
c = c + 1;
for each t ∈ Ri(�I) ∪ Wi(�I) {
if(t �∈ B) {
if(|B| = D) {
repeat
S = {v | v ∈ B ∧ v.c = 0}

until S �= φ;
select v ∈ S such that
v.r is maximized

if(v.w = 1) compress(v);
evict(v); B = B − {v};
}
decompress(t);
t.c = 0; B = B ∪ {v};
}
t.r = c + di(t);
if(t ∈ Wi(�I)) t.w = 1;
P(Counters); t.c = t.c + 1;
V(Counters);
}
V(Iteration);
}

}

for �I = �L to �U {
P(Iteration);
T1(R1(�I), W1(�I));
P(Counters);
for each t ∈ R1(I) ∪ W1(I)
t.c = t.c − 1;

V(Counters);
... ...
... ...
P(Iteration);
Ti(Ri(�I), Wi(�I));
P(Counters);
for each t ∈ Ri(�I) ∪ Wi(�I)
t.c = t.c − 1;

V(Counters);
... ...
... ...
P(Iteration);
Tn(Rn(�I), Wn(�I));
P(Counters);
for each t ∈ Rn(I) ∪ Wn(I)
t.c = t.c − 1;

V(Counters);
}

(a) Semaphores and their operations. (b) The buffer management thread. (c) The computing thread.

Fig. 7. The buffer management thread and the computing thread generated by our compiler.

value of the reference counter of tile t is reduced to zero, we
allow the buffer management thread to reuse the memory space
occupied by t.

The management thread is blocked when it needs to decom-
press a new tile but the value of the reference counter for each
tile in the buffer is greater than 0 (that is, none of the tiles have
been used yet). In this case, the management thread has to wait
for the computing thread to release some tiles by reducing their
reference counters. If the computing thread is also blocked at
the P operation on semaphore “Iteration”, the system is dead-
locked. Fortunately, this deadlock cannot happen as long as
the following condition is satisfied:

D ≥ max
∀i,�I

|Ri(�I) ∪ Wi(�I)|, (1)

where D is size of the buffer (in terms of the number of
tiles). Note that, if this condition is not satisfied, the single-
threaded approach discussed in Section C cannot work prop-
erly, either. It is important to note that, in our approach, the
condition expressed by 1 is always satisfied.

V. CONCLUDING REMARKS

This paper presents a compiler-directed approach that in-
serts compression and decompression calls in the application
code to reduce maximum and average memory space con-
sumption. In this approach, the compiler analyzes a given ap-
plication code and extracts data reuse information at the data
block level. It then uses this information in deciding the set
of data blocks to be compressed/decompressed as well as the
points at which these actions need to be invoked. Our prelim-
inary results are encouraging and motivate further research on
compiler-directed data compression.
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