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Abstract - This survey paper intends to provide a comprehen-
sive coverage of the techniques that are pertinent to the proc-
essor-based implementation of H.264/AVC video codec, par-
ticularly on DSP. Most of this paper is devoted to the computa-
tionally efficient algorithms, or the fast algorithms. Fast algo-
rithms for motion estimation, intra-prediction and mode deci-
sion are described to reduce the computational complexity. In 
addition, in order to port the H.264/AVC codec to DSP, we also 
outline the basic principles of DSP code optimization. 

I. Introduction 

ITU H.264 Advance Video Coding (AVC), also known as 
the MPEG-4 part 10 [1], offers the highest coding efficiency 
among all the existing video compression standards for, par-
ticularly, very low rate video transmission. However, it also 
has the highest computational complexity. Therefore, reduc-
ing its implementation complexity becomes a very chal-
lenging subject. 

Numerous studies on reducing H.264/AVC codec imple-
mentation complexity have been published in the past 3 
years since this standard was finalized in late 2002. The 
purpose of this survey is to give a comprehensive treatment 
of the techniques that are pertinent to the processor-based 
implementation of H.264 codec. Although H.264 is a very 
new standard, its literature is abundant. Limited by space 
and our knowledge, we will describe the approaches that, 
based on our experiences, have good potential in construct-
ing a DSP-based codec. In general, the encoder part can be 
speedup by various fast algorithms to save the computation, 
while both encoder and decoder can be accelerated by the 
processor-dedicated parallel processing instructions. 

The rest of the paper is organized as follows. In Section II, 
we first brief review the H.264 video standard and its com-
putational profile. Section III contains a short discussion on 
the general principles of accelerating an algorithm imple-
mented on a processor. Then, we present the fast algorithms 
for the intra prediction, motion estimation, mode decision 
and other parts in Section II to Section VI, respectively. 
Then we show the code speed-up tips for DSP in Section VII. 
Finally, a few conclusion remarks are made in Section VIII. 

II. Overview of H.264 Video Coding  

A. Overview

H.264 consists of a number of tools. Its basic structure is 
the so-called motion-compensated transform coder. Com-
pared to the prior video coding standards, many important 
and new techniques are employed in H.264 and they to-
gether bring significant improvement on coding performance. 
Some of these techniques are highlighted here [2]. We may 
want to add that the concepts of some of these tools have 

existed for some time but they are nicely tuned and inte-
grated together to form a good compression scheme in 
H.264. 

1) Variable block-size motion compensation with multiple 
references

The basic unit in H.264 motion estimation is the 16x16 
macroblock. It can be further split into a tree structure, with 
a minimum motion compensation block size as small as 4x4. 
Also, up to five reference frames may be used for motion 
compensation. 

2) Directional spatial intra coding 

To reduce the correlation inside a block, H.264 adopts the 
intra-prediction technique, which estimates the current block 
pixel values based on the known pixels of its neighbor 
blocks. The prediction results implicitly follow the edge 
direction, and often bring significant improvements. 

3) In-loop deblocking filter 

Block-based video coding produces artifacts known as 
blocking artifacts at low bit rates. This in-loop deblocking 
filter adjusts its filter strength adaptively according to the 
image local characteristics, and thus it provides better qual-
ity pictures at the decode end. 

4) Context adaptive entropy coding 

Two entropy coding methods, Context-based Adaptive 
Binary Arithmetic Coding (CABAC) and Context-based 
Adaptive Variable Length Coding (CAVLC), are provided in 
H.264. Both methods use context-base adaptivity to improve 
the entropy coding performance and the results show this 
approach is quite successful. 

A simplified encoding flow of H.264 is shown in Fig. 1. A 
video frame is first partitioned into a number of 16x16 mac-
roblocks. Then, each macroblock goes through the in-
tra-prediction or the inter-prediction unit. The intra predic-
tion unit uses the neighboring block data to predict the cur-
rent block. The inter-prediction uses reference frames to 
predict the current frame. Each predictor has a number of 
modes. A good design should pick up the best mode with the 
lowest rate and distortion. The prediction residuals are then 
transformed, quantized and further entropy-coded into the 
output bitstream. In order to continue operating on the next 
incoming frame, the quantized current frame is reconstructed 
and stored. The decoder data flow is the reverse of the en-
coder flow. 

B. Computational profile 

The H.264 encoder reference software provided by the 
ITU/MPEG standard committee is known for its high com-
putational complexity. A typical computational profile of the 
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H.264 encoder (ITU/MPEG reference software) running on 
Intel PC, is shown in Fig. 2. It shows that the tools of (a) 
motion estimation, (b) entropy coding, (c) transform and 
quantization, (d) interpolation, and (e) mode decision and 
intra-prediction are the most time-consuming modules. Al-
though the other processors would have somewhat different 
architectures from the Intel processor, by and large, the trend 
is pretty much the same. As for the decoder, the tools of (a) 
motion compensation (including interpolation), (b) entropy 
decoding, and (c) intra-prediction have the CPU load. 
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Fig. 1. Block diagram of H.264 encoder 

Fig. 2 Computational profile of H.264 video encoding. 

III. Acceleration Methodology 

The focus of this paper is efficient implementations of 
H.264 on a DSP system. Limited by the computing power 
and memory size of DSP, we need to modify the original 
software to reduce its computational complexity and to 
match the DSP computing architecture.  

Essentially there are two types of calculation acceleration 
steps. The first type is programming techniques that reduce 
the redundancy in the execution codes and alter the program 
to match the DSP structure, for example, loop unrolling. The 
second type is to replace certain complicated modules by 

their approximation counter parts. That is, in contrast to the 
first type of speed-up process that does not change the out-
put values, the second type speed-up process changes the 
output values. Our target is to find the fast algorithm mod-
ules that approximate the original modules well and, there-
fore, little performance degradation is encountered. 

Typically, we first analyze the current program complex-
ity by profiling its execution as we did in the last section. 
After identifying the most computational intensive modules, 
we look for proper acceleration steps. In the case of H.264, 
the decoder is rigidly specified by the standard and thus 
generally only the first type acceleration steps can be used so 
that the output values are precisely reserved after accelera-
tion. On the other hand, the encoder is not completely speci-
fied by the standard and thus there is quite a lot of flexibility 
in the encoder. We thus look for good fast algorithms that 
replace the original modules without sacrificing the com-
pression efficiency. 

IV. Fast Algorithms for Intra Prediction 

A. Overview
Intra-prediction uses the high correlation property of 

neighboring samples in spatial domain to predict the current 
encoded samples. For the luma samples, each prediction 
block may be formed for each 4x4 block (denoted as I4MB) 
or for an entire MB (denoted as I16MB). When utilizing 
Intra_4x4 prediction, each 4x4 block chooses one of the nine 
prediction modes, which include one DC mode plus eight 
directional prediction modes, as shown in Fig. 3 (left), as the 
best one. In the luma component of an MB, the Intra_16x16 
prediction is typically chosen for smooth image areas, and 
thus, only four prediction modes are specified as shown in 
Fig.3 (right) except for the DC mode. The chroma samples 
of an MB are predicted using a similar prediction pattern, 
Intra_8x8, which is similar to the luma Intra_16x16 predic-
tion. 

Fig. 3 Intra prediction modes for Intra_4x4 (left) and Intra_16x16 
(right).

B. Fast algorithms 
The fast algorithms of intra prediction can be classified 

into several types. The first approach is “early termination”, 
which ends the search operation when the calculated distor-
tion is smaller than a pre-chosen threshold. The selection of 
a proper measure for deciding termination is critical to the 
performance. It may be derived based on the macroblock 
smoothness [3][4] or the most probable mode [5]. The early 
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termination based on the macroblock smoothness calculates 
a smoothness measure of a macroblock to determine the 
block type. For example, the large block type such as In-
tra_16x16 is chosen often for the flat image areas [3][4]. 
“Smooth” means that all the pixel values in a MB are similar; 
that is, their variance is small. The variance computation 
shall be simple to save computation. Therefore, the 
Mean-Absolute-Difference (MAD) operation [3] or the 
AC/DC ratio [4] is often used. If the variable is smaller than 
a pre-selected threshold value, the Intra_16x16 mode is 
chosen and thus the costly Intra_4x4 can be skipped.  

Another kind of early termination proposal examines the 
most probable mode first. For example, in searching for the 
best Intra_4x4 mode, if its residual is smaller than a thresh-
old, then the other eight Intra_4x4 modes are skipped (not 
chosen). Otherwise, all nine modes have to be tested. Then, 
we set another threshold to decide whether to keep on 
checking the Intra_16x16 prediction or not. It was reported 
that in one case, this method together with the 2:1 down-
sampling and rate-distortion optimization (RDO) can reduce 
68.8% of total computation time with only 1.35% of bit rate 
increase comparing to the reference software [5]. The major 
issue in this type of algorithms is how to determine the 
threshold. The threshold value can be adjusted according to 
the quantization parameters for instance. To construct a more 
efficient scheme, we propose a mixed fast intra prediction 
algorithm. It first examines both the most probable mode 
and the DC mode to determine if it meets the early termina-
tion criterion. The threshold value is decided by the average 
of SATD (sum of absolute transformed difference) of all the 
previous Intra_4x4 blocks in this frame. Once the 16 In-
tra_4x4 blocks are done, their total cost will be used as the 
threshold for deciding Intra_16x16 mode. These threshold 
values seem to be able to match the video local characteris-
tics and provide good results. Even when RDO is turned off, 
we can achieve around 30% computational savings for the 
intra prediction module. 

The second approach uses the edge analysis to quickly 
identify the edge direction since the intra prediction is basi-
cally a directional prediction [6][7]. Often the Sobel opera-
tors or the first order derivative are used as the edge analysis 
tool to find the most probable edge, which will be used as 
one of the final edge candidates. The final mode candidate 
list includes the one selected by the edge detector together 
with the other highly probable modes. In the case Intra_4x4, 
this would mean two modes of the neighboring blocks and 
the DC mode; and in the Intra_16x16 and Intra_8x8 cases, 
only the DC mode is considered highly probable. Therefore, 
only four candidate modes (for Intra_4x4) or two candidate 
modes (other types) are needed to be examined. The result 
shows that 60% of intra_only computation time reduction is 
observed with RDO and the bit rate increase is around 2~3% 
[6]. The bit rate increase may be owing to the irregular edges 
within a block. On the other side, the extra computation 
needed for edge analysis can be a computation burden and 
reduce the overall saving significantly. 

The third approach uses the so-called three step approach 

[8]. It first tests the horizontal and vertical directions, it then 
tests the neighboring 22.5 degree modes close to the better 
one from the previous step, and finally the best mode 
up-to-now is checked against the DC mode for the final 
winner. This approach has the advantage of a fixed number 
of modes are examined for all cases. However, computation 
time reduction is around 33% with about 1% bit rate in-
crease.  

The last approach makes use of the correlation in the 
temporal domain [9] since the best prediction mode in the 
current macroblock is likely similar to that in the reference 
macroblock in the previously coded frame(s). Thus, the pri-
mary intra prediction mode is selected from the mode of the 
most overlapped block in motion estimation. The computa-
tional overhead is nearly zero since all information is ob-
tained during the inter-prediction operation. It is reported 
that the coding performance is nearly unchanged while the 
computational savings is about 50% assuming the in-
tra-frame period is 10 [9]. 

In summarizing various fast intra-prediction algorithms, 
although we cite the experimental results from the proposed 
documents, a fair comparison among all methods is difficult 
because their simulation environments are quite different. 
One important element affecting computation is the option 
of RDO in the reference software. This is particularly true 
for the early termination method with thresholds. 

The algorithms described in the above can be combined 
together to achieve further speed-up. For example, the first 
step could be the decision on Intra_4x4 or Intra_16x16. The 
second step could be the early termination for the chosen 
intra type. Finally, the rest of mode tests could be a fast al-
gorithm to select one from the nine or four candidate modes.  

V. Fast Algorithms for Motion Estimation 

A. Overview

  Block matching based motion estimation and compen-
sation is a fundamental process in the current international 
video compression standards. It can efficiently remove in-
terframe redundancy. A direct implementation is the full 
search algorithm that examines exhaustively every candidate 
motion vector in the search window to find the globally best 
matched block in the reference frame. However, its compu-
tationally intensive nature prevents it from practical imple-
mentation on a processor for real-time applications. The 
computation burden is increased drastically for the H.264 
encoder because there are a number of combinations of par-
titioning a macroblock into sub-block(s) ranging from 4x4 to 
16x16. Potentially each sub-block can have its own motion 
vector. This feature significant increases the computational 
complexity in motion estimation. Thus, many fast motion 
estimation algorithms have been proposed to alleviate the 
computational load. 

Most of the fast algorithms are based on the well-known a 
priori knowledge, “the motion field of a real world image 
sequence is usually gentle, smooth and varies slowly”. Fast 
motion estimation algorithms can be categorized into 
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roughly three families as described below. 

B. Fast algorithms for motion estimation 

1) Searching over a subset of possible candidate points with 
certain search patterns 

Based on the assumption of convexity of the unimodal 
error surface, i.e., block matching distortion increases 
monotonically away from the global minimum point, many 
gradient-based search methods with carefully designed 
search patterns have been developed to limit search points to 
a small subset of all possible candidates. This category in-
cludes the well-known three-step search (3SS) [10], the new 
three-step search (N3SS) [11], the cross search (CS) [12], 
the one-dimensional gradient descent search (1DGDS) [13], 
the block-based gradient descent search (BBGDS) [14], the 
four-step search (4SS) [15], the diamond search (DS) [16], 
the cross-diamond search (CDS)[17] and the hexagon-based 
search (HEXBS) [18]. Although this category of algorithms 
may be trapped into a local minimum point and hence the 
efficiency of the motion compensation may drop, they can 
considerably reduce the number of block matching computa-
tions.

2) Prediction of the motion vector based on correlations 
among motion vectors 

Motion in most natural image sequences involves a few 
blocks and lasts for a few frames. Therefore, spatially or 
temporally adjacent blocks often have similar motion vec-
tors. Taking the advantage of the correlation among 
neighboring motion vectors, the search window can be con-
strained to a small clique surrounding the “predicted vector”, 
a candidate position predicated based on the known 
neighboring motion vectors. Many prediction algorithms 
have been developed with different complexities. The pre-
diction search algorithm (PSA) [19] simply predicts the cur-
rent block motion vector as the mean value of its neighbor-
ing blocks’ motion vectors. Fuzzy search [20] applies fuzzy 
logic to predict the motion vector. In [21], motion vectors 
are predicted by integral projections. In [22], a spa-
tial-temporal AR model of motion vectors is constructed and 
an adaptive Kalman filter is employed. The multi-resolution 
search [23] down-samples a picture to obtain raw motion 
vectors at different resolution levels, then it estimates finer 
motion vectors from the coarser ones. The multiresolu-
tion-spatiotemporal (MRST) scheme [23] modifies the nor-
mal raster scan order so that some blocks can reference more 
motion information by increasing their neighboring blocks 
along more directions. It then combines a multiresolution 
scheme and spatiotemporal correlation to predict motion 
vectors. For burst motions and blocks at the top-left corner, 
which has little correlation information, the performance of 
this category of algorithms may deteriorate because the re-
finement of prediction is restricted to a small search region. 
Moreover, the prediction overhead may reduce the speed 
gain. 

3) Low complexity block matching criteria 

The majority of the computations in motion estimation 
originate from computations of block matching distortion. In 
general, block matching metrics, such as the mean absolute 
difference (MAD) and the mean square error (MSE), involve 
pixel-wise operations, which are highly computationally 
intensive. Some methods try to simplify distortion computa-
tion by substituting the distortion defined on a subset of pix-
els for the whole block distortion. For instance, the MAD of 
128 pixels is used as the matching distortion for a 16x16 
macroblock in [23]; the computations can be reduced by one 
half with little performance loss. However, this method is 
not suitable for small blocks such as 4x4 blocks. Partial dis-
tortion elimination (PDE) in [24] compares every line’s dis-
tortion in a block to avoid computing the distortion of the 
entire block. In [25], hypothesis testing is used to estimate 
the MAD from the partial mean absolute difference (PMAD), 
and the estimated MAD value is used to judge the matching 
result. 

When fast algorithms in the above three categories are put 
together, the motion estimation accuracy may degrade. Ad-
ditional calculations such as the initial motion vector predic-
tion could lead to a considerable amount of computational 
overhead. 

An approach proposed without quality degradation is the 
successive elimination algorithm (SEA) suggested by Li and 
Salari [26], which pre-excludes some impossible candidate 
points before completing the matching distortion calculation. 
SEA is a fast full search algorithm having a performance 
identical to FS while it speeds up the search process ap-
proximately by 10 times for 16x16 macroblock based mo-
tion estimation. Some further improvements have been made 
in subsequent research [24][27]-[30].

4) Fast fractional motion estimation 

In the H.264 video coding scheme [1], the inter prediction 
(motion vectors) precision has been increased to quarter 
pixel. Typically, people perform the integer pixel motion 
estimation (IME) first. Then, the sub-pixel motion estima-
tion or fractional motion estimation (FME) is applied to 
achieve refinement. As compared to the integer-value search, 
FME has a somewhat different statistical character. This may 
due to the facts that the search window of FME refinement 
is much smaller than that of IME and that the referenced 
sub-pixels are interpolated from the integer-coordinate pix-
els. Consequently, the error surface of FME is much closer 
to a uni-modal one, which favors fast algorithms.  

Therefore, traditional fast algorithms in IME can also be 
used and can be more effective. The scheme adopted by the 
H.264 reference software is a three-step-like fast algorithm. 
It first checks the nine candidates surrounding the best 
match of IME, and then checks further the nine candidates 
surrounding the best match from the previous step. However, 
to take even more advantage of the uni-modal surface prop-
erty and the highly centralized distribution of sub-pixel mo-
tion vectors, several fast FME algorithms with additional 
features are proposed. In [31], a gradient based search algo-
rithm is brought up. The search direction is determined first 
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and looks for the best motion vector along that direction. In 
[32], an adaptive search-pattern algorithm is proposed. The 
search-pattern is determined by outcome of the previous step 
and it biased towards the search center. This method saves 
half of the computations when compared to the reference 
software.

5) Some recent approaches 

The recent trend to further reduce the motion estimation 
calculations is to combine the techniques mentioned before. 
The idea is each technique, a fast algorithm, is placed its 
most suitable target area. Thus, how to find a specific com-
bination that achieves the optimal solution for a specific 
application becomes the most important issue. In [33], a fast 
algorithm with better coding efficiency on residuals is pro-
posed, which leads to a lower bit rate compared to the full 
search algorithm. The method proposed in [34] produces 
larger residuals (due to fewer search points) but less motion 
information. Overall, it has a better encoding efficiency and 
a rather fast coding speed. This type of solutions seems to 
the target now researchers are aiming at.  

VI. Fast Mode Decision Algorithms 

A. Overview

  The mode decision algorithm determines the best mode of 
the macroblock from various combinations of in-
ter-prediction and intra-prediction. It can be coded with 
seven different block sizes for motion-compensation in the 
inter mode, and various spatial directional prediction modes 
in the intra mode. To achieve the highest coding efficient as 
close as possible, the reference software calculates the rate 
distortion costs of all possible modes and the it chooses the 
best one that has the minimum cost. This is a very 
time-consuming process. To reduce the computation load, a 
fast mode decision algorithm is necessary, which can do a 
quick screening to drop most poor modes and then it exam-
ines the reminders and identifies the (nearly) best one.  

B. Fast mode decision algorithm 

The fast mode decision algorithm can be divided into two 
types. The first type uses an early termination threshold to 
terminate the lengthy mode decision process. The early ter-
mination step can be placed between the intra and inter pre-
diction processes [35][36] or inside the inter prediction proc-
ess [37]. 

The scheme proposed in [35][36] uses the fact that intra 
mode needs more bits for coding and thus has a lower prior-
ity than the inter mode. Thus, if the best inter mode cost is 
smaller than a threshold, the intra prediction mode is skipped. 
The threshold can be the average of rate distortion cost of a 
number of previously coded intra blocks [35] or a ratio be-
tween the average boundary error (ABE) and average rate 
(AR) [36], where AR is the average bits for encoding the 
motion-compensated residuals and ABE is the average pixel 
error between the pixels at boundary of the current and its 
adjacent blocks in the best inter mode. The simulation re-
sults show that it can achieve about 20% reduction of com-

putational time with a slight bitrate increase.  

In [37], it observes the fact that the 16x16 block usually is 
the best block size for large areas of background with still or 
uniform motion since it has less motion vector overhead. 
Thus, it first checks the cost of 16x16 block size. If it is 
smaller than a threshold, say, an average value of previous 
16x16 blocks, the inter prediction process is terminated. 
Otherwise, a similar procedure is applied to the 8x8 block 
size.  

The second type of the mode decision algorithms is to re-
duce the number of candidate modes. Intuitively, if the cost 
of a larger block-size mode is higher than the cost of the 
current block-size mode, the even larger block-size modes 
can be excluded. Similarly, if the cost of a smaller block-size 
is higher than that of the current block-size mode, the even 
smaller block-size modes can be excluded. Following this 
argument, we give different priority to each mode. If the 
mode with higher priority can provide sufficient image qual-
ity, we can skip the other lower priority modes. A specific 
case is the SKIP mode. The SKIP mode refers to the 16x16 
mode of which no motion and residual information is coded. 
Thus, no motion search is required and it has the lowest 
complexity. Therefore, many algorithms assign the highest 
priority to the SKIP mode and thus a large percentage of 
macroblocks would get the SKIP mode based on spa-
tial-temporal neighborhood information [38]-[40]. This ap-
proach can save a significant proportion of the encoding 
time with a slightly bit rate increase and quality drop.  

  In summary, the fast mode decision algorithms can be 
combined with the other fast intra and inter prediction algo-
rithms to achieve further speedup. In all these algorithms, 
the SKIP mode first approach can save significant computa-
tional time. How to determine proper threshold values in a 
simple and automatic way is one critical issue for research 
and many proposals have been suggested.  

VII. DSP Optimization for Video Codec 

A. Overview

DSP processors made by different manufacturers vary in 
their functionality and capability. For real-time video codec 
implementation, the DSP processor shall have the parallel 
processing units and a wide data bus bandwidth to support 
the huge computational and memory access requirements. 
Almost all the high-end DSPs offered by several well-known 
vendors can meet these requirements. To make the following 
discussions more concrete, the popular TI’s DSP is chosen as 
an example in this paper.  

Tuning the video codec software for DSP implementation 
involves several steps. Traditional development flows in the 
DSP industry includes the following. Construct a C model 
for validating purpose. The C model is first run on a host PC 
or a UNIX workstation. Then, port the C codes to the DSP 
assembly language. Years ago, this is done manually and 
thus is a painstaking task. As the modern DSP compilers 
become more mature, they can do part of the laborious work 
of instruction selection, parallelizing, pipelining, and register 
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allocation. However, we still often find that the compilers 
are making mistakes from time to time. In addition, in order 
to make the final code more compact in size and faster in 
speed, the C codes have to be tuned to match the DSP archi-
tecture. Fig. 4 shows the typical three-step DSP code devel-
opment flow [41]. With the help of DSP compiler and opti-
mization tools provided by the venders, the programmer can 
now focus on high level algorithm development first, and 
then further fine-tune the DSP codes only when necessary.   

For porting to DSP, the data type shall be first considered 
since the definition of data such as integer can be different 
for different processors. For example, on TI C6000, the long 
integer means 40 bits. Since the H.264 codec deals with 
8-bit pixels, the programmer can use the short data type for 
fixed-point multiplication, which takes only one cycle. Fur-
ther optimizations shall make maximal use of all the hard-
ware resources in the critical loops.  

Fig. 4 DSP code development flow  

B. Optimization for DSP architecture 

To maximize C/C++ performance, the following optimiza-
tion methods can be used [41]. 

1) C/C++ language level optimization 

Since the DSP processor has less hardware resources than 
the PC environment, unnecessary operations has a strong 
impact on the processing speed. To achieve the best software 
performance, we use programming tricks to speed up the 

software at C/C++ language level. For example, we can use 
look-up table to reduce the arithmetic operations in follow-
ing decoding steps: inverse transform, de-quantization, and 
entropy decoding [42].Also, to improve the loop operation, 
loop unrolling and software pipelining are exploited.  

Loop unrolling eliminates or reduces loop management 
overhead by “unrolling” the loop. Unrolling loops involves 
replacing iterations of the loop by creating additional copies 
of the loop itself. Often it leads to faster but larger codes. 
However, the trade-off between code size and execution 
performance should be carefully balanced. Unrolling only 
speeds up code to a certain point, i.e., the law of diminishing 
returns prevails. 

Software pipelining is used to schedule instructions from 
a loop so that multiple iterations of the loop execute in par-
allel. In C6000 compiler, the programmer can use “-o2” and 
“-o3” compiler options. The compiler then attempts to ar-
range software pipelines for the codes with the information 
that it gathers from the program. 

2) Intrinsic operator 

The C6000 compiler provides intrinsics, special functions 
that map certain high-level operations directly to the inline 
C6x instructions to speed up the C codes. All instructions 
that are not easily expressed in C codes are supported as 
intrinsics [41]. For example, we can use the intrinsic opera-
tor “_abs” to calculate the saturated absolute value.

3) Wider memory access for smaller data width 

In order to maximize data throughput, it is often desirable to 
use a single load or store instruction to access multiple data 
values consecutively located in the memory. For example, 
C6x have instructions with associated intrinsics, such as 
“_add2()”, “_mpyhl()”, “_mpylh()”, etc, that operate on the 
16-bit data stored in the high and low parts of a 32-bit regis-
ter. When operating on a stream of 16-bit data, we can use 
word accesses to read two 16-bit values at a time, and then 
use another C6x intrinsic to operate on the data. In the ideal 
case, we like to get all the units simultaneously operating on 
all individual instructions. This parallelism is still hard to 
achieve by the compiler and may still need hand–code in 
some cases.

4) Memory management 

To maximize the processing speed, we prefer using internal 
memory to store instructions and data. However, the internal 
memory is generally quite small on the DSP processor. For 
example, on TMS320DM642 processor, there are only 16 
Kbytes program memory and 16 Kbytes data memory in L1 
cache, and 256 Kbytes unified memory in L2 cache. There-
fore, memory management becomes very important. In 
managing the program memory, we need to delete unused 
codes and re-write certain functions to decrease the program 
code size. Next, we can use the compiler options to optimize 
the execution speed. In managing the data memory, we put 
all dynamically allocated memory sections into the external 
SDRAM and put the frequently used data in the internal data 
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memory. This highly efficient memory management can 
effectively reduce memory stalls. 

VIII.  Conclusions 

H.264/AVC is an efficient video compression scheme but 
this codec, particularly the encoder, has a very high compu-
tational complexity. After a short introduction to the H.264 
standard, this paper summarizes a number of existing fast 
algorithms that can potentially be implemented on a 
DSP-like processor. These algorithms are mainly aiming at 
accelerating the computational speed of motion estimation, 
intra prediction and mode decision modules. In addition, we 
also describe the typical tricks used to speed up the C codes 
running on DSP. 
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