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Abstract – In real-time multimedia processing systems a
very large part of the power consumption is due to the data
storage and data transfer. Moreover, the area cost is often
largely dominated by the memory modules. The computa-
tion of the memory size is an important step in the process
of designing an optimized (for area and/or power) memory
architecture for multimedia processing systems. This paper
presents a novel non-scalar approach for computing exactly
the memory size in real-time multimedia algorithms. This
methodology uses both algebraic techniques specific to the
data-flow analysis used in modern compilers, and also recent
advances in the theory of integral polyhedra. In contrast with
all the previous works which are only estimation methods, this
approach performs exact memory computations even for ap-
plications with a large number of scalar signals.

1 Introduction

In real-time multimedia processing systems – including video and
image processing, medical imaging, artificial vision, real-time 3D
rendering, advanced audio and speech coding – a very large part
of the power consumption is due to the data storage and data
transfer. A typical system architecture includes custom hard-
ware (application-specific accelerator datapaths and logic), pro-
grammable hardware (DSP core and controller), and a distributed
memory organization which is usually expensive in terms of power
and area cost. Data transfer and memory access operations typi-
cally consume more power than a datapath operation. For instance,
fetching an operand from an off-chip memory for an addition con-
sumes 33 times more power than the actual computation; even a
transfer from an on-chip memory consumes about 4 to 10 times
more power than the addition itself [4]. Moreover, the area cost is
often largely dominated by memories. Hence, the optimization of
the memory architecture is a crucial step in the design methodol-
ogy for this type of applications. In deriving an optimized mem-
ory architecture, memory size estimation/computation is an im-
portant step in the data transfer and storage exploration stage. This
problem has been tackled in the past both in register transfer-level
(RTL) programs at scalar level [8, 11, 14] and in behavioral speci-
fications at non-scalar level [2, 7, 16, 17]. Good overviews of these
techniques can be found in [4, 10].

This paper presents a non-scalar method for computing exactly
the memory size in real-time multimedia algorithms (assuming
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the code is procedural). This approach uses both algebraic tech-
niques specific to the data-flow analysis used in modern compilers
[9], and recent advances in the theory of integral ( � -dimensional)
polyhedra. In contrast with previous works which utilize only ap-
proximate methods due to the size of the problems (in terms of
number of scalars and number of array references), this approach
obtains exact determinations even for applications significantly
large. Since the mathematical model is very general, this novel
approach is able to handle the entire class of “affine” specifications
(see Section 2), therefore practically the entire class of real-time
multimedia applications.

The paper is organized as follows. Section 2 explains the prob-
lem of memory size computation. The core of the paper – Sections
3 and 4 – presents the technical aspects of this novel approach.
Section 5 will briefly discuss implementation aspects and present
several experimental results. Section 6 will summarize the main
conclusions of this work.

2 The memory size computation problem

The (real-time) multimedia processing algorithms are typically
specified in a high-level programming language, where the code is
organized in sequences of loop nests having as boundaries linear
functions of the outer loop iterators, conditional instructions where
the conditions may be both data-dependent or data-independent
(relational and/or logical operators of linear functions of loop iter-
ators), and multidimensional signals which array references have
(complex) linear indices. This class of specifications is often re-
ferred to as affine. Sometimes, in image and video processing,
there may be also indices containing modulo operators, but these
situations can be brought into the affine specification class [4].

Real-time multimedia algorithms describe the processing of
streams of data samples. The source code of these algorithms can
be imagined as surrounded by an implicit loop having the � � � � as
iterator. Consequently, each signal in the algorithm has an implicit
extra dimension corresponding to the � � � � axis. These algorithms
often contain � � � 	 
 � � signals, i.e., signals produced (or inputs) in
previous data-sample processings, which are consumed during the
current sample processing. The delay operator “@” indicates such
delayed signals, the following argument signifying the number of
previous samples. The delayed signals must be kept “alive” during
several time iterations, i.e., they must be stored in the background
memory during one or several data-sample processings.

An illustrative example, derived from a motion detection algo-
rithm [4], is given below:
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The problem is to determine the minimum amount of memory
locations necessary to store the signals of a given multimedia algo-
rithm during its execution, or, equivalently, the maximum storage
occupancy assuming any scalar signal must be stored only during
its lifetime. The total number of scalars in the algorithm above is
3,749,063. But due to the fact that scalars having disjoint lifetimes
can share the same memory location, the amount of storage can be
much smaller than the total number of scalar signals. Actually,
only 33,284 memory locations are necessary for this example.

It must be emphasized that image and video processing appli-
cations contain deeper loop nests with iterators having typically
large ranges, resulting in extremely large numbers of scalar sig-
nals. Enumerative techniques or RTL approaches based on the left
edge algorithm [8], although appealing by means of simplicity, are
too computationally expensive in such cases, often prohibitive to
use. For multimedia algorithmic specifications, the algebraic tech-
niques are the only hope.

All the past works, for instance [16, 2, 17, 7], achieved only
a memory size estimation, rather than an exact size computation.
The algorithm presented in this paper is the first one – to the best of
our knowledge – able to compute exactly the storage requirements
for multimedia applications, even when the number of scalar sig-
nals is very large. The basic reasons of its efficiency are: (a) the
use of a relatively recent mathematics advance – the polynomial-
time decomposition of an 
 -dimensional polyhedron into an alge-
braic sum of unimodular cones [3], (b) the efficient decomposition
of the array references of the multidimensional signals in disjoint
linearly bounded lattives (LBL’s) [15], and (c) an efficient mech-
anism of pruning the code of the algorithmic specification.

Note that the problem of organizing the signals in a distributed
(hierarchical) memory architecture, often referred to as the prob-
lem of memory allocation is beyond the scope of this paper.

3 Computation of array reference size

Definitions A polyhedron is a set of points � � � � satisfying a
finite set of linear inequalities: � � � �  � � ! " # � $ % & ,
where A  � ' ( � and b  � ' . If � is a bounded set, then �
is called a polytope. If �  ) � , then � is called an integral
polyhedron/polytope. The set � *  � ' ! * � " � + �  ) � & is
called the lattice generated by the columns of matrix A .

Each array reference , - . / 0 � / + 1 1 1 + � � 2 3 # # # - . ' 0 � / + 1 1 1 + � � 2 3 of
an � -dimensional signal , , in the scope of a nest of 
 loops
having the iterators � / + 1 1 1 + � � , is characterized by an iterator

space and an index space. The iterator space signifies the set of
all iterator vectors i = 0 � / + 1 1 1 + � � 2  ) � in the scope of the ar-
ray reference. The index space is the set of all index vectors x =0 . / + 1 1 1 + . ' 2  ) ' of the array reference. When the indices
of an array reference are linear mappings with integer coefficients
of the loop iterators, the index space consists of one or several lin-
early bounded lattices (LBL) [15] – the image of an affine vector
function over the iterator polytope " # 4 $ % :� � � 5 # 4 6 7  ) ' ! " # 4 $ % + 4  ) � & (1)

where x  ) ' is the index vector of the � -dimensional signal and
i  ) � is an 
 -dimensional iterator vector (see the example below).

In order to address the computation of the memory size nec-
essary for the execution of a multidimensional signal processing
algorithm, a simpler problem must be addressed first: the compu-
tation of the number of distinct scalars in an array reference, that
is, how many locations are needed to store one array reference.

If the rank of matrix T is equal to its number of columns, then
the vector function � � 5 # 4 6 7 between the iterator and index
spaces is proven to be a one-to-one mapping [2], and the compu-
tation of the number of distinct signal indices (i.e., the amount of
memory necessary to store the scalars covered by the array refer-
ence) is hence reduced to counting the number of iterator vectors
or, equivalently, the number of lattice points (i.e., points having in-
teger coordinates) in the iterator polytope " # 4 $ % in (1). In such
a situation, a computation technique based on Barvinok’s decom-
position of a simplicial cone into unimodular cones [3] is used.

An example is given below, illustrating both the concepts and
the technique. Note that due to space limitation, several details of
the computation had to be skipped, along with part of the theo-
retical justifications. However, this example succeeds to illustrate
well enough the main steps of the computation flow. Moreover, it
will show clearly why this approach can handle algorithmic spec-
ifications typical to multimedia applications.

Example 1: 8 9 : 0 � � ; < � = > < � 6 6 28 9 : 0 ? � ; < ? = @ � A A ? = B � 6 C < ? 6 6 2# # # D - @ � 6 E ? 3 - F � 6 ? 3 # # #
How many memory locations are necessary to store the array

reference D - @ � 6 E ? 3 - F � 6 ? 3 ? The linearly bounded lattice (LBL)
corresponding to this array reference is � � � 5 4 6 7 " 4 $ % & =GHHHI HHHJ
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(u=0 here) and the problem is equivalent to computing the size
of this set. Since post-multiplying T with the unimodular matrix

/
Y � K B Z EZ B @ N results in 5 # Y � K Z ;B > Z E N , the rank

of matrix T is 2 – equal to its number of columns; therefore, the
vector function x=Ti + u is a one-to-one mapping. The compu-
tation of the number of scalars covered by D - @ � 6 E ? 3 - F � 6 ? 3 is
equivalent to counting the number of lattice points in the iterator[

A square matrix with integer elements having the determinant equal to \ 1.
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Figure 1: Convex polytope representing the iterator space in Ex-
ample 1

polytope � � � � shown in Fig. 1. This latter operation is done as
explained below. But, first, a few definitions are necessary.
Definitions Let � � � � � � � � � � 	 � be linearly independent inte-
ger vectors. The (rational polyhedral) cone generated by the rays

� � � � � � � � � is the set
� 
 � � � � � � � � � � �  � � � � � � � � � � � � � . For

instance, the set of points inside the angle � � � � is a 2-dimensional
cone generated by the rays � � � � � � �

�
and � � � � � � �

�
(see

Fig. 1). To each vertex of a polyhedron corresponds a support-
ing cone. The supporting cone of the vertex � � (Fig. 1), denoted� 
 � � � , is the one generated by the rays � � and � � . A cone is called
unimodular if the matrix of the rays � � � � � � � � � is unimodular (i.e.,
its determinant is 	 � ).

Step 1 Find the vertices of the iterator polytope � � � � and their
supporting cones.

Given the inequalities  � � � � � � � � � � � � � � � � � � � �
defining the iterator space, the vertices and the rays are computed
using the reverse search algorithm [1]. The supporting cones cor-
responding to the vertices � � � � � � � � 
 of the iterator polytope, as
well as their generating rays shown below as column vectors, are:� 
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Step 2 Apply Barvinok’s algorithm [3] to decompose the support-
ing cones into unimodular cones.

The first two cones in our example are not unimodular. Their
decomposition is given below, without any additional explanation
due to lack of space:� 
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Step 3 Find out the generating function of each supporting cone.

The above decomposition is performed since any unimodular
cone

� 
 � � has associated a generating function [3] of the form� 
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� �� � 
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where � � � � � � � (since a vertex � 
 � � � � has two coordinates
� , � in this case), and the product is over all the generating rays
� � . For instance, if the vertex of the cone is � � � � 
 � � � � then� � � � � � � � � ; if the ray � � � � � � �

�
then � � � � � �

� � . The gen-
erating function of any cone is obtained making the summation of
the functions of all the unimodular component cones. Therefore,
from (2), the generating function of the cone
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With similar computations, the generating functions for the other
supporting cones are:� 
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The sum of these rational functions yields the generating func-

tion
�

of the whole quadrilateral in Fig. 1.

Step 4 Compute the number of lattice points from the generating
function

� � � � � 
 � � � of the whole polytope.

In order to obtain a one-variable generating function
�

, we

make the substitution � � � � � , where � is an integer vector cho-

sen such that no dot product of � with any generating ray is zero

[6]. In this example, we choose � � � � � � �
�

(there is an algo-

rithm for this as well). With the substitution � � � � � � � � �
, the

generating function of the iterator polytope becomes:�  !" ! # $ % � & " ! # $ & ' !" ! # $ % � & " ! # $ & ' $ % (" ! # $ & () $ % (" ! # $ % ( & " ! # $ & ' $ (" ! # $ % ( & " ! # $ & ' $ *" ! # $ % � & (
After eliminating the negative exponents in the denominators, and
after factorizing � � � , we substitute � � + � � , obtaining rational
terms of the form , - . /. 0 1 - . / , where � 
 + � and 2 
 + � are polynomials,
and � � � is the dimension of the iterator space:3 � � � 4  ! " 54 (  � � 4  ! " 54 (  !4 ( � � � 4  ! " (4 ( � 4  # "  � � 4  ! " 64 ( � 4  # "  � 4  ! " 74 (

If � 
 + � � � � � � � + � � � + � � � � � and 2 
 + � � � � � � � + � � � + � � � � � ,
the coefficients of the quotient � 
 + � 8 2 
 + � � 9 � � 9 � + � 9 � + � � � � �
can be obtained recursively as follows [6]:9 � � � �� � and 9 : � �� � 
 � : � � � 9 : � � � � � 9 : � � � � � � � � : 9 � � for ; � �

The algebraic sum of the coefficients 9 � (since here the space
dimension is 2) after the polynomial divisions in all the terms of�

is the number of lattice points [3]. In this example, the 6 coef-
ficients 9 � (one for each term of

�
) are  � $ � � $ � � � �< � � 
 =< � � > � .

Their sum yields 16, which is indeed the number of lattice points
inside (or on the border of) the iterator polytope in Fig. 1, and it
is also the number of memory locations to store the array refer-
ence % � � � � $ �

� � & � � �
� since the vector function x=Ti+u from the

iterator to the index space is a one-to-one mapping.



Assume now that the range of the first iterator in Example 1 is
0 to 400 (rather than 0 to 4) and in the second loop the condition� � � � � � is replaced by

� � � � � � � � . The iterator polytope
is a quadrilateral similar with the one in Fig. 1, but much larger,
the similarity ratio being 100. The computation effort necessary
to find the number of memory locations for the array reference� � � � � 	 � 
 � � � � � 
 is not affected by the very significant increase
in size of the iterator space. Indeed, the 4 supporting cones are
generated by the same rays, the decompositions are the same, the
generating functions are almost the same. The only difference ap-
pears at the numerators of

� � � �  ,
� � � �  , and

� � � �  due to the
modifications of the coordinates of these vertices. For instance,
the numerator of

� � � �  becomes � � � � � � � � since the new coordi-
nates of � � are (400,200). The storage requirement for this case is
100,501 locations. Note that the number of lattice points does not
scale up with the square of the similarity ratio like, for instance,
the area of the quadrilateral.

Moreover, the technique sketched above, although illustrated
for a 2-dimensional signal in the scope of an iterator space of di-
mension 2, works for arbitrary numbers of dimensions of both the
index and iterator spaces. Therefore, it is well-suited to address
the size of array references typical to multimedia applications. �

The example above illustrated the case when there is a one-to-
one mapping between the iterator and index spaces. But this is
not always true. When the rank � of matrix T is smaller than � ,
the number of columns of T, the memory occupied by the array
reference is upper bounded by the number of lattice points in the� -dimensional polytope � � � � � � � �  – the real projection of� � � � on � � along the first � coordinates. � � � � � � � �  can be
easily computed by eliminating the last � � � iterators in � � � �
with the Fourier-Motzkin technique [5]. It must be noticed that
not necessarily all the lattice points in � � � � � � � �  represent
projections of lattice points from � � � � [12]. These invalid
projections are detected by replacing the � coordinates of the pro-
jection point under question in the polytope � � � � and checking
if the resulting � � � �  -dimensional integral polytope is empty.

Example 2:
� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � �  � ! � � � �

Since post-multiplying " # � 	 $ � with the unimodular ma-

trix
% # & � $$ � 	 ' results in " ( % # � $ � � , the rank of

matrix T is � # $ – less than the number of columns � # � of
T; in this case, the vector function x=Ti + u may not be a one-
to-one mapping. Indeed, the iterator vectors � � � 
 � # � � 	 
 �

and� 	 � 
 �
from the iterator space in Fig. 1 are mapped to the same

index 	 � � � # � . The transformation S modifies the iterator
space into ) � % ( � � � * = ) 	 	 � � � � 	 + � � � 	 � � + 	 � , *
(� - 	 
# � � 	 
 � # % 	

. � � � 
 �
is the new iterator vector after the trans-

formation S) which real projection is ) � � � � $ , * , obtained
eliminating 	 in the inequalities above. But not all these 15 points
are valid projections. � # $ + � result to be invalid: replacing these
values in the modified iterator space, no integer solution for 	 can
be found. Therefore, storing � � 	 � � � 
 requires 15-2=13 locations.

The algorithm described above is implemented in our memory
computation tool (see Section 5).

4 Memory size computation algorithm
based on data-dependence analysis

The main steps of the memory size computation algorithm will be
discussed below.

Step 1 Extract the array references from the given algorithmic
specification of the multimedia application and decompose the
array references for every indexed signal into disjoint linearly
bounded lattices.

The analytical partitioning of the array references of every sig-
nal into disjoint LBL’s can be performed by a recursive intersec-
tion, starting from the array references in the code. Let) / # " . � . � 0 . 1 � . � . � � . * + ) / # " � � � � 0 � 1 � � � � � � � *
be two LBL’s derived from the same indexed signal, where " �
and " � have obviously the same number of rows – the signal
dimension. Intersecting the two linearly bounded lattices means,
first of all, solving a linear Diophantine system � " . � . � " � � � #0 � � 0 . having the elements of � � and � � as unknowns. If the
system has no solution, the intersection is empty. Otherwise, let& � �� � ' # &  � � ' � � & � �� � '
be the solution of the Diophantine system. If the set of coalesced
constraints of the two LBL’s (denoted � 
 	 . and � 
 	 � )� �  � ( � � � � � � � � � (3)� �  � ( � � � � � � � � �

has integer solutions, then the intersection is a new LBL:

� 
 	 . � � 
 	 � # ) / # " �  � ( � � " � � � � 0 � s.t. constraints (3) *
However, the real difficulty is the decomposition of the differ-

ences � 
 	 . � � � 
 	 . � � 
 	 �  and � 
 	 � � � � 
 	 . � � 
 	 �  , and the reason
is that the difference of two LBL’s is not necessarily an LBL. Due
to the present space limitation, the full LBL decomposition algo-
rithm will be published elsewhere.
Example: The disjoint LBL’s of signal � 
 	 � � from the illustrative
example in Section 2 are (in non-matrix format): 2 � � 3 4 � 5 6 � � � 7 � � � � � � 8 � � 9 � � � 9 : ;

 2 � � 3 � � 5 6 � � � 7 � � � � � � : < 8 � � 9 � � � 9 : ;
 2 � � 3 � � 5 6 � � � 7 � � � � � 8 = � > � � � � � � � � 8 � ? 8 � � 9 � � � 9 :: 9 > � � � � � � 9 � :

and 8 � ! 9 8 = � > � � � � � � � ;
Figure 2 shows a polyhedral dependence graph built from the

illustrative example in Section 2, where the nodes are the disjoint
LBL’s determined at this step and the arcs are the dependence rela-
tions between them derived from the code. The nodes are labeled
with the number of scalar signals they cover and the arcs are la-
beled with the number of dependencies (both computed using the
algorithm from Section 3).

� Finding the integer solutions of the system. Solving a linear Diophantine sys-
tem was proven to be of polynomial complexity, all the known methods being based
on bringing the system matrix to the Hermite Normal Form [13].
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Figure 2: Polyhedral dependence graph having as nodes the dis-
joint linearly bounded lattices from the example in Section 2

Step 2 Determine the memory size at the boundaries between the
blocks of code.

The algorithmic specification is a sequence of nested loops, re-
ferred also as blocks. After the decomposition of the array refer-
ences, for each disjoint LBL it is determined the block where the
LBL is created (i.e., produced), and the block where it is used as
an operand for the last time (i.e., consumed). Based on this infor-
mation, the memory size between the blocks can be determined
exactly, since the storage requirement of each disjoint LBL can be
computed exactly – using the algorithm explained in Section 3.

Step 3 Pruning the algorithmic specification.
If in a block signals are produced but no signal is last time con-

sumed, that block is irrelevant in memory size point of view and
can be skipped from further analysis since the memory will only
increase to the amount at the end of the block – which is already
known from Step 2. Similarly, if the amount of storage required by
the newly created LBL’s, together with the amount of memory at
the beginning of the block, is not larger than the maximum storage
at the boundary level, then that block can be pruned as well. This
pruning speeds up the tool, concentrating the analysis on those
portions of code where the memory increase is likely to happen.

Step 4 For each of the remaining blocks of code, compute the
maximum memory size inside the block. This operation is based
on the computation of min/max iterator vectors relative to the lex-
icographic order.
Definition Let � � � � � � � � � � � � �

�
and � � � � � � � � � � �

� �
�

be two
iterator vectors in the scope of � nested loops, which may be as-
sumed “normalized” (i.e., all the iterators are increasing with the
step 1). Iterator vector j is larger lexicographically than i (writ-
ten � � � ) if (

� � �
�

� ), or (
� � � �

� and
�

� �
� � ), or � � �

(
� � � �

� � � � � � �
� �

� � � � �
� , and

�
� �

� � ). The min/max itera-
tor vector from a set of such vectors is the smallest/largest vector
in the set relative to the lexicographic order.

Example 3: 	 
 � �
� �  � � � � � � � � �	 
 � � � �  � � � � � � � � �	 
 � � � �  � � � � � � � � � � � � � � � � � � � � � � �

The max iterator vector addressing the scalar, say, � � � � is
� �

�
� �

�
� � � � � � �  �

�
, while the min iterator vector is �  � � �

�
.

Our algorithm finds the LBL’s produced and consumed in the
current block, computing the min and, respectively, max iterator
vectors for the scalar signals covered by these LBL’s since these
iterator vectors correspond to the increase and, respectively, de-
crease of the memory. Knowing the number of flops (i.e., ele-
mentary iterations) in the loop nest (by counting the lattice points
in the iterator spaces with the algorithm in Section 3), one can
then determine exactly the memory variation and, in particular,
the maximum storage amount in each of the blocks. Actually,
part of the LBL’s produced or consumed in the block can be
conveniently skipped if their effect on the memory variation can
be taken into account without generating the scalars they cover.
For instance, in the illustrative example from Section 2, each it-
erator vector � �

�
� � �

�
corresponds to a unique produced scalar

� � � � � � � � � �
� � � � � � � � � � � � � � � � � � and a unique consumed scalar

� � � � � � � � � �
� � � � � � � � � � � � � � � � � � . The effect of the two ar-

ray references on the memory variation is +1-1=0 in each iteration
and, therefore, these operands can be skipped from further analy-
sis, pruning that increases significantly the computation speed.

5 Experimental results

A memory size computation tool (named � � after the famous
peak which climbing adversity intends to suggest the difficulty of
its implementation) has been implemented in C++, incorporating
the ideas and algorithms described in this paper. For the syntax of
the algorithmic specifications, we adopted a subset of the C lan-
guage (see, e.g., the illustrative example in Section 2). This is not
a restrictive feature of the theoretical model since any modifica-
tion in the specification language would affect only the front-end
of the tool. In addition to the computation of the minimum mem-
ory size requirements and different statistical data on the memory
usage by the multidimensional signals in the multimedia specifi-
cation, the tool can optionally generate dependence graphs (like
the one in Fig. 2) at different granularity levels, which provide in-
formation about the relations between different groups of signals,
and also the trace of the memory occupancy during the execution
of the input specification. Such a memory trace is shown in Fig. 3.

Table 1 summarizes the results of our experiments, carried out
on a Sun Blade 100 workstation. The benchmarks used are: (1)
Durbin’s algorithm which solves a Toeplitz system with � un-
knowns [16], (2) a real-time regularity detection algorithm used
in robot vision, (3) a 2D Gaussian blur filter from a medical image
processing application which extracts contours from tomograph
images in order to detect brain tumors, (4) a motion detection al-
gorithm used in the transmission of real-time video signals on data
networks [4], and (5) the kernel of a voice coding application –
essential component of a mobile radio terminal.

This tool can process large specifications in terms of number



 33000

 33050

 33100

 33150

 33200

 33250

 33300

 0  10000  20000  30000  40000  50000  60000  70000

’Memory_Trace_Detail’

 33145

 33150

 33155

 33160

 33165

 33170

 33175

 33180

 31000  31500  32000  32500  33000  33500  34000  34500

’Memory_Trace_Detail’

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06

’Memory_Trace’

Figure 3: Memory trace for the illustrative example in Section 2. The abscissae are the numbers of datapath instructions in the code, the
ordinates are memory locations. The first graphic represents the entire trace. The second graphic is a detailed trace in the interval [0 :
65767], which corresponds to the first two iterations of the outer loop ( � � � and 9). The third graphic is a detailed trace in the zone
covering the end of the first outer-loop iteration and the start of the second one. The global maximum is at the point (x=2, y=33284).

Application Parameters Memory CPU

Durbin alg. N=100 249 � 1s
Regularity detection MaxGrid=5, L=64 960 � 1s
2D Gauss. blur filter M=N=50 14451 2s
Motion detection M=N=32, m=n=4 2740 16s
Vocoder kernel – 11890 7s

Table 1: Experimental results (col. 3 shows the memory locations)

of loop nests, lines of code, number of array references. For in-
stance, the voice coding application contains 236 array references
organized in 40 loop nests. In one of our experiments, the illustra-
tive example (Section 2) was unrolled one loop level, resulting in
a code with 113 loop nests 3 level deep, and a total of 906 array
references, many having complex indices. The tool processed this
example in about 8 minutes.

A comparative evaluation with previous works performing
memory size estimation is hard to do in the absence of their bench-
mark algorithms. For instance, the test of the motion detection ker-
nel is referred also in [17]. If the authors used like us the algorithm
given in [4], then their result (of 1372 memory locations) is a poor
estimation since the correct exact result for the same parameters is
2740 (see Table 1).

6 Conclusions
This paper has presented a non-scalar approach for computing the
memory size in real-time multimedia algorithms, where the stor-
age of large multidimensional signals causes a significant cost in
terms of both area and power consumption. This method uses
modern elements in the theory of polyhedra and algebraic tech-
niques specific to the data-flow analysis used nowadays in com-
pilers. Different from past works which were only performing
a memory size estimation, our approach does exact computations
and it is the first one to do so.
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