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Abstract— This paper proposes a word-level coverage 
metric to determine the completeness of a set of properties 
verified by a word-level method. An algorithm is presented 
to compute a functionality based coverage metric for a 
sequence property as specification. Control, intermediate 
and output signals are represented by a multiplexer based 
structure of linear integer equations, and RT level properties 
are directly applied to this representation. A set of integer 
equations are symbolically simulated based on the specified 
property in a predictable time. We used a canonical form of 
linear Taylor Expansion Diagram. 

I Introduction 

Validating the functionality of digital circuits and 
systems is an increasingly difficult task because of the 
growing complexity of designs. Logic simulation was the 
mainstream approach for the validation of large 
synchronous systems because of its scalability and 
flexibility. However, the fraction of the design space that 
can be explored by simulation is insufficient, especially for 
large designs. 

On the other hand, formal methods provide exhaustive 
coverage of hardware behavior, which depends on the set of 
defined properties, and explore the behavior under all the 
possible input stimuli. In addition, the designer requires 
automated verification tools at higher levels of abstraction 
to verify the design at the early stages of the design flow 
[1]. Therefore, formal verification methods such as 
symbolic model checking have become important for RT or 
behavioral level verification.  

Most of the formal methods use Binary Decision 
Diagrams (BDDs) to represent the set of states and the state 
transition functions [1, 2]. The BDD techniques may still 
suffer from memory explosion problem when the 
application is a large datapath. In order to overcome this 
problem, various solutions have been proposed that try to 
contain the size of the BDDs involved [3]. There are also 
some methods that use integer programming to verify 
datapath circuits [4, 5, 6]. However, these approaches need 
to use an Integer Linear Programming (ILP) solver and, 
therefore, are limited to datapath designs. Other high level 
data structures like Binary Moment Diagram (BMD) [7] and 
Taylor Expansion Diagram (TED) [8] have also been 
proposed to check the equivalence between two circuits, but 
they have not been used to do property checking.  

In this paper, we present a novel technique for symbolic 
simulation that uses a new, parametric, high-level 
representation for the functions at the inputs of sequential 

elements and outputs of the circuit. This representation 
produces a word-level representation called Linear TED 
(LTED) which is suitable to compute functional coverage 
instead of BDDs. For this work, we used VHDL to describe 
a design and a sequence format to describe its properties. 
We extract Data Flow Graph (DFG) for the design [9], 
convert it to LTED, and prove the design property 
symbolically [10].  

A coverage metric can be very useful in achieving a high 
degree of confidence in the completeness of the verification. 
We present a functionality based coverage metric which is 
applicable to our high level model and indicates practical 
point of view of signal coverage. Two approaches for 
defining and developing algorithms for coverage metrics in 
temporal logic model checking have been studied in the 
literature [11, 12]. The first approach, by Hoskote et al., is 
to check the influence of small changes in the system on the 
satisfaction of the specification [11]. Intuitively, if some 
part of the system can be changed without violating the 
specifications, this part is uncovered by the specification. 
The second approach, introduced in [12], is suggesting two 
alternatives to the naive algorithm for specifications in the 
branching time temporal logic CTL. The first algorithm is 
symbolic and it computes the set of pairs <w,w’> such that 
flipping the value of q in w’ falsifies ϕ in w. The second 
algorithm improves the naive algorithm by exploiting 
overlaps in the many dual structures that we need to check. 
Neither one of these algorithms is attractive: the symbolic 
algorithm doubles the number of BDD’s variables, and the 
second algorithm requires the development of new 
procedures. Also, these algorithms cannot be extended to 
specifications in LTL as they heavily use the fixed-point 
characterization of CTL, which is not applicable to LTL. 

The main advantages of our method are as follows:  First, 
our technique has added some parts to TED [8] to represent 
relational expressions and proposed a simplification process 
which is based on computing intersection or union areas of 
two linear equations. The basic idea of our method is to use 
this simplification instead of solving equations. We 
computed the union and intersection of two linear equations 
(equality and nonequality) based on their respective area in 
a two dimensional space. Second, we propose a practical 
coverage metric based on the high level model. 

Section 2 of this paper presents the way to construct 
Linear TED as a canonical representation of expressions. In 
section 3, some algorithms to check the basic properties in 
our model are given. Section 4 shows a simple method to 
estimate path coverage and experimental results for some 



examples given in section 5. Last section presents a short 
conclusion of this work. 

II Word Level Representation 

The word level representation, used in this paper is called 
Linear TED (LTED). This structure includes Variable, 
Constant, Branch, Union and Intersect nodes. The algebraic 
expression F(x,y,…) will be represented by constant and 
linear terms of Taylor series expansion [8], Equ(1), where 
const is some part of F(x,y,…) and independent of the 
variable x, while linear depends on the variable x. The 
variable x is top variable of F(x,y,…) [8].  

)(,...),( linearxconstyxF +=    (1) 

For representing relational expression, we have just 
added relational operators, including E (equal to zero), NE 
(not equal to zero) and GE (greater or equal to zero), to the 
LTED node. Each Variable node has a constraint field 
indicating its respective range. For example consider 
variable X, as a bit type, so its constraint field indicates 0 ≤
X ≤ 1.

A Branch node has three fields, including Select, InZero
and InOne, where Select is a relational expression, i.e. 
CLTED node, and other fields are LTED nodes. The 
functionality of a Branch node is indicated by Equ(2). 

InZeroSelectInOneSelectF && +=   (2) 

A Union or Intersect node has two fields; Left child and 
Right child, which are LTED nodes. In part 2.2, The union 
and intersection operations will be defined on CLTED 
nodes. 

To support word level arithmetic operations, the syntax
and semantics of word level operations are formally defined 
as follows: 

Syntax:

A word level formula is a list of terms. Formally, let term,
Var, and Const denote a word level term, a word level 
variable, and a constant value respectively. Then the syntax 
is formally defined in Fig. 1.  

 termsoflist::Formula
term2 term1|term2term1!|term2term1|FALSE|TRUE::prop

prop2 Union prop1|prop2Intersectprop1| term2m1,Branch terprop
|term2*  term1|term2 term1|term:Var|Const|Var::term

=
>====

+==

Fig. 1. Syntax of a word level logic 

Semantics:
The interpretation of word level terms, propositions and 
formulas are defined as in Fig. 2. The Branch node is 
comparable to the If-Then-Else operator in BDD package 
(see Fig. 2). Intersect/Union nodes are like the And/Or
operators, but they have some differences which will be 
described later. 
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Fig. 2. Semantics of word level operations 

A. Construction of the LTED 

Our method needs two LTEDs called Original LTED 
(OLTED) and Canonical LTED (CLTED) which are 
defined as follows:  
Definition 1. An OLTED node is a directed acyclic graph 
G=(V, E) with vertex set V and edge set E. The vertex set V 
contains six types of vertices: Branch (B), Union (U), 
Intersect (I), Variable (V), Relational Variable (RV), and 
Constant (C) nodes.  
- A Branch node v has as attributes a select field select(v) ∈ {U, 

I, RV}, and two children InOne(v), InZero(v) ∈ V. 
- A Union node v has as attributes two children left(v) ∈ {U, I, 

RV}, right(v) ∈ {I, RV}. A Union node includes another Union 
node on its Left-Child sub-term, and there will be an Intersect, 
or Relational Variable node on its Right-Child sub-term, 
because of its canonical form. 

- An Intersect node v has as attributes two children left(v), 
right(v) ∈ {I, RV}. Relational Variable nodes are ordered from 
LeftChild to RightChild in each Intersect node. 

- A Variable node v has as attributes an integer varaible var(v), 
and two children const(v), linear(v) ∈ {V, C}.

- A Relational Variable node v has as attributes an integer 
variable var(v), a relational operator op(v) ∈ {=, !=, >, >=}, 
and two children const(v), linear(v) ∈ {V, C}. 

- A Constant node v has as its attribute a value val(v) ∈ Z. 

The relation between an OLTED and the integer function 
it represents is straightforward. This leads to the following 
correspondence between OLTEDs and integer functions: 
Definition 2. A vertex v in an OLTED denotes an integer 
function f  v defined recursively as:.  
- If v is a Constant node, then f v = val(v). 
- If v is a Relational Variable node, then f v = const(v) + 

var(v).linear(v)  op(v)  0. 
- If v is a Variable node, then f v = const(v) + 

var(v).linear(v). 
- If v is an Intersect node, then f v = f left(v)  Intersect   f 

right(v).
- If v is a Union node, then f v = f left(v)   Union   f right(v).
- If v is a Branch node, then f v = (f InOne(v)  Intersect  

select(v))  Union  (f Inzero(v)  Intersect  Not(select(v))). 

Definition 3. A CLTED node is formally defined as in 
Definition 1, when all nodes excluding Branch node are 
used. 



Example: Fig. 3 shows OLTED node developed for the 
statement: If (a) then    X <= b + c    Else    X <= b – c. As 
illustrated in this figure, boolean condition a is converted to 
a – 1 = 0 (Notice: The E symbol near the a node, in the 
Select field, shows the Equality operator, i.e. =). 

0

Fig. 3. Example of an OLTED node 

B. LTED operations 

Now we describe how addition, subtraction, 
multiplication, union and intersection of two LTEDs are 
performed.  

The addition and multiplication operators are applied 
similar to TED’s ADD and MULT when two OLTEDs are 
not Branch nodes [8]. Otherwise InOne and InZero fields of 
Branch node will be added to (multiplied by) another node 
as InOne and InZero fields of result respectively. At this 
point two Branch nodes with same Select fields will be 
distinguished to make a simpler LTED node.  

The union and intersection operators are defined on 
CLTED. Notice that checking the existence of integer 
solutions for a conjunction of linear inequalities is an NP-
complete problem. But here the intersection operator is used 
for checking the existence of integer solutions for a 
conjunction of linear inequalities, when the intersection area 
in a two dimentional space is considered instead of solving 
that linear inequalities. The execution time of this method is 
polynomial. Assuming the two CLTEDs are algebriac 
expressions with two variables including relational 
operators, we must consider the following cases: 
1. Both nodes are Relational Variable nodes (u,v ∈ RV). 

One of our contribution is related to the way in which 
linear equations (equality and nonequality) are solved 
without ILP/SAT solvers. This way, we consider 
conjunction of two or more integer equations in a two 
dimentional space, and compute the intersection area 
which is covered by all equations [10]. For simplifying 
the problem, we consider the solution of two linear 
equations of two variables, i.e., I: [a0*X+b0*Y+c0 Op1 
0] and II: [a1*X+b1*Y+c1 Op2 0], where Op1 and Op2
are {=, >, >=, ≠}. To solve these equations, various 
conditions of coefficients of these equations are 
considered. These conditions describe positions of the 
equations in a two dimentional space. For instance, the 
condition a0*b1-a1*b0=0 shows that the two equations 
are parallel. The conditions b0>0 and a0*a1+b0*b1>0
indicate that both equations have upward direction when 

Op1 and Op2 are considered greater (>). It means that 
the area above the specified lines are covered by those 
equations. The condition c0*b1-c1*b0<0 shows that the 
first equation is above the second one in a two 
dimentional space (see Fig. 4). If two linear equations 
are not parallel, we have to return a Union (Intersect)
node [u Union (Intersect) v]. 

2. Otherwise, this procedure is called recursively to 
compute Conjunction (Intersect) or Disjunction (Union)
of two LTED nodes.  

Fig. 4. Comparison of two linear equations in which Op1, 
Op2 are considered greater ( > ) 

C. DFG to LTED conversion 

The first step is extraction of DFG [see reference 9]. 
After DFG extraction, we will be capable to translate it to 
LTED. Next state and output functions in DFG have 
multiplexer based structures, which will be in one-to-one 
correspondence with Branch node in OLTED. Therefore we 
can make next state and output functions according to 
LTEDs and call them “list of TedState”. The list of TedState 
includes identifier (Id) of next state variable, Id of related 
present state variable and value of next state variable as an 
LTED node. The Id of present state variable will be –1 if 
there is an output or intermediate variable as the next state 
variable. Consider Greatest Common Divisor example. 
TABLE I and Fig. 5 show the list of TedState and a LTED 
node of nxtX signal respectively. This LTED node will be 
regarded as value field of one of the rows in TABLE I that 
indicates Ids of nxtX and X signals. In this example 
relational expressions like “Start = 1” and “X > Y”  will be 
converted to LTED nodes “Start – 1 = 0” and “X – Y –1 ≥
0”, as Select field of first and last Branch nodes, 
respectively. 

TABLE I  
List of TedState in GCD example 

Present State Next State Value of Next State 
X nxtX shown in Fig. 5 
Y nxtY OLTED structure 

Reset nxtReset OLTED structure 
-1 Out OLTED structure 

X

Ea

-1 1

InOne

InZero

Selectb

-1

1c

0

b

1

1c

0

II

I



nxtX

InOne

InZero

Select

InOne

InZero

Select

InOne

InZero

Select

InOne
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Select EReset

-1 1
GEX

-1

1Y

-1

EX

-1

1Y

0

a

-3
1

X

-3
1

G

EStart

-1 1

G

X

-1

1Y

-3

G

Fig. 5. LTED of (nxtX – 3 > 0) 

III Property Checking in Design 

Properties are described in a linear time logic and 
subdivided into an assumption part (P1) and a commitment 
part (P2) where both P1, P2 are defined by the rules below. 
The assumption part can be specified at different times. This 
form of property allows us to check output or control 
signals, safety and liveness properties based on the linear 
time logic.  

P::=(P)|P∧P|¬P|P=P|P>P|P>=P|P≠P|
 time=i, P |Variable|IntegerValue  
Q ::= {P1=>P2} 

An overall view of the property checking is shown in Fig. 
6. First, we extract LTEDs of next state and output functions 
from a synthesized design. Afterwards, we extract tree 
structure of the P2 part to specify what verification 
procedures need to be called at each level of the tree. Two 
procedures, CheckComb and CheckX perform the task of 
verification of this flowchart.

Fig. 6. Flowchart of property Checking mechanism 

Fig. 7 shows the CheckComb procedure in the flowchart 
of Fig. 6. When the P2 part of a property is combinational, 
i.e. without state operators, we must replace intermediate 
variables by their values specified in list of TedState 
(ALLSTS), and convert them to CLTED. Later the 
assumption part of property (P1) will be eliminated from 
computed CLTED. At the end of the procedure, CLTED 
equations, that indicate conditions needed to satisfy the 
property, will be returned. 

To eliminate one CLTED, e.g. u, from another CLTED, 
e.g. v, we recursively perform this procedure till both of 

them become Variable nodes. At this point, if intersection of 
u and v is one of u or v, 1 will be returned. Otherwise 
intersection result will be returned. If u is Intersect or Union 
node, this procedure is called recursively for u.Left and 
u.Right.  

Fig. 7. Combinational part 

Fig. 8 shows the CheckX procedure in the flowchart of 
Fig. 6.  When the P2 part of a property uses the next-state 
operator (X), correctness of the property is checked in three 
major steps. These steps are current state variables to next 
state variables converting, next state variables replacing, 
and simplifying. Simplification is performed based on 
Intersect and Union operators which were described in 
previous sections. If P1 part is subset of the result, this part 
of verification is acceptable and the return result is 
considered as the CLTED node. Else, verification fails. 

 Fig. 8. Next State(X) operator 

To determine whether a CLTED, e.g. u, is subset of 
another one, e.g. v, we perform this procedure recursively 
until u and v become Variable nodes. In this condition, if 
union of them is the second one, i.e. v, it means that u is 
subset of v. If u is Intersect node and u.Left and u.Right are 
subsets of v, then u will be a subset of v. If u is Union node 
and u.Left or u.Right is a subset of v, then u will be a subset 
of v.

CheckX (LTED P2; LTED P1)
  TopV = Get top variable of P2;
  Linear = ALLSTS.Get()->value; 
  Cnst = CheckX(P2->Cnst;  P1); 
  if (P2.kind == E) 
    Result = Linear + Cnst = 0; 
  else if (P2.kind == G)    
    Result = Linear + Cnst > 0; 
  else if (P2.kind == GE)
    Result = Linear + Cnst • 0; 
  else if (P2.kind == NE)         
    Result = Linear + Cnst • 0; 
  else       
    Result = Linear + Cnst; 
    Eliminate (P1, Result); 

CheckComb (LTED P2;  LTED P1)
  ALLSTS: set of next state, output and 
intermediate nodes and their values. 
  TopV = Get top variable of P2;
  Linear = ALLSTS.Get()->value; 
  Cnst = CheckComb(P2->Cnst;  P1); 
  if (P2.kind == E) //Equality Operator
    Result = Linear + Cnst = 0; 
  else if (P2.kind == G)    
    Result = Linear + Cnst > 0; 
  else if (P2.kind == GE)
    Result = Linear + Cnst • 0; 
  else if (P2.kind == NE)             
    Result = Linear + Cnst • 0; 
  else    //no relational expression 
    Result = Linear + Cnst; 
    Eliminate (P1, Result); 

Property (P1 => P2) VHDL Code 

DFG Extraction Extract Parse Tree of P2 

Convert to LTED DFG to LTED 

1) Call CheckComb 
2) Call CheckX 



IV Coverage in LTED Model 

A property specifies the condition on certain circuit 
signals. It also specifies under which assumptions, this 
condition should be held. One of the signals should be 
checked is identified as the observed signal and coverage is 
defined on this observed signal. The observed signals
consists of next state, intermediate and output signals which 
are presented by LTED nodes (see section II). When a 
property is proved to be true in a circuit, coverage should be 
defined for the specified signal according to a subset of 
circuit branches (The circuit branches were satisfied based 
on the assumptions in the property).  

A covered set of paths for an observed signal is a set of 
paths in LTED structure of the observed signal which is 
covered based on property assumptions. Here is an example 
to explain the concept. Suppose that we are to compute the 
coverage of a simple sequence formula in GCD: 
at T:     start=0 & reset=0 & X=12 & Y=3  
at T+1:   X=9     

where X at T+1 or nxtX at T is considered as observed 
signal. The formula specifies that whenever X=12, Y=3, 
start=0 and reset=0, X will be 9 at the next clock cycle. Five 
paths, in nxtX signal, are reachable based on different 
assumptions (see Fig. 9(a)). Also as the bold lines in the Fig. 
9(b) show, a path is just specified based on property 
assumptions. So the coverage of this property is 1/5 = 20% 
according to nxtX signal. 

nxtX

1
InOne

InZero
InOne

InZero
InOne

InZero
InOne

InZero

2
3

4

5

(a) 

nxtX

start=0
reset=0

X # YX > Y InOne

InZero
InOne

InZero
InOne

InZero
InOne

InZero

(b)

Fig. 9. All paths (a) and covered paths (b) in nxtX signal 

Definition 4: Coverage of a formula for an observed signal 
on a given high level model is computed as the fraction of 
paths in the LTED model which are covered based on 
property assumptions (see Equ(3)). Coverage for a set of 
properties is simply obtained by adding the coverages of all 
properties. 

%100
#

cov#
cov ×=

pathsall
pathsered

erage
   (3) 

 When a particular observed signal is fully (100%) 
covered that its LTED model is checked based on property 
assumptions for all paths. It is the best way to determine the 
full coverage of the properties. On the other hand, the 

formulation of the coverage metric identifies the partially-
covered paths in terms of uncovered paths so that the user 
can write additional properties to complete the coverage. 

 We present a recursive algorithm to compute the set of 
covered paths and all paths in the LTED model of an 
observed signal for a sequence formula (see Fig. 10). 
NumberofAllPaths procedure computes all paths in the 
LTED structure of an observed signal. This function is 
called recursively to compute all paths in pIn0 (else) and 
pIn1 (then) parts of a Branch node.  

NumCoverPaths procedure specifies number of paths in 
the LTED structure of an observed signal, which are 
covered when property assumptions are applied to the 
LTED structure. While a Branch node is processing, the 
following cases must be checked:  
1. Variables in pSel field are in assumption part: 

I. If pSel is TRUE based on assumptions, the number of the 
covered paths in pIn1 field should be returned. 

II. If pSel is FALSE based on assumptions, the number of the 
covered paths in pIn0 field should be returned. 

2. Variables in pSel field are not in assumption part, the addition of 
the number of the covered paths in pIn0 and pIn1 fields should 
be returned. 

     
Fig. 10. NumberofAllPaths and NumberofCoveredPaths 

algorithms 
If an Intersect node is processing, the multiplication of 

the number of the covered paths in Left and Right children 
will be returned. If a Union node is processing, the addition 
of the number of the covered paths in Left and Right 
children will be returned. If a Variable node is processing, 
we should check whether it is an intermediate signal. If so, 

int NumberofAllPaths(LTED In)
if(In->type==Branch)
  if(pIn1->type!=Branch) 
    if(pIn0->type!=Branch)  return 2; 
    else return NumberofAllPaths(pIn0)+1; 
  else 
    if(pIn0->type!=Branch) 
      return NumberofAllPaths(pIn1)+1;
    else 
  return NumberofAllPaths(pIn0)+ 

   NumberofAllPaths(pIn1)+1;
int NumCoverPaths(LTED source,LTED assum)
if(source->type==Var)
  if(IsIntermediateVar(source)) 
    tmp = IntermediateVar(source); 
    return NumCoverPaths(tmp,assum); 
  else  return 1; 
if(source->type==Branch)
  if(IsInAssumptions(pSel, assum)) 
    if(IsConditionTrue(pSel, assum)) 
  return NumCoverPaths(pIn1,assum); 
    else 
 return NumCoverPaths(pIn0,assum); 
  else 
    return NumCoverPaths(pIn1,assum)+ 

      NumCoverPaths(pIn0,assum)+1; 
if(source->type==AndTed)
    return NumCoverPaths(pLeft,assum)* 

NumCoverPaths(pRight,assum);
if(source->type==OrTed)
    return NumCoverPaths(pLeft,assum)+ 

NumCoverPaths(pRight,assum);
if(source->type==Const)    return 1;



its value in the “list of TedState” must be checked. 
Otherwise, 1 will be returned. 

V EXPERIMENTAL RESULTS 

We verified different properties on five examples 
including the Traffic Light Control (TLC), Greatest 
Common Divisor (GCD), Elevator (EL), 2-Client Arbiter 
(2CA) and a processor named Simple Architecture, Yet 
Enough Hardware (SAYEH) [see reference 10]. For 
instance, GCD properties are as follows: 
1. start = 1 &  a = 23 => X(x = 23).
2. Reset = 1 &  a = 13 => X(x = 13).
3. start = 0 & Reset = 0 & x =< y  => X(x) = x.
4. start = 0 & Reset = 0 & x > y  => X(x) = x - y.

TABLE II compares our results with those of the VIS 
verification tools [13]. Notice that we have used Windows-
based VIS in which CPU time pertains to EX, EG or EF 
functions, not all parts of VIS. To compute the CPU times, 
we have added appropriate VIS functions to VIS source 
codes in order to report execution time of EX, EG or EF 
function calls. The coverage method shows 80% coverage 
on hwyl signal in TLC example. As mentioned before, this 
method presents how many paths have been considered by 
the described properties, and in TLC example, our 
properties could cover 4/5 of paths at signal hwyl. In 
SAYEH example, some properties are not supported by 
VIS, because they involve both controller and datapath. VIS 
is not able to construct BDD of the datapath part of the 
SAYEH because of its large size.  

TABLE II  
Comparison with VIS  

Circuit TLC GCD SAYEH EL 2CA 
SN hwyl X DataBus door cntl1 
P1 WLM 0.01 0.04 10.9 0.3 0.3 
 PC 20% 25% 10% 33.3% 25% 
 VIS 0.1 0.2 31.2 2.1 1.5 

P2 WLM 0.65 0.1 11.4 0.9 0.4 
 PC 20% 25% 15% 33.3% 25% 
 VIS 1.2 0.6 NS 3.4 1.5 

P3 WLM 12.1 0.03 11.6 0.21 0.1 
 PC 20% 25% 10% 33.3% 25% 
 VIS 19.2 0.13 NS 4.7 0.9 

P4 WLM 0.4 0.03 12.1 --- 0.01 
 PC 20% 25% 20% --- 25% 
 VIS 0.9 0.14 39.8 --- 0.1 

TC 80% 100% 55% 100% 100% 

N WLM 60 32 1612 87 62 

 VIS 974 968442 419062 20418 39381 

M WLM 5.3 4.5 10.3 4.1 5.1 
 VIS 10.1 36 26.48 5.2 5.5 
SN: Signal Name;                       P1-P4: Cpu Time of Property1-4 (seconds) 
WLM: our Word Level Method      NS: Not Supported
PC: %Property Coverage                    TC: %Total Coverage
N: Number of Nodes(LTED,BDD);     M: Memory Usage (MegaByte) 

VI CONCLUSION 

In order to overcome problems related to the use of 
BDDs and other representations [7], we used a high level of 

representation. As the result, we are able to manipulate 
complex designs in much less time and memory than BBD-
based approaches. Our representation treats data and control 
units together and is not limited to controller circuits or 
datapath circuits individually [7]. Also path coverage on 
LTL properties can be obtained based on this word-level 
model efficiently unlike of other models [11, 12]. As 
mentioned before, our approach does not need to solve 
integer equations or do satisfiability checking despite of 
other approaches [3, 4, 5, 6, 9].  
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