
1

Algorithms and DSP Implementation of H.264/AVC

Hung-Chih Lin, Yu-Jen Wang, Kai-Ting Cheng, Shang-Yu
 Yeh, Wei-Nien Chen, Chia-Yang Tsai, Tian-Sheuan Chang, Hsueh-Ming Hang

Dept. Electronics Engineering, and Institute of Electronics, Hsinchu 300, Taiwan
e-mail: hclin.ee93g@nctu.edu.tw, cosbe@twins.ee.nctu.edu.tw, kt34.ece90@nctu.edu.tw, chucky1984820.ee91@nctu.edu.tw,

tpht78@hotmail.com, cytsai.ee90g@nctu.edu.tw, tschang@twins.ee.nctu.edu.tw, hmhang@mail.nctu.edu.tw

Abstract - This survey paper intends to provide a comprehen-
sive coverage of the techniques that are pertinent to the proc-
essor-based implementation of H.264/AVC video codec, par-
ticularly on DSP. Most of this paper is devoted to the computa-
tionally efficient algorithms, or the fast algorithms. Fast algo-
rithms for motion estimation, intra-prediction and mode deci-
sion are described to reduce the computational complexity. In
addition, in order to port the H.264/AVC codec to DSP, we also
outline the basic principles of DSP code optimization.

I. Introduction

ITU H.264 Advance Video Coding (AVC), also known as
the MPEG-4 part 10 [1], offers the highest coding efficiency
among all the existing video compression standards for, par-
ticularly, very low rate video transmission. However, it also
has the highest computational complexity. Therefore, reduc-
ing its implementation complexity becomes a very chal-
lenging subject.

Numerous studies on reducing H.264/AVC codec imple-
mentation complexity have been published in the past 3
years since this standard was finalized in late 2002. The
purpose of this survey is to give a comprehensive treatment
of the techniques that are pertinent to the processor-based
implementation of H.264 codec. Although H.264 is a very
new standard, its literature is abundant. Limited by space
and our knowledge, we will describe the approaches that,
based on our experiences, have good potential in construct-
ing a DSP-based codec. In general, the encoder part can be
speedup by various fast algorithms to save the computation,
while both encoder and decoder can be accelerated by the
processor-dedicated parallel processing instructions.

The rest of the paper is organized as follows. In Section II,
we first brief review the H.264 video standard and its com-
putational profile. Section III contains a short discussion on
the general principles of accelerating an algorithm imple-
mented on a processor. Then, we present the fast algorithms
for the intra prediction, motion estimation, mode decision
and other parts in Section II to Section VI, respectively.
Then we show the code speed-up tips for DSP in Section VII.
Finally, a few conclusion remarks are made in Section VIII.

II. Overview of H.264 Video Coding

A. Overview

H.264 consists of a number of tools. Its basic structure is
the so-called motion-compensated transform coder. Com-
pared to the prior video coding standards, many important
and new techniques are employed in H.264 and they to-
gether bring significant improvement on coding performance.
Some of these techniques are highlighted here [2]. We may
want to add that the concepts of some of these tools have

existed for some time but they are nicely tuned and inte-
grated together to form a good compression scheme in
H.264.

1) Variable block-size motion compensation with multiple
references

The basic unit in H.264 motion estimation is the 16x16
macroblock. It can be further split into a tree structure, with
a minimum motion compensation block size as small as 4x4.
Also, up to five reference frames may be used for motion
compensation.

2) Directional spatial intra coding

To reduce the correlation inside a block, H.264 adopts the
intra-prediction technique, which estimates the current block
pixel values based on the known pixels of its neighbor
blocks. The prediction results implicitly follow the edge
direction, and often bring significant improvements.

3) In-loop deblocking filter

Block-based video coding produces artifacts known as
blocking artifacts at low bit rates. This in-loop deblocking
filter adjusts its filter strength adaptively according to the
image local characteristics, and thus it provides better qual-
ity pictures at the decode end.

4) Context adaptive entropy coding

Two entropy coding methods, Context-based Adaptive
Binary Arithmetic Coding (CABAC) and Context-based
Adaptive Variable Length Coding (CAVLC), are provided in
H.264. Both methods use context-base adaptivity to improve
the entropy coding performance and the results show this
approach is quite successful.

A simplified encoding flow of H.264 is shown in Fig. 1. A
video frame is first partitioned into a number of 16x16 mac-
roblocks. Then, each macroblock goes through the in-
tra-prediction or the inter-prediction unit. The intra predic-
tion unit uses the neighboring block data to predict the cur-
rent block. The inter-prediction uses reference frames to
predict the current frame. Each predictor has a number of
modes. A good design should pick up the best mode with the
lowest rate and distortion. The prediction residuals are then
transformed, quantized and further entropy-coded into the
output bitstream. In order to continue operating on the next
incoming frame, the quantized current frame is reconstructed
and stored. The decoder data flow is the reverse of the en-
coder flow.

B. Computational profile

The H.264 encoder reference software provided by the
ITU/MPEG standard committee is known for its high com-
putational complexity. A typical computational profile of the

2

H.264 encoder (ITU/MPEG reference software) running on
Intel PC, is shown in Fig. 2. It shows that the tools of (a)
motion estimation, (b) entropy coding, (c) transform and
quantization, (d) interpolation, and (e) mode decision and
intra-prediction are the most time-consuming modules. Al-
though the other processors would have somewhat different
architectures from the Intel processor, by and large, the trend
is pretty much the same. As for the decoder, the tools of (a)
motion compensation (including interpolation), (b) entropy
decoding, and (c) intra-prediction have the CPU load.

Deblk
Filter

+ T Q
Entropy
Coder

Q-1T-1

+

MCME

-

video

Ref 1

Ref 2

Ref 3

Intra
Pred.

Deblk
Filter

+ T Q
Entropy
Coder

Q-1T-1

+

MCME

-

video

Ref 1

Ref 2

Ref 3

Intra
Pred.

Fig. 1. Block diagram of H.264 encoder

Fig. 2 Computational profile of H.264 video encoding.

III. Acceleration Methodology

The focus of this paper is efficient implementations of
H.264 on a DSP system. Limited by the computing power
and memory size of DSP, we need to modify the original
software to reduce its computational complexity and to
match the DSP computing architecture.

Essentially there are two types of calculation acceleration
steps. The first type is programming techniques that reduce
the redundancy in the execution codes and alter the program
to match the DSP structure, for example, loop unrolling. The
second type is to replace certain complicated modules by

their approximation counter parts. That is, in contrast to the
first type of speed-up process that does not change the out-
put values, the second type speed-up process changes the
output values. Our target is to find the fast algorithm mod-
ules that approximate the original modules well and, there-
fore, little performance degradation is encountered.

Typically, we first analyze the current program complex-
ity by profiling its execution as we did in the last section.
After identifying the most computational intensive modules,
we look for proper acceleration steps. In the case of H.264,
the decoder is rigidly specified by the standard and thus
generally only the first type acceleration steps can be used so
that the output values are precisely reserved after accelera-
tion. On the other hand, the encoder is not completely speci-
fied by the standard and thus there is quite a lot of flexibility
in the encoder. We thus look for good fast algorithms that
replace the original modules without sacrificing the com-
pression efficiency.

IV. Fast Algorithms for Intra Prediction

A. Overview
Intra-prediction uses the high correlation property of

neighboring samples in spatial domain to predict the current
encoded samples. For the luma samples, each prediction
block may be formed for each 4x4 block (denoted as I4MB)
or for an entire MB (denoted as I16MB). When utilizing
Intra_4x4 prediction, each 4x4 block chooses one of the nine
prediction modes, which include one DC mode plus eight
directional prediction modes, as shown in Fig. 3 (left), as the
best one. In the luma component of an MB, the Intra_16x16
prediction is typically chosen for smooth image areas, and
thus, only four prediction modes are specified as shown in
Fig.3 (right) except for the DC mode. The chroma samples
of an MB are predicted using a similar prediction pattern,
Intra_8x8, which is similar to the luma Intra_16x16 predic-
tion.

Fig. 3 Intra prediction modes for Intra_4x4 (left) and Intra_16x16
(right).

B. Fast algorithms
The fast algorithms of intra prediction can be classified

into several types. The first approach is “early termination”,
which ends the search operation when the calculated distor-
tion is smaller than a pre-chosen threshold. The selection of
a proper measure for deciding termination is critical to the
performance. It may be derived based on the macroblock
smoothness [3][4] or the most probable mode [5]. The early

0

1

43

57

8

6

3

termination based on the macroblock smoothness calculates
a smoothness measure of a macroblock to determine the
block type. For example, the large block type such as In-
tra_16x16 is chosen often for the flat image areas [3][4].
“Smooth” means that all the pixel values in a MB are similar;
that is, their variance is small. The variance computation
shall be simple to save computation. Therefore, the
Mean-Absolute-Difference (MAD) operation [3] or the
AC/DC ratio [4] is often used. If the variable is smaller than
a pre-selected threshold value, the Intra_16x16 mode is
chosen and thus the costly Intra_4x4 can be skipped.

Another kind of early termination proposal examines the
most probable mode first. For example, in searching for the
best Intra_4x4 mode, if its residual is smaller than a thresh-
old, then the other eight Intra_4x4 modes are skipped (not
chosen). Otherwise, all nine modes have to be tested. Then,
we set another threshold to decide whether to keep on
checking the Intra_16x16 prediction or not. It was reported
that in one case, this method together with the 2:1 down-
sampling and rate-distortion optimization (RDO) can reduce
68.8% of total computation time with only 1.35% of bit rate
increase comparing to the reference software [5]. The major
issue in this type of algorithms is how to determine the
threshold. The threshold value can be adjusted according to
the quantization parameters for instance. To construct a more
efficient scheme, we propose a mixed fast intra prediction
algorithm. It first examines both the most probable mode
and the DC mode to determine if it meets the early termina-
tion criterion. The threshold value is decided by the average
of SATD (sum of absolute transformed difference) of all the
previous Intra_4x4 blocks in this frame. Once the 16 In-
tra_4x4 blocks are done, their total cost will be used as the
threshold for deciding Intra_16x16 mode. These threshold
values seem to be able to match the video local characteris-
tics and provide good results. Even when RDO is turned off,
we can achieve around 30% computational savings for the
intra prediction module.

The second approach uses the edge analysis to quickly
identify the edge direction since the intra prediction is basi-
cally a directional prediction [6][7]. Often the Sobel opera-
tors or the first order derivative are used as the edge analysis
tool to find the most probable edge, which will be used as
one of the final edge candidates. The final mode candidate
list includes the one selected by the edge detector together
with the other highly probable modes. In the case Intra_4x4,
this would mean two modes of the neighboring blocks and
the DC mode; and in the Intra_16x16 and Intra_8x8 cases,
only the DC mode is considered highly probable. Therefore,
only four candidate modes (for Intra_4x4) or two candidate
modes (other types) are needed to be examined. The result
shows that 60% of intra_only computation time reduction is
observed with RDO and the bit rate increase is around 2~3%
[6]. The bit rate increase may be owing to the irregular edges
within a block. On the other side, the extra computation
needed for edge analysis can be a computation burden and
reduce the overall saving significantly.

The third approach uses the so-called three step approach

[8]. It first tests the horizontal and vertical directions, it then
tests the neighboring 22.5 degree modes close to the better
one from the previous step, and finally the best mode
up-to-now is checked against the DC mode for the final
winner. This approach has the advantage of a fixed number
of modes are examined for all cases. However, computation
time reduction is around 33% with about 1% bit rate in-
crease.

The last approach makes use of the correlation in the
temporal domain [9] since the best prediction mode in the
current macroblock is likely similar to that in the reference
macroblock in the previously coded frame(s). Thus, the pri-
mary intra prediction mode is selected from the mode of the
most overlapped block in motion estimation. The computa-
tional overhead is nearly zero since all information is ob-
tained during the inter-prediction operation. It is reported
that the coding performance is nearly unchanged while the
computational savings is about 50% assuming the in-
tra-frame period is 10 [9].

In summarizing various fast intra-prediction algorithms,
although we cite the experimental results from the proposed
documents, a fair comparison among all methods is difficult
because their simulation environments are quite different.
One important element affecting computation is the option
of RDO in the reference software. This is particularly true
for the early termination method with thresholds.

The algorithms described in the above can be combined
together to achieve further speed-up. For example, the first
step could be the decision on Intra_4x4 or Intra_16x16. The
second step could be the early termination for the chosen
intra type. Finally, the rest of mode tests could be a fast al-
gorithm to select one from the nine or four candidate modes.

V. Fast Algorithms for Motion Estimation

A. Overview

 Block matching based motion estimation and compen-
sation is a fundamental process in the current international
video compression standards. It can efficiently remove in-
terframe redundancy. A direct implementation is the full
search algorithm that examines exhaustively every candidate
motion vector in the search window to find the globally best
matched block in the reference frame. However, its compu-
tationally intensive nature prevents it from practical imple-
mentation on a processor for real-time applications. The
computation burden is increased drastically for the H.264
encoder because there are a number of combinations of par-
titioning a macroblock into sub-block(s) ranging from 4x4 to
16x16. Potentially each sub-block can have its own motion
vector. This feature significant increases the computational
complexity in motion estimation. Thus, many fast motion
estimation algorithms have been proposed to alleviate the
computational load.

Most of the fast algorithms are based on the well-known a
priori knowledge, “the motion field of a real world image
sequence is usually gentle, smooth and varies slowly”. Fast
motion estimation algorithms can be categorized into

4

roughly three families as described below.

B. Fast algorithms for motion estimation

1) Searching over a subset of possible candidate points with
certain search patterns

Based on the assumption of convexity of the unimodal
error surface, i.e., block matching distortion increases
monotonically away from the global minimum point, many
gradient-based search methods with carefully designed
search patterns have been developed to limit search points to
a small subset of all possible candidates. This category in-
cludes the well-known three-step search (3SS) [10], the new
three-step search (N3SS) [11], the cross search (CS) [12],
the one-dimensional gradient descent search (1DGDS) [13],
the block-based gradient descent search (BBGDS) [14], the
four-step search (4SS) [15], the diamond search (DS) [16],
the cross-diamond search (CDS)[17] and the hexagon-based
search (HEXBS) [18]. Although this category of algorithms
may be trapped into a local minimum point and hence the
efficiency of the motion compensation may drop, they can
considerably reduce the number of block matching computa-
tions.

2) Prediction of the motion vector based on correlations
among motion vectors

Motion in most natural image sequences involves a few
blocks and lasts for a few frames. Therefore, spatially or
temporally adjacent blocks often have similar motion vec-
tors. Taking the advantage of the correlation among
neighboring motion vectors, the search window can be con-
strained to a small clique surrounding the “predicted vector”,
a candidate position predicated based on the known
neighboring motion vectors. Many prediction algorithms
have been developed with different complexities. The pre-
diction search algorithm (PSA) [19] simply predicts the cur-
rent block motion vector as the mean value of its neighbor-
ing blocks’ motion vectors. Fuzzy search [20] applies fuzzy
logic to predict the motion vector. In [21], motion vectors
are predicted by integral projections. In [22], a spa-
tial-temporal AR model of motion vectors is constructed and
an adaptive Kalman filter is employed. The multi-resolution
search [23] down-samples a picture to obtain raw motion
vectors at different resolution levels, then it estimates finer
motion vectors from the coarser ones. The multiresolu-
tion-spatiotemporal (MRST) scheme [23] modifies the nor-
mal raster scan order so that some blocks can reference more
motion information by increasing their neighboring blocks
along more directions. It then combines a multiresolution
scheme and spatiotemporal correlation to predict motion
vectors. For burst motions and blocks at the top-left corner,
which has little correlation information, the performance of
this category of algorithms may deteriorate because the re-
finement of prediction is restricted to a small search region.
Moreover, the prediction overhead may reduce the speed
gain.

3) Low complexity block matching criteria

The majority of the computations in motion estimation
originate from computations of block matching distortion. In
general, block matching metrics, such as the mean absolute
difference (MAD) and the mean square error (MSE), involve
pixel-wise operations, which are highly computationally
intensive. Some methods try to simplify distortion computa-
tion by substituting the distortion defined on a subset of pix-
els for the whole block distortion. For instance, the MAD of
128 pixels is used as the matching distortion for a 16x16
macroblock in [23]; the computations can be reduced by one
half with little performance loss. However, this method is
not suitable for small blocks such as 4x4 blocks. Partial dis-
tortion elimination (PDE) in [24] compares every line’s dis-
tortion in a block to avoid computing the distortion of the
entire block. In [25], hypothesis testing is used to estimate
the MAD from the partial mean absolute difference (PMAD),
and the estimated MAD value is used to judge the matching
result.

When fast algorithms in the above three categories are put
together, the motion estimation accuracy may degrade. Ad-
ditional calculations such as the initial motion vector predic-
tion could lead to a considerable amount of computational
overhead.

An approach proposed without quality degradation is the
successive elimination algorithm (SEA) suggested by Li and
Salari [26], which pre-excludes some impossible candidate
points before completing the matching distortion calculation.
SEA is a fast full search algorithm having a performance
identical to FS while it speeds up the search process ap-
proximately by 10 times for 16x16 macroblock based mo-
tion estimation. Some further improvements have been made
in subsequent research [24][27]-[30].

4) Fast fractional motion estimation

In the H.264 video coding scheme [1], the inter prediction
(motion vectors) precision has been increased to quarter
pixel. Typically, people perform the integer pixel motion
estimation (IME) first. Then, the sub-pixel motion estima-
tion or fractional motion estimation (FME) is applied to
achieve refinement. As compared to the integer-value search,
FME has a somewhat different statistical character. This may
due to the facts that the search window of FME refinement
is much smaller than that of IME and that the referenced
sub-pixels are interpolated from the integer-coordinate pix-
els. Consequently, the error surface of FME is much closer
to a uni-modal one, which favors fast algorithms.

Therefore, traditional fast algorithms in IME can also be
used and can be more effective. The scheme adopted by the
H.264 reference software is a three-step-like fast algorithm.
It first checks the nine candidates surrounding the best
match of IME, and then checks further the nine candidates
surrounding the best match from the previous step. However,
to take even more advantage of the uni-modal surface prop-
erty and the highly centralized distribution of sub-pixel mo-
tion vectors, several fast FME algorithms with additional
features are proposed. In [31], a gradient based search algo-
rithm is brought up. The search direction is determined first

5

and looks for the best motion vector along that direction. In
[32], an adaptive search-pattern algorithm is proposed. The
search-pattern is determined by outcome of the previous step
and it biased towards the search center. This method saves
half of the computations when compared to the reference
software.

5) Some recent approaches

The recent trend to further reduce the motion estimation
calculations is to combine the techniques mentioned before.
The idea is each technique, a fast algorithm, is placed its
most suitable target area. Thus, how to find a specific com-
bination that achieves the optimal solution for a specific
application becomes the most important issue. In [33], a fast
algorithm with better coding efficiency on residuals is pro-
posed, which leads to a lower bit rate compared to the full
search algorithm. The method proposed in [34] produces
larger residuals (due to fewer search points) but less motion
information. Overall, it has a better encoding efficiency and
a rather fast coding speed. This type of solutions seems to
the target now researchers are aiming at.

VI. Fast Mode Decision Algorithms

A. Overview

 The mode decision algorithm determines the best mode of
the macroblock from various combinations of in-
ter-prediction and intra-prediction. It can be coded with
seven different block sizes for motion-compensation in the
inter mode, and various spatial directional prediction modes
in the intra mode. To achieve the highest coding efficient as
close as possible, the reference software calculates the rate
distortion costs of all possible modes and the it chooses the
best one that has the minimum cost. This is a very
time-consuming process. To reduce the computation load, a
fast mode decision algorithm is necessary, which can do a
quick screening to drop most poor modes and then it exam-
ines the reminders and identifies the (nearly) best one.

B. Fast mode decision algorithm

The fast mode decision algorithm can be divided into two
types. The first type uses an early termination threshold to
terminate the lengthy mode decision process. The early ter-
mination step can be placed between the intra and inter pre-
diction processes [35][36] or inside the inter prediction proc-
ess [37].

The scheme proposed in [35][36] uses the fact that intra
mode needs more bits for coding and thus has a lower prior-
ity than the inter mode. Thus, if the best inter mode cost is
smaller than a threshold, the intra prediction mode is skipped.
The threshold can be the average of rate distortion cost of a
number of previously coded intra blocks [35] or a ratio be-
tween the average boundary error (ABE) and average rate
(AR) [36], where AR is the average bits for encoding the
motion-compensated residuals and ABE is the average pixel
error between the pixels at boundary of the current and its
adjacent blocks in the best inter mode. The simulation re-
sults show that it can achieve about 20% reduction of com-

putational time with a slight bitrate increase.

In [37], it observes the fact that the 16x16 block usually is
the best block size for large areas of background with still or
uniform motion since it has less motion vector overhead.
Thus, it first checks the cost of 16x16 block size. If it is
smaller than a threshold, say, an average value of previous
16x16 blocks, the inter prediction process is terminated.
Otherwise, a similar procedure is applied to the 8x8 block
size.

The second type of the mode decision algorithms is to re-
duce the number of candidate modes. Intuitively, if the cost
of a larger block-size mode is higher than the cost of the
current block-size mode, the even larger block-size modes
can be excluded. Similarly, if the cost of a smaller block-size
is higher than that of the current block-size mode, the even
smaller block-size modes can be excluded. Following this
argument, we give different priority to each mode. If the
mode with higher priority can provide sufficient image qual-
ity, we can skip the other lower priority modes. A specific
case is the SKIP mode. The SKIP mode refers to the 16x16
mode of which no motion and residual information is coded.
Thus, no motion search is required and it has the lowest
complexity. Therefore, many algorithms assign the highest
priority to the SKIP mode and thus a large percentage of
macroblocks would get the SKIP mode based on spa-
tial-temporal neighborhood information [38]-[40]. This ap-
proach can save a significant proportion of the encoding
time with a slightly bit rate increase and quality drop.

 In summary, the fast mode decision algorithms can be
combined with the other fast intra and inter prediction algo-
rithms to achieve further speedup. In all these algorithms,
the SKIP mode first approach can save significant computa-
tional time. How to determine proper threshold values in a
simple and automatic way is one critical issue for research
and many proposals have been suggested.

VII. DSP Optimization for Video Codec

A. Overview

DSP processors made by different manufacturers vary in
their functionality and capability. For real-time video codec
implementation, the DSP processor shall have the parallel
processing units and a wide data bus bandwidth to support
the huge computational and memory access requirements.
Almost all the high-end DSPs offered by several well-known
vendors can meet these requirements. To make the following
discussions more concrete, the popular TI’s DSP is chosen as
an example in this paper.

Tuning the video codec software for DSP implementation
involves several steps. Traditional development flows in the
DSP industry includes the following. Construct a C model
for validating purpose. The C model is first run on a host PC
or a UNIX workstation. Then, port the C codes to the DSP
assembly language. Years ago, this is done manually and
thus is a painstaking task. As the modern DSP compilers
become more mature, they can do part of the laborious work
of instruction selection, parallelizing, pipelining, and register

6

allocation. However, we still often find that the compilers
are making mistakes from time to time. In addition, in order
to make the final code more compact in size and faster in
speed, the C codes have to be tuned to match the DSP archi-
tecture. Fig. 4 shows the typical three-step DSP code devel-
opment flow [41]. With the help of DSP compiler and opti-
mization tools provided by the venders, the programmer can
now focus on high level algorithm development first, and
then further fine-tune the DSP codes only when necessary.

For porting to DSP, the data type shall be first considered
since the definition of data such as integer can be different
for different processors. For example, on TI C6000, the long
integer means 40 bits. Since the H.264 codec deals with
8-bit pixels, the programmer can use the short data type for
fixed-point multiplication, which takes only one cycle. Fur-
ther optimizations shall make maximal use of all the hard-
ware resources in the critical loops.

Fig. 4 DSP code development flow

B. Optimization for DSP architecture

To maximize C/C++ performance, the following optimiza-
tion methods can be used [41].

1) C/C++ language level optimization

Since the DSP processor has less hardware resources than
the PC environment, unnecessary operations has a strong
impact on the processing speed. To achieve the best software
performance, we use programming tricks to speed up the

software at C/C++ language level. For example, we can use
look-up table to reduce the arithmetic operations in follow-
ing decoding steps: inverse transform, de-quantization, and
entropy decoding [42].Also, to improve the loop operation,
loop unrolling and software pipelining are exploited.

Loop unrolling eliminates or reduces loop management
overhead by “unrolling” the loop. Unrolling loops involves
replacing iterations of the loop by creating additional copies
of the loop itself. Often it leads to faster but larger codes.
However, the trade-off between code size and execution
performance should be carefully balanced. Unrolling only
speeds up code to a certain point, i.e., the law of diminishing
returns prevails.

Software pipelining is used to schedule instructions from
a loop so that multiple iterations of the loop execute in par-
allel. In C6000 compiler, the programmer can use “-o2” and
“-o3” compiler options. The compiler then attempts to ar-
range software pipelines for the codes with the information
that it gathers from the program.

2) Intrinsic operator

The C6000 compiler provides intrinsics, special functions
that map certain high-level operations directly to the inline
C6x instructions to speed up the C codes. All instructions
that are not easily expressed in C codes are supported as
intrinsics [41]. For example, we can use the intrinsic opera-
tor “_abs” to calculate the saturated absolute value.

3) Wider memory access for smaller data width

In order to maximize data throughput, it is often desirable to
use a single load or store instruction to access multiple data
values consecutively located in the memory. For example,
C6x have instructions with associated intrinsics, such as
“_add2()”, “_mpyhl()”, “_mpylh()”, etc, that operate on the
16-bit data stored in the high and low parts of a 32-bit regis-
ter. When operating on a stream of 16-bit data, we can use
word accesses to read two 16-bit values at a time, and then
use another C6x intrinsic to operate on the data. In the ideal
case, we like to get all the units simultaneously operating on
all individual instructions. This parallelism is still hard to
achieve by the compiler and may still need hand–code in
some cases.

4) Memory management

To maximize the processing speed, we prefer using internal
memory to store instructions and data. However, the internal
memory is generally quite small on the DSP processor. For
example, on TMS320DM642 processor, there are only 16
Kbytes program memory and 16 Kbytes data memory in L1
cache, and 256 Kbytes unified memory in L2 cache. There-
fore, memory management becomes very important. In
managing the program memory, we need to delete unused
codes and re-write certain functions to decrease the program
code size. Next, we can use the compiler options to optimize
the execution speed. In managing the data memory, we put
all dynamically allocated memory sections into the external
SDRAM and put the frequently used data in the internal data

7

memory. This highly efficient memory management can
effectively reduce memory stalls.

VIII. Conclusions

H.264/AVC is an efficient video compression scheme but
this codec, particularly the encoder, has a very high compu-
tational complexity. After a short introduction to the H.264
standard, this paper summarizes a number of existing fast
algorithms that can potentially be implemented on a
DSP-like processor. These algorithms are mainly aiming at
accelerating the computational speed of motion estimation,
intra prediction and mode decision modules. In addition, we
also describe the typical tricks used to speed up the C codes
running on DSP.

Acknowledgements

This work was partially sponsored by ZyXEL Communica-
tions Corp., Taiwan, R.O.C., under Grant NCTU-94C031.

References

[1] ITU-T Rec.H.264, ISO/IEC 14496-10 “Advanced
video coding”, Final Draft International Standard,
JVT-G050r1, Geneva, Switzerland, May 2003.
[2] T. Wiegand, G. J. Sullivan, G. Bjontegaad, and A. Lu-
thra, “Overview of the H.264/AVC video coding standard”,
IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp.
560-575, July 2003.
[3] C.-L. Yang, L.-M. Po, and W.-H. Lam, “A fast H.264
intra prediction algorithm using macroblock properties,” in
Proc. ICIP, vol. 1, pp. 461 – 464, Oct. 2004
[4] Y.-K. Lin and T.-S. Chang, “Fast block type decision
algorithm for intra prediction in H.264 FRext,” in Proc. ICIP,
Oct. 2005
[5] B. Meng, O.C. Au, C.-W. Wong, and H.-K. Lam, “Effi-
cient intra-prediction algorithm in H.264,” in Proc. ICIP, vol.
3, pp. 837-840, Sept. 2003.
[6] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, G. N.
Feng, D. J. Wu, and S. Wu, “Fast mode decision algorithm for
JVT intra prediction,” JVT-G013, 7th JVT Meeting, Pattaya,
Thailand, March 2003.
[7] Y.-D. Zhang, F. Dai, and S.-X. Lin, ”Fast 4x4 in-
tra-prediction mode selection for H.264,” in Proc. ICME, vol.
2, pp.1151 – 1154, June 2004.
[8] C. C. Chen, T. S. Chang, “Fast three step intra prediction
algorithm for 4x4 blocks in H.264,” in Proc. ISCAS, 2005.
[9] M.-C. Hwang, J.-K. Cho, J.-H. Kim, and S.-J. Ko, “A
fast intra prediction mode decision algorithm based on tem-
poral correlation for H.264,” in Proc. of 2005 Int’l Tech. Conf.
on Circuits Systems, Computers and Communications, vol. 4,
pp. 1573-1574, Jeiu, July 2005.
[10] J. Jain and A. Jain, “Displacement measurement and its
application in interframe image coding,” IEEE Trans. Com-
mun., Vol.29, (12), pp. 1799–1808, 1981.
[11] R. Li, B. Zeng, and M.L. Liou, “A new three-step
search algorithm for block motion estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 4, (4), pp. 438–443, 1994
[12] M. Ghanbari, “The cross-search algorithm for motion
estimation,” IEEE Trans. Commun., 38, (7), pp. 950–953,
1990.
[13] O.T.-C. Chen, “Motion estimation using a
one-dimensional gradient descent search,” IEEE Trans. Cir-
cuits Syst. Video Technol., 10, (4), pp. 608–616, 2000
[14] L.-K. Liu and E. Feig, “A block-based gradient descent
search algorithm for block motion estimation in video cod-
ing,” IEEE Trans. Circuits Syst. Video Technol., 6, (4), pp.
419–422, 1996.
[15] L.-M. Po and W.-C. Ma, “A novel four-step search al-
gorithm for fast block motion estimation,” IEEE Trans. Cir-
cuits Syst. Video Technol., 6, (2), pp. 313–317, 1996.
[16] S. Zhu and K.-K. Ma, “A new diamond search algo-
rithm for fast block matching motion estimation,” IEEE
Trans. Image Process., 9, (2), pp. 287–290, 2000
[17] C.-H. Cheung and L.-M. Po, “A novel cross-diamond
search algorithm for fast block motion estimation,” IEEE
Trans. Circuits Syst. Video Technol., 12, (12), pp. 1168–1177,
2002
[18] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search
pattern for fast block motion estimation,” IEEE Trans. Cir-
cuits Syst. Video Technol., 12, (5), pp. 349–355, 2002
[19] L. Luo, C. Zou, X. Gao, and Z. He, “A new prediction
search algorithm for block motion estimation in video cod-
ing,” IEEE Trans. Consumer Electron., 43, (1), pp. 56–61,
1997.
[20] Y.-T. Roan and P.-Y. Chen, “A fuzzy search algorithm
for the estimation of motion vectors,” IEEE Trans. Broadcast.,
46, (2), pp. 121–127, 2000
[21] J.H. Lee and J.B. Ra, “Block motion estimation based
on selective integral projections,” Int. Conf. on Image Proc-
essing, vol. 1, pp. 689–692, Sept. 2002.
[22] C.-M. Kuo, C-P. Chao, and C-H Hsieh, “A new motion
estimation algorithm for video coding using adaptive Kalman
filter,” Real-Time Imaging, 8, pp. 387–398, 2002
[23] J. Chalidabhongse and C.-C.J. Kuo, “Fast motion vector
estimation using multiresolution-spatio-temporal correla-
tions,” IEEE Trans. Circuits Syst. Video Technol., 7, (3), pp.
477–488, 1997
[24] H.-S. Wang and R.M. Mersereau, “Fast algorithms for
the estimation of motion vectors,” IEEE Trans. Image Proc-
ess., 8, (3), pp. 435–438, 1999
[25] K. Lengwehasatit and A. Ortega, “Probabilistic par-
tial-distance fast matching algorithms for motion estimation,”
IEEE Trans. Circuits Syst. Video Technol., 11, (2), pp.
139–152, 2001
[26] W. Li and E. Salari, “Successive elimination algorithm
for motion estimation,” IEEE Trans. Image Process., 4, (1),
pp. 105–107, 1995
[27] S.-M. Jung, S.-C. Shin, H. Baik, and M.-S. Park, “New
fast successive elimination algorithm,” Proc. 43rd IEEE
Midwest Symp. on Circuits and Systems, vol. 2, pp. 616–619,
Aug. 2000

8

[28] X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A multilevel
successive elimination algorithm for block matching motion
estimation,” IEEE Trans. Image Process., 9, (3), pp. 501–504,
2000
[29] S.-M. Jung, S.-C. Shin, H. Baik, and M.-S. Park,
“Efficient multilevel successive elimination algorithms for
block matching motion estimation,” IEE Proc., Vis., Image
Signal Process., 149, (2), pp. 73–84, 2002
[30] M. Yang, H. Cui, and K. Tang, “Efficient tree structured
motion estimation using successive elimination,” IEE Proc.
Vis., Image Signal Process., Vol. 151, No. 5, Oct. 2004
[31] H.-M. Wong, O. C Au, and A. Chang, “Fast sub-pixel
inter-prediction – based on the texture direction analysis,”
Proc. IEEE International Symposium, Circuits and Systems,
Oct. 2005.
[32] C.-C. Cheng, Y.-J. Wang, and T.-S. Chang, “A fast frac-
tional pel motion estimation algorithm for H.264/AVC,” in
Proc. VLSI/CAD Conf., 2005.
[33] Z. Chen, P. Zhou, and Y. He, “Fast motion estimation for
JVT”, JVT G-016, 2003
[34] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and
simplified fast motion estimation for JM,” JVT P-021, Oct.
2005
[35] K.-H. Han and Y.-L. Lee, “Fast macroblock mode de-
termination to reduce H.264 complexity,” IEICE Trans.
Fundamentals, Vol.E88–A, 3, pp.800-804, March 2005
[36] J. Lee and Y. Jean, “Fast mode decision for H.264”, LG
Electronics Inc, Digital media research laboratory
[37] Z. Zhou and M.-T. Sun, “Fast macroblock inter mode
decision and motion estimation for H.264/MPEG-4 AVC,”
IEEE International Conference on Image Processing, Oct.
2004.
[38] P. Yin, A. M. Towropes, and J. Boyce, “Fast mode de-
cision and motion estimation for JVT/H.264,” Pro. ICIP,
pp.853-856, 2003
[39] A. C. Yu and G.R. Martin, “Advanced block size se-
lection algorithm for inter frame coding in H.264/MPEG-4
AVC,” Proc. ICIP, pp. 95-98, 2004
[40] C. Grecos and M.Y. Yang “Fast inter mode prediction
for P Slices in the H264 video coding standard,” IEEE Trans
on Broadcasting, Vol. 51, 2, pp.256-263, June 2005.
[41] Texas Instruments, TMS320C6000 Programmer Guide,
2001.
[42] S.-W. Wang, Y.-T. Yang, C.-Y. Li, Y.-S. Tung, and J.-L.
Wu, “An optimization of H.264/AVC baseline decoder on
low-cost TriMedia DSP processor”, Proc. of 49th SPIE An-
nual Meeting, 2004.
.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

