
A Real-Time and Bandwidth Guaranteed
Arbitration Algorithm for SoC Bus Communication

Chien-Hua Chen, Geeng-Wei Lee, Juinn-Dar Huang, and Jing-Yang Jou
Department of Electronics Engineering

National Chiao Tung University
Hsinchu, Taiwan

e-mail: {tony, gwlee, jyjou}@eda.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw

Abstract – In shared SoC bus systems, arbiters are usually
adopted to solve bus contentions with various kinds of
arbitration algorithms. We propose an arbitration algorithm,
RT_lottery, which is designed to meet both hard real-time and
bandwidth requirements. For fast evaluation and exploration,
we use high abstract-level models in our system simulation
environment to generate parameters for our configurable
arbiter. The experimental results show that RT_lottery can
meet all hard real-time requirements and perform very well in
bandwidth allocation. The results also show that RT_lottery
outperforms several commonly-used arbitration algorithms
today.

1. Introduction

Although there are many possible communication
architectures for inter-module communications in SoC
systems, shared buses are still very popular among these
architectures because of their simplicity and area efficiency.
The masters on an SoC bus may issue requests
simultaneously and hence an arbiter is required to decide
which master is granted for bus access. In many applications,
masters may have real-time and/or bandwidth requirements
on requests. A master with a real-time requirement demands
its transactions accomplished within a fixed number of clock
cycles. On the other hand, a master with a bandwidth
requirement must occupy a fixed fraction of total bandwidth
of a bus. If designers find that the implemented arbitration
algorithm cannot fulfill some requirements at late design
stages, they have to return to a very early design stage to
modify the original arbitration algorithm. This would result
in a significant schedule delay.

Arbitration algorithms commonly used for shared buses
include Static Priority, Time Division Multiplexing (TDM),
and Round-Robin [1-4]. Lottery is the arbitration algorithm
proposed recently [5] with the advantages of (i) providing
designers with good control over bandwidth allocation for
each master, and (ii) providing a high-priority master with
quite low transaction latency. However, all arbitration
algorithms mentioned above cannot well handle bandwidth
and hard real-time requirements concurrently.

In this paper, we propose a two-level arbitration algorithm,
RT_lottery, which is expected to meet hard real-time and
bandwidth requirements of each master at the same time. At
the 1st level, we use a Real-Time Handler to satisfy all hard
real-time requirements. At the 2nd level, a Lottery-based
algorithm with tuned weight is adopted for proper bandwidth
allocation.

We compare RT_lottery with other three arbitration
algorithms, Static Priority, Lottery, and TDM+Lottery (1st

level: TDM, 2nd level: Lottery). The experimental results
show that RT_lottery with parameters generated by our
weight tuning flow can handle real-time and bandwidth
requirements of each master better than the other arbitration
algorithms.

The rest of this paper is organized as follows: previous
work including the introduction to some common arbitration
algorithms (Static Priority, TDM, and Lottery) is presented
in Section 2. Section 3 describes the proposed arbitration
algorithm (RT_lottery) and the flow for generating
appropriate parameters of RT_lottery to meet bandwidth
requirements. The experimental environment and results are
shown in Section 4. Section 5 concludes this paper.

2. Preliminaries

2.1 Previous work
In this section, we briefly introduce several previous

arbitration schemes [1-4].
1) Static Priority:

Each master is statically assigned a unique priority value.
When multiple masters issue requests simultaneously, the
master with the highest priority gets granted. The advantage
of this arbitration scheme is its simple implementation and
small area cost. However, if masters with higher priority
issue requests excessively and frequently, other masters with
lower priority may rarely be granted. This could introduce
severe starvation of low-priority masters and result in
extremely unfair bandwidth allocation.
2) TDM:

Time Division Multiplexing (TDM) algorithm divides
access time on a bus into time slots and then allocates these
slots to masters in certain way. If a master possessing the
current time slot does not issue request, the time slot would
be wasted. To mend this inefficiency, a 2nd level arbitration
algorithm is usually adopted to reallocate the current slot to
other requesting masters. Fig. 1 is an example architecture of
two-level TDM.

For a two-level TDM arbitration algorithm, the 1st level
uses a time wheel where each slot is statically reserved for a
unique master and the 2nd level can adopt any arbitration
algorithm depending on the target application. For example,
if the bandwidth allocation among masters is important, 2nd

level can use an arbitration algorithm with better ability of

bandwidth allocation. Also note that Round-Robin is
actually one kind of TDM algorithm.
3) Lottery [5-6]:

An arbiter implementing the Lottery arbitration algorithm
is like a lottery manager deciding which lucky one wins a
prize. Each mater on the bus is statically assigned a number
of “lottery tickets”. The lottery manager generates a pseudo
random number, and the master having the ticket matched to
this number is granted for access. Obviously, the master
having more tickets is more likely granted.

Let the masters be M1, M2, …, Mn and the number of
tickets held by each master be t1, t2, ..., tn. At any cycle, the
set of pending requests is represented by a set of Boolean
variables r1, r2, ..., rn, where ri =1 means that Mi has a
pending request, and ri =0 otherwise. The master to be
granted is chosen with the probability given by the equation:

()
⋅

⋅=
= jj

n
j

ii
i

tr

tr
MP

1

The number of tickets of each master can be regarded as
its weight. A master with higher weight has higher
probability to be granted. We represent the number of tickets
possessed by a master as its weight in the following sections.
In summary, the Lottery arbitration algorithm is (i) capable
of providing designers with good control over bandwidth
allocation for each master, and (ii) quite good at providing
high priority master with low transaction latency.

2.2 Observations on Lottery arbitration algorithm
A real-time requirement in the previous work [5] is

represented in terms of the average transaction latency.
However, such a requirement can only be regarded as a
loose real-time requirement since there may exist some
extremely long-latency transactions. For hard real-time
requirements, all transaction latencies (not the average
transaction latency) must be smaller than the given
requirement all the time.

Meanwhile, to meet the bandwidth requirements, masters
are assigned weights according to the ratio of their required
bandwidth [5]. Nevertheless, if the bus access behaviors are
very diverse among masters, the actual bandwidth ratio
would not conform to the weight ratio. The reason may be
that the actual traffic load generated by some master is much
less or much more than it requests. For example, a master
asks for a large fraction of bus bandwidth but rarely issues
requests. For this reason, we propose a weight tuning
method for better bandwidth allocation.
 To meet the real-time requirements, the weight of the
master with the minimum latency requirement should be
much larger than the others. However, it is really hard to
assign a proper weight to each master if there are multiple
masters with diverse real-time and bandwidth requirements.
For instance, how to assign a proper weight to a master that
has a tight real-time requirement but requires only a small
fraction of bus bandwidth. Furthermore, if there are masters
having hard real-time requirements, a probabilistic
arbitration algorithm like Lottery is obviously not
appropriate for such applications.

TDM wheel

M1

M2

M3

M2 M3

M1

M3

M2

TDM wheel

M1

M2

M3

M2 M3

M1

M3

M2

Does M1 request?Does M1 request?

Grant to M1

Yes

Grant to M1

Yes

2nd Level
Arbitration Algorithm

No

2nd Level
Arbitration Algorithm

No

Fig. 1. An example architecture of the two-level TDM

3. Proposed Approach

3.1 Proposed arbiter architecture
Since probabilistic arbitration algorithms cannot handle

hard real-time requirements, we propose a two-level
arbitration algorithm, RT_lottery (R for Real-time, T for
Tuned weight) to solve the problem. The proposed arbiter
architecture is shown in Fig. 2. The 1st level, Real-Time
Handler, is designed to handle real-time requirements. The
2nd level, Lottery with tuned weight, is designed to handle
bandwidth requirements. The weight of each master is fine
tuned by our weight tuning algorithm based on the
evaluation results obtained from system simulation. The
details of RT_lottery will be described in later sections.

3.2 Simulation model
In our model, it is assumed that once a master possesses

the bus, other masters cannot access the bus until the
possessing master releases the bus, i.e., each transaction is
non-preemptive. An example of a system architecture
containing four masters is shown in Fig. 3. Each master has
a traffic generator. The behavior of each traffic generator is
given by designers. The arbiter receives requests from all
masters then decides which master should be granted.

There are four types of traffic behaviors that can be given
for a master:
(1) Rcycles:

It is the real-time requirement (in clock cycles) of a
master. For those masters without real-time requirements,
this information should be left undefined.
(2) Beat number and probabilities:

It defines the probabilities of burst sizes possibly issued
by a master. Take Table 2 for example, M3 issues requests
of which 50% requests are 8-beat burst and the other 50%
requests are 16-beat burst.
(3) Interval cycles and probabilities:

It determines the interval time between two successive
requests issued by a master. However, the rule of deciding
the interval time varies with different master types
(explained later). For example, in Table 2, 10% of the
request interval of M1 is 6 clock cycles while 20% is 7 clock
cycles and so on.

1st level 2nd level

Lottery with tuned weight
(for bandwidth requirements)

Real-time handler
(for real-time requirements)

Fig. 2. Proposed arbiter architecture

(4) Type:
In our work, masters are classified into three types based

on their traffic behaviors:
1. D type (D for Dependency):

D type masters have no real-time requirements and the
next request is issued at the time depending on the finish
time of the current request. For D type masters, the
interval time between two successive requests is the time
from the issued time of the former to the finish time of the
latter. Fig. 4(a) shows an example. At cycle 2, assume the
traffic generator generates a 4-beat burst. The request is
not granted until cycle 5 and is finished at cycle 9 (4-beat
burst). If the interval time is 10, then the next request is
issued at cycle 19 (The issued time of the latter request is
the finish time of the former plus 10 cycles).
2. D_R type (D for Dependency, R for Real-time):

D_R type masters are the same as D type masters
except that they have extra real-time requirements. Fig.
4(b) is an example with the same parameters used in Fig.
4(a). In this example, the master has a real-time
requirement, Rcycle, which is set to 10 cycles. Thus the
request issued at cycle 2 must be finished before cycle 12
(2 + Rcycles = 12), which is shown as the dotted line in the
figure. If the request is not finished before cycle 12, a
real-time violation occurs.
3. ND_R type (ND for No Dependency, R for Real-time):

The issued time of a request from an ND_R type master
is independent of the finish time of its previous request,
and the interval time is the clock cycles between two
successive requests. In Fig. 4(c), assume that the interval
time is 15. The second request is issued at cycle 17, which
directly depends on the issued time (at cycle 2) of the first
request but not its finish time (at cycle 9). Since the
current request must be finished before the next request,
the reasonable value of Rcycles is supposed to be smaller
than the minimum possible interval time. That is,
designers can also assign a tighter real-time requirement.
To ensure a reasonable Rcycles, we define Rcycles =
min(tmin_interval , tuser_given), where tmin_interval is the minimum
possible interval time and tuser_given is the real-time
requirement given by designers.

3.3 Proposed arbitration algorithm
In this section, the algorithms of the Real-Time Handler

and the weight tuning process for Lottery are described in
detail.

Traffic generator 1Traffic generator 1

Traffic generator 2Traffic generator 2

Traffic generator 3Traffic generator 3

Traffic generator 4Traffic generator 4

M1 M1

M2 M2

M3 M3

M4 M4

ArbiterArbiter

Fig. 3. An example architecture

finish

9 cycle

request

2

grant

5

grant

5

request

1712

finish

9

grant

5

request

19 cycle

request

2 12

finish

9

grant

5

grant

5

request

19 cycle

request

2

(a) D type master

(b) D_R type master with Rcycles = 10

(c) ND_R type master with Rcycles = 10

Fig. 4. The example of three types of masters

3.3.1 Real-Time Handler
The Real-Time Handler sets a real-time counter for each

master according to their real-time requirements. When a
master issues a request, the corresponding real-time counter
is set to this master’s Rcycles. The real-time counter is
decremented by 1 every cycle until the master is granted.
warning_line is a global constant value used to remind the
arbiter to grant the most urgent master. The master would
have higher priority if its corresponding real-time counter
value is belowthe warning_line. When two or more
real-time counters are below warning_line, the master with
the smallest real-time counter value (more urgent) gets
granted. Fig. 5 shows an example of Real-Time Handler’s
operation. We assume that M1 has Rcycles = 30 and the whole
system has warning_line = 25.

Let us focus on cycle 3 and cycle 11:
(1) Cycle 3 (the left table in Fig. 5):

As M1 issues a request at this cycle, the real-time counter
of M1 is set to its Rcycles , 30. All other masters also issue
requests at this time, but only M2’s real-time counter value
is below warning_line and thus it is granted first.
(2) Cycle 11 (the right table in Fig. 5):

M2’s request is a 8-beat burst, and therefore the request is
finished at cycle 11. At this time, all real-time counters of
the pending masters (M1 and M3) are decremented by 8.
The values of real-time counters of M1 and M3 are both
below warning_line. Since the value of M3’s real-time
counter is smaller, M3 is granted at this cycle.

To meet all real-time requirements in any circumstances,
warning_line must be carefully set according to the worst
contending case. That is,
warning_line = (maximum possible beat of D_R and

ND_R masters) + maximum possible beat
number of D masters

cycle

Yes

No

Yes

Request

No25M2

Yes19M3

No22M1

GrantReal-time
counter

Yes

No

Yes

Request

No25M2

Yes19M3

No22M1

GrantReal-time
counter

Yes

Yes

Yes

Request

Yes25M2

No27M3

No30M1

GrantReal-time
counter

Yes

Yes

Yes

Request

Yes25M2

No27M3

No30M1

GrantReal-time
counter

3

M1 requests
Grant to M2

11
Grant to M3

Fig. 5. Rcycles of M1 = 30, warning_line = 25

The idea behind warning_line is as follows: in the worst
circumstance, the D type master with the maximum possible
beat number issues a request of its maximum possible beat
number and gets granted. At the next cycle, all other masters
with real-time requirements all issue requests. It must be
guaranteed that all the real-time requirements of these
masters can still be met after the request of this D type
master is finished.

Take Table 1 as an example and the worst contending
case is shown in Fig. 6:
warning_line =
max(5,6,7,4,5,6)+max(2,3,4)+max(3,4,5)+max(5,6,7) = 23

If there is no master with Rcycles smaller than warning_line,
the proposed arbiter is guaranteed to meet all hard real-time
requirements.

3.3.2 Weight tuning flow for Lottery
In this section, we present the 2nd level of RT_lottery,

Lottery with tuned weight. Fig. 7 shows the weight tuning
flow.

First, we read in the traffic information of each master
given by designers. Each master’s required bandwidth must
be smaller than its maximum bandwidth. The maximum
bandwidth of a master is calculated by assuming there is
only one master on the bus, i.e., all requests from the master
are granted immediately. To screen out unreasonable
bandwidth requirements, we evaluate the maximum
bandwidth of each master first. Initial weight assignment is
based on each master’s maximum and required bandwidth.

Second, the weight tuning process tries to move
bandwidth share from a master whose allocated bandwidth is
more than its required bandwidth to another master whose
allocated bandwidth is less than its required bandwidth. We
say that a master has extra bandwidth if its allocated
bandwidth is more than its required bandwidth. If there are
no masters having extra bandwidth, the weight tuning
process stops.

3.3.3 Algorithm of weight tuning
In this section, the greedy algorithm of the block named

weight tuning in Fig. 7 is presented. First, we introduce
some definitions:

Mi: Each master in the system is marked as Mi, i = 1 ~
n, where n is the total number of masters in the
system.

Smore: If (Mi’s simulated bandwidth – Mi’s required
bandwidth > 2%), Mi ∈ Smore.

Sless: If (Mi’s required bandwidth – Mi’s simulated
bandwidth > 2%), Mi ∈ Sless.

Smet: If (|Mi’s required bandwidth – Mi’s simulated
bandwidth| < 2%), Mi ∈ Smet.

mmost: The master with the most extra bandwidth in Smore.
mleast: The master lacking the most bandwidth in Sless.
tm: The number of tickets mmost has.
tl: The number of tickets mleast has.

Table 1. A traffic pattern for the explanation of warning_line

60/5040/504/403/302/30200D_RM3

50/5040/507/406/405/20DM1
interval/ prob.beat/prob.Rcyclestype

16/5014/507/206/505/30120ND_RM5
90/9080/105/304/503/20100D_RM4

70/8060/206/305/204/50DM2
60/5040/504/403/302/30200D_RM3

50/5040/507/406/405/20DM1
interval/ prob.beat/prob.Rcyclestype

16/5014/507/206/505/30120ND_RM5
90/9080/105/304/503/20100D_RM4

70/8060/206/305/204/50DM2

Worst case

cycle

M1 M3 M4 M5

7 4 5 7

Fig. 6. The worst contending case in Table 1 for real-time

Yes
Finish Weight Tuning

No

No

Do all masters
meet requirement?

Yes Output current
best solution

Read design information

Evaluate each master’s
max bandwidth

Prompt required bandwidth

Allocate initial
weight -> f()

bandwidthmax
bandwidthrequired

Fast evaluation via simulation

Have no extra bandwidth?

Fig. 7. The weight tuning flow for Lottery

td: The number of tickets that we try to move from tm
to tl each time.

B : The bound used for deciding td.

The pseudo code of the weigh tuning algorithm is shown
in Fig. 8. First, masters are classified into three exclusive
sets, Smore, Sless, and Smet (line 1), and then B is initialized
(line 2). The while loop (line 5-19) decides td (line 6) for
new tm and tl (line 12 and 13) in each iteration. It stops on
two conditions: (i) td = 0, the weight cannot be tuned any
more (line 7); (ii) the new tm and tl do not result in moving
masters whose bandwidth requirements are met originally
(Smore and Smet) into Sless (line 15). Otherwise, another
iteration proceeds and B is reduced to re-calculate a new td,
tm and tl.

4. Experimental Results

4.1 Experimental environment setup
We compare RT_lottery with other three arbitration

algorithms, Lottery, Static Priority, and TDM+Lottery. We
use a system containing six masters for evaluation. The
parameters of these arbitration algorithms are set as follows:
(1) Lottery:

The weight of each master is assigned according to its
required bandwidth (weight ratio = required bandwidth
ratio).
(2) Static Priority:

Each master is assigned a priority according to its
required bandwidth. The master with higher required
bandwidth has a higher priority.

Fig. 8. The pseudo code of weight tuning

(3) TDM+Lottery:
1st level - TDM: Masters with real-time requirements are

allocated with time slots accordingly.
2nd level - Lottery: The weight of each master is assigned

according to its required bandwidth (weight ratio = required
bandwidth ratio).

4.2 Experiment 1
 In this experiment, 6 masters are put on a bus with the
traffic behaviors shown in Table 2 [3,7]. For each type of
master, we design a heavy-traffic master and a light-traffic
master. For example, both M1 and M2 are D type masters,
and the requests issued by M1 have larger beat numbers and
shorter average interval than those issued by M2. That
means M1 generates a heavier traffic load to the bus than
M2 does.

The difficulty to meet both real-time and bandwidth
requirements generally depends on the total required
bandwidth in a system. In the following, we conduct two
experiment cases for observations. We consider a given total
required bandwidth in one case, and consider a set of 100
different total required bandwidth cases randomly generated
in the other case.

First, we evaluate the case that the total required
bandwidth utilizes 94% of the entire bus bandwidth, as
shown in Table 3. The evaluated maximum bandwidth and
the given required bandwidth of masters are also shown in
Table 3. From the table, we observe that the maximum
bandwidth of each master is very different from each other
because there are masters with heavy- and light-traffic loads.

All the experiments are conducted on a PC with a Intel
Pentium 4 2.8G processor and 512MB DRAM. Following
statistics are recorded during simulation for evaluation:
(1) bw_miss_num:

This value represents the number of masters whose
bandwidth requirements are missed.

(2) rt_vio_time:
This value is calculated by: (the number of real-time
violations of all masters’ requests). If a request of Mi

with real-time requirements is not finished within Mi’s
Rcycles cycles, a real-time violation occurs on this request.

(3) max_latency:
During a simulation run, we record the latencies of all
requests and pick the maximum latency among them as
the max_latency.

The experimental results are shown in Table 4. On the
ability of bandwidth allocation, Static Priority is poor as
expected, but Lottery is surprisingly poor as well. This fact
indicates that Lottery still needs a good weight tuning
strategy for better bandwidth allocation. On the aspect of
real-time handling ability, Lottery and Static Priority are
failed to meet real-time requirements since they do not take
real-time requirements into consideration. Note that Static
Priority is even worse than Lottery because its max_latency
is much longer than that of Lottery (7060 vs. 954). Though
TDM+Lottery can handle real-time and bandwidth
requirements better, it still fails in bandwidth allocation
(bw_miss_num = 1).

In general, it is usually harder to meet requirements with
higher total required bandwidth summed from all the
masters with bandwidth requirements, i.e., the bus utilization
is supposed higher. In the second experiment case, we use a
generator that can randomly generate the required bandwidth
for each master. And let Rsum represent the total required
bandwidth in terms of the percentage of entire bus
bandwidth. Here, we evaluate seven different values of Rsum,
ranging from 65% to 95%. For each Rsum , 100 random cases
are conducted to compare four arbitration algorithms. Rsum_i

represents the ith case (i = 1 ~ 100) of simulation for Rsum.
The simulation time for each Rsum_i is less than one minute
on our equipment. Following statistics are recorded during
simulation for evaluation:
(1) rt_vio_time_sum:

(rt_vio_time in each Rsum_i)
(2) rt_fail_case_sum:

The number of cases which contain one or more real-time
violations among all 100 cases (Rsum_i is a case failed to
meeting real-time requirements if rt_vio_time > 0 in
Rsum_i).

(3) bw_fail_case_sum:
The number of cases which fail to meet bandwidth
requirements among all 100 cases (Rsum_i is a case failed
to meeting bandwidth requirements if bw_miss_num > 0
in Rsum_i).

(4) fail_case_sum:
The number of cases which fail to meet real-time or
bandwidth requirements among all 100 cases, (Rsum_i is a
failed case if rt_vio_time > 0 or bw_miss_num > 0 in
Rsum_i).

The experimental results are shown in Table 5. We can
see that it is harder to meet the requirements with larger Rsum .
The value of fail_case_sum decreases as Rsum goes low. The
summary of experimental results is shown in Table 6.
RT_lottery can not only meet real-time requirements but
also be good at bandwidth allocation for the masters.

1: Classify masters;
2: Initialize B = 1, finish = 0;
3: tm_old = tm; // Record the old value of tm and tl

4: tl_old = tl;
5: while (finish == 0) {
6: td = B * tm / 2;
7: if (td == 0) { // Loop breaks if it is not a meaningful action
8: tm = tm_old;
9: tl = tl_old;
10: break;
11: }
12: tm = tm_old - td;
13: tl = tl_old + td;
14: simulate();
15: if(requirements of the masters in Smore and Smet are still met)
16: finish = 1;
17: else
18: B = B / 2;
19: }

4.3 Experiment 2
The objective of experiment 2 is to observe the impact of

different burst beat numbers on the arbitration algorithms.
The traffic patterns are given that all masters send the same
beat numbers of 8, 16, and 32, respectively. Similar to the
experiment 1, we run 100 random cases for each Rsum.

The experimental results are shown in Fig. 9. RT_lottery
is the best among the four algorithms for fixed 8, 16, and
32-beat. RT_lottery and TDM+Lottery, which are capable of
handling both bandwidth and real-time requirements,
perform much better than the other two algorithms.
Nevertheless, it is harder to meet requirements with larger
fixed beat number for RT_lottery and TDM+Lottery, since
the numbers of failed cases arise with larger beat numbers.
The reason is that with larger beat number, the granularities
of weight (ticket number) for RT_lottery and TDM+Lottery
get coarser. Each time a fixed amount of weight is
transferred from Mi to Mj, the influence of weight transfer on
cases of 8 or 16 fixed beat number is smaller than that on the
case of 32 fixed beat number.

5. Conclusions

The two-level arbitration algorithm, RT_lottery, is
proposed in this paper. We use high abstract-level models
and a fast simulation-based evaluation environment to
generate appropriate parameters for RT_lottery. RT_lottery
is guaranteed to meet all hard real-time requirements and
perform very well in bandwidth allocation. Three existing
arbitration algorithms, Static Priority, Lottery, and
TDM+Lottery are compared with RT_lottery. The
experimental results show that RT_lottery is the best among
these four algorithms in the ability to handle real-time and
bandwidth requirements.

Hence, the RT_lottery-based arbiter can be a better choice
for those SoC systems containing masters with hard
real-time and diverse bandwidth requirements.

Table 2. The traffic pattern for the experiment 1

88/20

68/20

13/20

9/20

13/20

9/20

69/1067/4066/2065/1016/508/5065ND_RM5

87/40

12/40

8/40

12/40

8/40

86/20

11/20

7/20

11/20

7/20

10/106/1016/508/5065D_RM3

10/106/1016/508/50DM1

interval/prob.beat/prob.Rcyclestype

89/1085/104/501/5085ND_RM6

14/1010/104/501/5085D_RM4

14/1010/104/501/50DM2

88/20

68/20

13/20

9/20

13/20

9/20

69/1067/4066/2065/1016/508/5065ND_RM5

87/40

12/40

8/40

12/40

8/40

86/20

11/20

7/20

11/20

7/20

10/106/1016/508/5065D_RM3

10/106/1016/508/50DM1

interval/prob.beat/prob.Rcyclestype

89/1085/104/501/5085ND_RM6

14/1010/104/501/5085D_RM4

14/1010/104/501/50DM2

Heavy traffic Light traffic

Table 3. An example bandwidth requirement

2171040520
Required
Bandwidth(%)

21719631863
Maximum
Bandwidth(%)

M6M5M4M3M2M1

2171040520
Required
Bandwidth(%)

21719631863
Maximum
Bandwidth(%)

M6M5M4M3M2M1

=> 94 % in total

Table 4. The experimental results of the experiment 1

170

314

954

7060

max _latency
(cycle)

1603 (50%)Lottery

01 (17%)TDM+Lottery

2443 (50%)Static Fixed Priority

0 (0%)

bw_miss_num rt_vio_time

0RT_lottery 170

314

954

7060

max _latency
(cycle)

1603 (50%)Lottery

01 (17%)TDM+Lottery

2443 (50%)Static Fixed Priority

0 (0%)

bw_miss_num rt_vio_time

0RT_lottery

Table 5. The results of 100 random cases

38
57
66
68
79
80
87
fail

0
0
0
0
0
0
0
rt_v

03865
05770
06675
06880
07985
08090
08795
rt_fbw_fRsum

38
57
66
68
79
80
87
fail

0
0
0
0
0
0
0
rt_v

03865
05770
06675
06880
07985
08090
08795
rt_fbw_fRsum

58
75
84
91
96
96
99
fail

2
3
6
6
8
8
1
rt_v

25865
37570
68375
69180
89585
89690
19995
rt_fbw_fRsum

58
75
84
91
96
96
99
fail

2
3
6
6
8
8
1
rt_v

25865
37570
68375
69180
89585
89690
19995
rt_fbw_fRsum

RT_lottery Lottery

Static
Priority

TDM+
Lottery

100
100
100
100
100
100
100
fail

8274
9022
9007
10535
11159
12150
12915
rt_v

1004565
1005870
1007375
1008680
1009885
1009790
1009995
rt_fbw_fRsum

100
100
100
100
100
100
100
fail

8274
9022
9007
10535
11159
12150
12915
rt_v

1004565
1005870
1007375
1008680
1009885
1009790
1009995
rt_fbw_fRsum

98
97
100
100
100
100
100
fail

10345
11076
11200
14235
13739
17396
18577
rt_v

968265
978370
998875
1009880
9910085
10010090
10010095
rt_fbw_fRsum

98
97
100
100
100
100
100
fail

10345
11076
11200
14235
13739
17396
18577
rt_v

968265
978370
998875
1009880
9910085
10010090
10010095
rt_fbw_fRsum

rt_v : rt_vio_time_sum rt_f : rt_fail_case_sum
bw_f : bw_fail_case_sum fail : fail_case_sum

Table 6. The summery of the experimental results

Good but requiring weight tuningNo considerationLottery

PoorNo considerationStatic Fixed Priority

Good but requiring weight tuningOnly fails for critical casesTDM + Lottery

BestAlways holdsRT_lottery

Bandwidth allocation capability Real-time capabilityArbitration algorithm

Good but requiring weight tuningNo considerationLottery

PoorNo considerationStatic Fixed Priority

Good but requiring weight tuningOnly fails for critical casesTDM + Lottery

BestAlways holdsRT_lottery

Bandwidth allocation capability Real-time capabilityArbitration algorithm

R_sum

Fa
iled

 ca
ses

8-beat

16-beat 32-beat

Fig. 9. Number of failed cases for 100 random cases

References

[1] C. H. Pyoun, C. H. Lin, H. S. Kim, and J. W. Chong, “The
Efficient Bus Arbitration Scheme In Soc Environment,”
International Workshop on System-on-Chip for Real-Time
Applications, 2003, Page(s):311 – 315.

[2] M. Yang, S. Q. Zheng, Bhagyavati, and S. Kurkovsky,
“Programmable Weighted Arbiters for Constructing Switch
Schedulers,” Workshop on High Performance Switching and
Routing, 2004, Page(s):203 – 206.

[3] M. Conti, M. Caldari, G. B. Vece, S. Orcioni, and C. Turchetti,
“Performance Analysis of Different Arbitration Algorithms of
the AMBA AHB Bus,” Design Automation Conference, 2004,
Page(s):618 – 621.

[4] F. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo,
“Performance Analysis of Arbitration Policies for SoC
Communication Architectures,” Journal of Design Automation
for Embedded Systems, 2003, Page(s):618 – 621.

[5] K. Lahiri, A. Raghunathan, and G. Lakshiminarayan,
“LOTTERYBUS: A New High-Performance Communication
Architecture for System-on-Chip Designs,” Design Automation
Conference, 2001, Page(s):15 – 20.

[6] A. C. Waldspurger and W. E. Weih., “Lottery Scheduling:
Flexible Proportional Share Resource Management,” Symp. on
Operating Systems Design and Implementation, 1994.

[7] K. Lahiri, A. Raghunathan, and S. Dey, “Evaluation of the
Traffic Performance Characterization of System-on-Chip
Communication Architectures,” International Conference on
VLSI Design, 2001, Page(s):29 – 35.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

