
Word Level Functional Coverage Computation

Bijan Alizadeh
Microelectronic Research and Development Center of Iran

(MERDCI)
Tehran, IRAN, Postal Code 1438753645

E-mail: bijan.alizadeh@merdci.com

Abstract— This paper proposes a word-level coverage
metric to determine the completeness of a set of properties
verified by a word-level method. An algorithm is presented
to compute a functionality based coverage metric for a
sequence property as specification. Control, intermediate
and output signals are represented by a multiplexer based
structure of linear integer equations, and RT level properties
are directly applied to this representation. A set of integer
equations are symbolically simulated based on the specified
property in a predictable time. We used a canonical form of
linear Taylor Expansion Diagram.

I Introduction

Validating the functionality of digital circuits and
systems is an increasingly difficult task because of the
growing complexity of designs. Logic simulation was the
mainstream approach for the validation of large
synchronous systems because of its scalability and
flexibility. However, the fraction of the design space that
can be explored by simulation is insufficient, especially for
large designs.

On the other hand, formal methods provide exhaustive
coverage of hardware behavior, which depends on the set of
defined properties, and explore the behavior under all the
possible input stimuli. In addition, the designer requires
automated verification tools at higher levels of abstraction
to verify the design at the early stages of the design flow
[1]. Therefore, formal verification methods such as
symbolic model checking have become important for RT or
behavioral level verification.

Most of the formal methods use Binary Decision
Diagrams (BDDs) to represent the set of states and the state
transition functions [1, 2]. The BDD techniques may still
suffer from memory explosion problem when the
application is a large datapath. In order to overcome this
problem, various solutions have been proposed that try to
contain the size of the BDDs involved [3]. There are also
some methods that use integer programming to verify
datapath circuits [4, 5, 6]. However, these approaches need
to use an Integer Linear Programming (ILP) solver and,
therefore, are limited to datapath designs. Other high level
data structures like Binary Moment Diagram (BMD) [7] and
Taylor Expansion Diagram (TED) [8] have also been
proposed to check the equivalence between two circuits, but
they have not been used to do property checking.

In this paper, we present a novel technique for symbolic
simulation that uses a new, parametric, high-level
representation for the functions at the inputs of sequential

elements and outputs of the circuit. This representation
produces a word-level representation called Linear TED
(LTED) which is suitable to compute functional coverage
instead of BDDs. For this work, we used VHDL to describe
a design and a sequence format to describe its properties.
We extract Data Flow Graph (DFG) for the design [9],
convert it to LTED, and prove the design property
symbolically [10].

A coverage metric can be very useful in achieving a high
degree of confidence in the completeness of the verification.
We present a functionality based coverage metric which is
applicable to our high level model and indicates practical
point of view of signal coverage. Two approaches for
defining and developing algorithms for coverage metrics in
temporal logic model checking have been studied in the
literature [11, 12]. The first approach, by Hoskote et al., is
to check the influence of small changes in the system on the
satisfaction of the specification [11]. Intuitively, if some
part of the system can be changed without violating the
specifications, this part is uncovered by the specification.
The second approach, introduced in [12], is suggesting two
alternatives to the naive algorithm for specifications in the
branching time temporal logic CTL. The first algorithm is
symbolic and it computes the set of pairs <w,w’> such that
flipping the value of q in w’ falsifies ϕ in w. The second
algorithm improves the naive algorithm by exploiting
overlaps in the many dual structures that we need to check.
Neither one of these algorithms is attractive: the symbolic
algorithm doubles the number of BDD’s variables, and the
second algorithm requires the development of new
procedures. Also, these algorithms cannot be extended to
specifications in LTL as they heavily use the fixed-point
characterization of CTL, which is not applicable to LTL.

The main advantages of our method are as follows: First,
our technique has added some parts to TED [8] to represent
relational expressions and proposed a simplification process
which is based on computing intersection or union areas of
two linear equations. The basic idea of our method is to use
this simplification instead of solving equations. We
computed the union and intersection of two linear equations
(equality and nonequality) based on their respective area in
a two dimensional space. Second, we propose a practical
coverage metric based on the high level model.

Section 2 of this paper presents the way to construct
Linear TED as a canonical representation of expressions. In
section 3, some algorithms to check the basic properties in
our model are given. Section 4 shows a simple method to
estimate path coverage and experimental results for some

examples given in section 5. Last section presents a short
conclusion of this work.

II Word Level Representation

The word level representation, used in this paper is called
Linear TED (LTED). This structure includes Variable,
Constant, Branch, Union and Intersect nodes. The algebraic
expression F(x,y,…) will be represented by constant and
linear terms of Taylor series expansion [8], Equ(1), where
const is some part of F(x,y,…) and independent of the
variable x, while linear depends on the variable x. The
variable x is top variable of F(x,y,…) [8].

)(,...),(linearxconstyxF += (1)

For representing relational expression, we have just
added relational operators, including E (equal to zero), NE
(not equal to zero) and GE (greater or equal to zero), to the
LTED node. Each Variable node has a constraint field
indicating its respective range. For example consider
variable X, as a bit type, so its constraint field indicates 0 ≤
X ≤ 1.

A Branch node has three fields, including Select, InZero
and InOne, where Select is a relational expression, i.e.
CLTED node, and other fields are LTED nodes. The
functionality of a Branch node is indicated by Equ(2).

InZeroSelectInOneSelectF && += (2)

A Union or Intersect node has two fields; Left child and
Right child, which are LTED nodes. In part 2.2, The union
and intersection operations will be defined on CLTED
nodes.

To support word level arithmetic operations, the syntax
and semantics of word level operations are formally defined
as follows:

Syntax:

A word level formula is a list of terms. Formally, let term,
Var, and Const denote a word level term, a word level
variable, and a constant value respectively. Then the syntax
is formally defined in Fig. 1.

 termsoflist::Formula
term2 term1|term2term1!|term2term1|FALSE|TRUE::prop

prop2 Union prop1|prop2Intersectprop1| term2m1,Branch terprop
|term2* term1|term2 term1|term:Var|Const|Var::term

=
>====

+==

Fig. 1. Syntax of a word level logic

Semantics:
The interpretation of word level terms, propositions and
formulas are defined as in Fig. 2. The Branch node is
comparable to the If-Then-Else operator in BDD package
(see Fig. 2). Intersect/Union nodes are like the And/Or
operators, but they have some differences which will be
described later.

TRUEtermtermIftermtermequalorGreater

TRUEtermtermIftermtermInequal

TRUEtermtermIftermtermEqual
propORproppropUnionpropUnion

propANDpropproptInterproptionInter
termElsetermTRUEpropIftermtermBRpropBranch

termandtermoftionmultiplicatermtermMultiply

termandtermofadditiontermtermAddition
cctCons

OutputNextStateesentStateInputxxVariable

)21(]21[:
)21(]21[:
)21(]21[:

21]21[:
21]2sec1[:sec

2,1)(]2,1[:
21]2*1[:

21]21[:
][:tan

}Pr{][:

≥=≥
≠=≠
===

=
=

==
=
=+

Ζ∈=
∪∪∪∈=

Fig. 2. Semantics of word level operations

A. Construction of the LTED

Our method needs two LTEDs called Original LTED
(OLTED) and Canonical LTED (CLTED) which are
defined as follows:
Definition 1. An OLTED node is a directed acyclic graph
G=(V, E) with vertex set V and edge set E. The vertex set V
contains six types of vertices: Branch (B), Union (U),
Intersect (I), Variable (V), Relational Variable (RV), and
Constant (C) nodes.
- A Branch node v has as attributes a select field select(v) ∈ {U,

I, RV}, and two children InOne(v), InZero(v) ∈ V.
- A Union node v has as attributes two children left(v) ∈ {U, I,

RV}, right(v) ∈ {I, RV}. A Union node includes another Union
node on its Left-Child sub-term, and there will be an Intersect,
or Relational Variable node on its Right-Child sub-term,
because of its canonical form.

- An Intersect node v has as attributes two children left(v),
right(v) ∈ {I, RV}. Relational Variable nodes are ordered from
LeftChild to RightChild in each Intersect node.

- A Variable node v has as attributes an integer varaible var(v),
and two children const(v), linear(v) ∈ {V, C}.

- A Relational Variable node v has as attributes an integer
variable var(v), a relational operator op(v) ∈ {=, !=, >, >=},
and two children const(v), linear(v) ∈ {V, C}.

- A Constant node v has as its attribute a value val(v) ∈ Z.

The relation between an OLTED and the integer function
it represents is straightforward. This leads to the following
correspondence between OLTEDs and integer functions:
Definition 2. A vertex v in an OLTED denotes an integer
function f v defined recursively as:.
- If v is a Constant node, then f v = val(v).
- If v is a Relational Variable node, then f v = const(v) +

var(v).linear(v) op(v) 0.
- If v is a Variable node, then f v = const(v) +

var(v).linear(v).
- If v is an Intersect node, then f v = f left(v) Intersect f

right(v).
- If v is a Union node, then f v = f left(v) Union f right(v).
- If v is a Branch node, then f v = (f InOne(v) Intersect

select(v)) Union (f Inzero(v) Intersect Not(select(v))).

Definition 3. A CLTED node is formally defined as in
Definition 1, when all nodes excluding Branch node are
used.

Example: Fig. 3 shows OLTED node developed for the
statement: If (a) then X <= b + c Else X <= b – c. As
illustrated in this figure, boolean condition a is converted to
a – 1 = 0 (Notice: The E symbol near the a node, in the
Select field, shows the Equality operator, i.e. =).

0

Fig. 3. Example of an OLTED node

B. LTED operations

Now we describe how addition, subtraction,
multiplication, union and intersection of two LTEDs are
performed.

The addition and multiplication operators are applied
similar to TED’s ADD and MULT when two OLTEDs are
not Branch nodes [8]. Otherwise InOne and InZero fields of
Branch node will be added to (multiplied by) another node
as InOne and InZero fields of result respectively. At this
point two Branch nodes with same Select fields will be
distinguished to make a simpler LTED node.

The union and intersection operators are defined on
CLTED. Notice that checking the existence of integer
solutions for a conjunction of linear inequalities is an NP-
complete problem. But here the intersection operator is used
for checking the existence of integer solutions for a
conjunction of linear inequalities, when the intersection area
in a two dimentional space is considered instead of solving
that linear inequalities. The execution time of this method is
polynomial. Assuming the two CLTEDs are algebriac
expressions with two variables including relational
operators, we must consider the following cases:
1. Both nodes are Relational Variable nodes (u,v ∈ RV).

One of our contribution is related to the way in which
linear equations (equality and nonequality) are solved
without ILP/SAT solvers. This way, we consider
conjunction of two or more integer equations in a two
dimentional space, and compute the intersection area
which is covered by all equations [10]. For simplifying
the problem, we consider the solution of two linear
equations of two variables, i.e., I: [a0*X+b0*Y+c0 Op1
0] and II: [a1*X+b1*Y+c1 Op2 0], where Op1 and Op2
are {=, >, >=, ≠}. To solve these equations, various
conditions of coefficients of these equations are
considered. These conditions describe positions of the
equations in a two dimentional space. For instance, the
condition a0*b1-a1*b0=0 shows that the two equations
are parallel. The conditions b0>0 and a0*a1+b0*b1>0
indicate that both equations have upward direction when

Op1 and Op2 are considered greater (>). It means that
the area above the specified lines are covered by those
equations. The condition c0*b1-c1*b0<0 shows that the
first equation is above the second one in a two
dimentional space (see Fig. 4). If two linear equations
are not parallel, we have to return a Union (Intersect)
node [u Union (Intersect) v].

2. Otherwise, this procedure is called recursively to
compute Conjunction (Intersect) or Disjunction (Union)
of two LTED nodes.

Fig. 4. Comparison of two linear equations in which Op1,
Op2 are considered greater (>)

C. DFG to LTED conversion

The first step is extraction of DFG [see reference 9].
After DFG extraction, we will be capable to translate it to
LTED. Next state and output functions in DFG have
multiplexer based structures, which will be in one-to-one
correspondence with Branch node in OLTED. Therefore we
can make next state and output functions according to
LTEDs and call them “list of TedState”. The list of TedState
includes identifier (Id) of next state variable, Id of related
present state variable and value of next state variable as an
LTED node. The Id of present state variable will be –1 if
there is an output or intermediate variable as the next state
variable. Consider Greatest Common Divisor example.
TABLE I and Fig. 5 show the list of TedState and a LTED
node of nxtX signal respectively. This LTED node will be
regarded as value field of one of the rows in TABLE I that
indicates Ids of nxtX and X signals. In this example
relational expressions like “Start = 1” and “X > Y” will be
converted to LTED nodes “Start – 1 = 0” and “X – Y –1 ≥
0”, as Select field of first and last Branch nodes,
respectively.

TABLE I
List of TedState in GCD example

Present State Next State Value of Next State
X nxtX shown in Fig. 5
Y nxtY OLTED structure

Reset nxtReset OLTED structure
-1 Out OLTED structure

X

Ea

-1 1

InOne

InZero

Selectb

-1

1c

0

b

1

1c

0

II

I

nxtX

InOne

InZero

Select

InOne

InZero

Select

InOne

InZero

Select

InOne

InZero

Select EReset

-1 1
GEX

-1

1Y

-1

EX

-1

1Y

0

a

-3
1

X

-3
1

G

EStart

-1 1

G

X

-1

1Y

-3

G

Fig. 5. LTED of (nxtX – 3 > 0)

III Property Checking in Design

Properties are described in a linear time logic and
subdivided into an assumption part (P1) and a commitment
part (P2) where both P1, P2 are defined by the rules below.
The assumption part can be specified at different times. This
form of property allows us to check output or control
signals, safety and liveness properties based on the linear
time logic.

P::=(P)|P∧P|¬P|P=P|P>P|P>=P|P≠P|
 time=i, P |Variable|IntegerValue
Q ::= {P1=>P2}

An overall view of the property checking is shown in Fig.
6. First, we extract LTEDs of next state and output functions
from a synthesized design. Afterwards, we extract tree
structure of the P2 part to specify what verification
procedures need to be called at each level of the tree. Two
procedures, CheckComb and CheckX perform the task of
verification of this flowchart.

Fig. 6. Flowchart of property Checking mechanism

Fig. 7 shows the CheckComb procedure in the flowchart
of Fig. 6. When the P2 part of a property is combinational,
i.e. without state operators, we must replace intermediate
variables by their values specified in list of TedState
(ALLSTS), and convert them to CLTED. Later the
assumption part of property (P1) will be eliminated from
computed CLTED. At the end of the procedure, CLTED
equations, that indicate conditions needed to satisfy the
property, will be returned.

To eliminate one CLTED, e.g. u, from another CLTED,
e.g. v, we recursively perform this procedure till both of

them become Variable nodes. At this point, if intersection of
u and v is one of u or v, 1 will be returned. Otherwise
intersection result will be returned. If u is Intersect or Union
node, this procedure is called recursively for u.Left and
u.Right.

Fig. 7. Combinational part

Fig. 8 shows the CheckX procedure in the flowchart of
Fig. 6. When the P2 part of a property uses the next-state
operator (X), correctness of the property is checked in three
major steps. These steps are current state variables to next
state variables converting, next state variables replacing,
and simplifying. Simplification is performed based on
Intersect and Union operators which were described in
previous sections. If P1 part is subset of the result, this part
of verification is acceptable and the return result is
considered as the CLTED node. Else, verification fails.

 Fig. 8. Next State(X) operator

To determine whether a CLTED, e.g. u, is subset of
another one, e.g. v, we perform this procedure recursively
until u and v become Variable nodes. In this condition, if
union of them is the second one, i.e. v, it means that u is
subset of v. If u is Intersect node and u.Left and u.Right are
subsets of v, then u will be a subset of v. If u is Union node
and u.Left or u.Right is a subset of v, then u will be a subset
of v.

CheckX (LTED P2; LTED P1)
 TopV = Get top variable of P2;
 Linear = ALLSTS.Get()->value;
 Cnst = CheckX(P2->Cnst; P1);
 if (P2.kind == E)
 Result = Linear + Cnst = 0;
 else if (P2.kind == G)
 Result = Linear + Cnst > 0;
 else if (P2.kind == GE)
 Result = Linear + Cnst • 0;
 else if (P2.kind == NE)
 Result = Linear + Cnst • 0;
 else
 Result = Linear + Cnst;
 Eliminate (P1, Result);

CheckComb (LTED P2; LTED P1)
 ALLSTS: set of next state, output and
intermediate nodes and their values.
 TopV = Get top variable of P2;
 Linear = ALLSTS.Get()->value;
 Cnst = CheckComb(P2->Cnst; P1);
 if (P2.kind == E) //Equality Operator
 Result = Linear + Cnst = 0;
 else if (P2.kind == G)
 Result = Linear + Cnst > 0;
 else if (P2.kind == GE)
 Result = Linear + Cnst • 0;
 else if (P2.kind == NE)
 Result = Linear + Cnst • 0;
 else //no relational expression
 Result = Linear + Cnst;
 Eliminate (P1, Result);

Property (P1 => P2) VHDL Code

DFG Extraction Extract Parse Tree of P2

Convert to LTED DFG to LTED

1) Call CheckComb
2) Call CheckX

IV Coverage in LTED Model

A property specifies the condition on certain circuit
signals. It also specifies under which assumptions, this
condition should be held. One of the signals should be
checked is identified as the observed signal and coverage is
defined on this observed signal. The observed signals
consists of next state, intermediate and output signals which
are presented by LTED nodes (see section II). When a
property is proved to be true in a circuit, coverage should be
defined for the specified signal according to a subset of
circuit branches (The circuit branches were satisfied based
on the assumptions in the property).

A covered set of paths for an observed signal is a set of
paths in LTED structure of the observed signal which is
covered based on property assumptions. Here is an example
to explain the concept. Suppose that we are to compute the
coverage of a simple sequence formula in GCD:
at T: start=0 & reset=0 & X=12 & Y=3
at T+1: X=9

where X at T+1 or nxtX at T is considered as observed
signal. The formula specifies that whenever X=12, Y=3,
start=0 and reset=0, X will be 9 at the next clock cycle. Five
paths, in nxtX signal, are reachable based on different
assumptions (see Fig. 9(a)). Also as the bold lines in the Fig.
9(b) show, a path is just specified based on property
assumptions. So the coverage of this property is 1/5 = 20%
according to nxtX signal.

nxtX

1
InOne

InZero
InOne

InZero
InOne

InZero
InOne

InZero

2
3

4

5

(a)

nxtX

start=0
reset=0

X # YX > Y InOne

InZero
InOne

InZero
InOne

InZero
InOne

InZero

(b)

Fig. 9. All paths (a) and covered paths (b) in nxtX signal

Definition 4: Coverage of a formula for an observed signal
on a given high level model is computed as the fraction of
paths in the LTED model which are covered based on
property assumptions (see Equ(3)). Coverage for a set of
properties is simply obtained by adding the coverages of all
properties.

%100
#

cov#
cov ×=

pathsall
pathsered

erage
 (3)

 When a particular observed signal is fully (100%)
covered that its LTED model is checked based on property
assumptions for all paths. It is the best way to determine the
full coverage of the properties. On the other hand, the

formulation of the coverage metric identifies the partially-
covered paths in terms of uncovered paths so that the user
can write additional properties to complete the coverage.

 We present a recursive algorithm to compute the set of
covered paths and all paths in the LTED model of an
observed signal for a sequence formula (see Fig. 10).
NumberofAllPaths procedure computes all paths in the
LTED structure of an observed signal. This function is
called recursively to compute all paths in pIn0 (else) and
pIn1 (then) parts of a Branch node.

NumCoverPaths procedure specifies number of paths in
the LTED structure of an observed signal, which are
covered when property assumptions are applied to the
LTED structure. While a Branch node is processing, the
following cases must be checked:
1. Variables in pSel field are in assumption part:

I. If pSel is TRUE based on assumptions, the number of the
covered paths in pIn1 field should be returned.

II. If pSel is FALSE based on assumptions, the number of the
covered paths in pIn0 field should be returned.

2. Variables in pSel field are not in assumption part, the addition of
the number of the covered paths in pIn0 and pIn1 fields should
be returned.

Fig. 10. NumberofAllPaths and NumberofCoveredPaths

algorithms
If an Intersect node is processing, the multiplication of

the number of the covered paths in Left and Right children
will be returned. If a Union node is processing, the addition
of the number of the covered paths in Left and Right
children will be returned. If a Variable node is processing,
we should check whether it is an intermediate signal. If so,

int NumberofAllPaths(LTED In)
if(In->type==Branch)
 if(pIn1->type!=Branch)
 if(pIn0->type!=Branch) return 2;
 else return NumberofAllPaths(pIn0)+1;
 else
 if(pIn0->type!=Branch)
 return NumberofAllPaths(pIn1)+1;
 else
 return NumberofAllPaths(pIn0)+

 NumberofAllPaths(pIn1)+1;
int NumCoverPaths(LTED source,LTED assum)
if(source->type==Var)
 if(IsIntermediateVar(source))
 tmp = IntermediateVar(source);
 return NumCoverPaths(tmp,assum);
 else return 1;
if(source->type==Branch)
 if(IsInAssumptions(pSel, assum))
 if(IsConditionTrue(pSel, assum))
 return NumCoverPaths(pIn1,assum);
 else
 return NumCoverPaths(pIn0,assum);
 else
 return NumCoverPaths(pIn1,assum)+

 NumCoverPaths(pIn0,assum)+1;
if(source->type==AndTed)
 return NumCoverPaths(pLeft,assum)*

NumCoverPaths(pRight,assum);
if(source->type==OrTed)
 return NumCoverPaths(pLeft,assum)+

NumCoverPaths(pRight,assum);
if(source->type==Const) return 1;

its value in the “list of TedState” must be checked.
Otherwise, 1 will be returned.

V EXPERIMENTAL RESULTS

We verified different properties on five examples
including the Traffic Light Control (TLC), Greatest
Common Divisor (GCD), Elevator (EL), 2-Client Arbiter
(2CA) and a processor named Simple Architecture, Yet
Enough Hardware (SAYEH) [see reference 10]. For
instance, GCD properties are as follows:
1. start = 1 & a = 23 => X(x = 23).
2. Reset = 1 & a = 13 => X(x = 13).
3. start = 0 & Reset = 0 & x =< y => X(x) = x.
4. start = 0 & Reset = 0 & x > y => X(x) = x - y.

TABLE II compares our results with those of the VIS
verification tools [13]. Notice that we have used Windows-
based VIS in which CPU time pertains to EX, EG or EF
functions, not all parts of VIS. To compute the CPU times,
we have added appropriate VIS functions to VIS source
codes in order to report execution time of EX, EG or EF
function calls. The coverage method shows 80% coverage
on hwyl signal in TLC example. As mentioned before, this
method presents how many paths have been considered by
the described properties, and in TLC example, our
properties could cover 4/5 of paths at signal hwyl. In
SAYEH example, some properties are not supported by
VIS, because they involve both controller and datapath. VIS
is not able to construct BDD of the datapath part of the
SAYEH because of its large size.

TABLE II
Comparison with VIS

Circuit TLC GCD SAYEH EL 2CA
SN hwyl X DataBus door cntl1
P1 WLM 0.01 0.04 10.9 0.3 0.3
 PC 20% 25% 10% 33.3% 25%
 VIS 0.1 0.2 31.2 2.1 1.5

P2 WLM 0.65 0.1 11.4 0.9 0.4
 PC 20% 25% 15% 33.3% 25%
 VIS 1.2 0.6 NS 3.4 1.5

P3 WLM 12.1 0.03 11.6 0.21 0.1
 PC 20% 25% 10% 33.3% 25%
 VIS 19.2 0.13 NS 4.7 0.9

P4 WLM 0.4 0.03 12.1 --- 0.01
 PC 20% 25% 20% --- 25%
 VIS 0.9 0.14 39.8 --- 0.1

TC 80% 100% 55% 100% 100%

N WLM 60 32 1612 87 62

 VIS 974 968442 419062 20418 39381

M WLM 5.3 4.5 10.3 4.1 5.1
 VIS 10.1 36 26.48 5.2 5.5
SN: Signal Name; P1-P4: Cpu Time of Property1-4 (seconds)
WLM: our Word Level Method NS: Not Supported
PC: %Property Coverage TC: %Total Coverage
N: Number of Nodes(LTED,BDD); M: Memory Usage (MegaByte)

VI CONCLUSION

In order to overcome problems related to the use of
BDDs and other representations [7], we used a high level of

representation. As the result, we are able to manipulate
complex designs in much less time and memory than BBD-
based approaches. Our representation treats data and control
units together and is not limited to controller circuits or
datapath circuits individually [7]. Also path coverage on
LTL properties can be obtained based on this word-level
model efficiently unlike of other models [11, 12]. As
mentioned before, our approach does not need to solve
integer equations or do satisfiability checking despite of
other approaches [3, 4, 5, 6, 9].

References

[1] H. Touati, H. Savoj, B. Lin, R.K. Brayton and A.
Sangiovanni-Vincentelli, “Implicit State Enumeration of
Finite State Machines Using BDDs”, in Proceedings ICCAD,
pp 130-133, 1990.

[2] K. McMillan, Symbolic Model Checking, Kluwer Academic
Publishers, Boston, 1993.

[3] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita and Y. Zhu,
“Symbolic Model Checking Using SAT Procedures Instead of
BDDs”, In Proceedings DAC, pp 317-320, June 1999.

[4] R. Brinkmann and R. Drechsler, “RTL-Datapath Verification
using Integer Linear Programming”, in Proceedings of IEEE
VLSI Design’01 & Asia and South Pacific Design
Automation Conference, pp 741-746, 2002.

[5] J. C. Corbett and G. S. Avrunin, “Using Integer Programming
to Verify General Safety and Liveness Properties”, in Journal
of Formal Methods in System Design, Vol. 6, pp 97-123, Jan.
1995.

[6] T. Bultan, R. Gerber, and W. Pugh, “Symbolic Model
Checking of Infinite State Systems Using Presburger
Arithmetic”, in 9th International Conference CAV, pp 400-
411, 1997.

[7] R. Drechsler, Formal Verification of Circuits, Kluwer
Academic Publishers, 2000.

[8] M. Ciesielski, P. Kalla and Z. Zeng, “Taylor Expansion
Diagrams: A Compact Canonical Representation for
Arithmetic Expressions”, DATE02, pp 285-289, 2002.

[9] B. Alizadeh and M.R. Kakoee, “Using Integer Equations for
High Level Formal Verification Property Checking”, in
ISQED03, pp 69-74, 2003.

[10] B. Alizadeh and Z. Navabi, “Word Level Symbolic
Simulation in Processor Verification”, in Journal of IEE-
Proceedings Computers and Digital Techniques, Vol. 151,
No. 5, pp 356-366, Sep. 2004.

[11] Y. Hoskote, T. Kam, P.-H Ho, and X. Zhao. Coverage
Estimation for Symbolic Model Checking. In Proc. 36th

Design Automation Conference, pp 300-305, 1999.
[12] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage

Metrics for Temporal Logic Model Checking”, in TACAS,
LNCS 2031, pp 528 – 542, 2001.

[13] Robert K. Brayton, A. Sangiovanni, A. Aziz and et al, “VIS:
A system for Verification and Synthesis”, in Proceedings of
the 8th International Conference on Computer Aided
Verification, pp 428-432, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

