
Memory Optimal Single Appearance Schedule with Dynamic Loop Count for
Synchronous Dataflow Graphs

Hyunok Oh, Nikil Dutt Soonhoi Ha
Center for Embedded Computer Systems School of EECS

University of California, Irvine, CA Seoul National University, Seoul, Korea
{hoh,dutt}@ics.uci.edu sha@iris.snu.ac.kr

Abstract— In this paper, we propose a new single appearance
schedule for synchronous dataflow programs to minimize data
memory and code memory size simultaneously. While a single
appearance schedule promises only one appearance of each node
definition in the generated code, it requires significant amount of
data memory overhead compared with a buffer optimal sched-
ule allowing multiple appearance. The key idea of the proposed
technique is to make a dynamic decision of loop count to make
a schedule quasi-static. The proposed quasi-static schedule pro-
duces a single appearance schedule code with minimum data
memory requirement. We prove that every buffer optimal sched-
ule can be transformed to our single appearance schedule which
requires optimal buffer size for arbitrary synchronous dataflow
graphs. The only penalty for the proposed technique is slight per-
formance overhead of computing loop counts dynamically. In
order to minimize the overhead we propose optimization tech-
niques. Experimental results show that the proposed algorithm
reduces 20% total memory with less than 1% performance over-
head compared with the previous single appearance schedule al-
gorithms.

I. INTRODUCTION

As system complexity increases and fast design turn-around
time becomes important, high level software design method-
ologies become critical. In the context of DSP applications,
there have been several approaches to automatic code genera-
tion from block diagram specification including COSSAP [1],
GRAPE [6], and Ptolemy [4]. It is also the main concern of
this paper.

In a hierarchical dataflow program graph, a node, called
a actor or a block, represents a function that transforms in-
put data streams into output streams. The functionality of an
atomic node is described in a high-level language such as C
or VHDL. An arc represents a channel that carries streams of
data samples from the source node to the destination node. The
number of samples produced (or consumed) per node firing is
called the output (or the input) sample rate of the node. In
case the number of samples consumed or produced on each
arc is statically determined and can be any integer, the graph
is called a synchronous dataflow graph (SDF) [7] which is
widely adopted in aforementioned design environments. We
illustrate an example of SDF graph in Figure 1(a). Each arc is

A

B

C

2
1

2 3

1
3

(a)

(b)
3(A2B)2C

main() {
int i,j,k;
for(;;) {

for(i=0;i<3;i++) {/* A’s code */
for(j=0;j<2;j++) { /* B’s code*/
}}

for(k=0;k<2;k++){ /* C’s code */
}}}

(d)

A

B

C

(c)

Fig. 1. (a) SDF graph example, (b) a scheduling result, (c) a code template,
and (d) buffer allocation

annotated with the number of samples consumed or produced
per node execution.

To generate a code from the given SDF graph, the order
of node executions is determined at compile time by static
scheduling of the graph. Since a dataflow graph specifies only
partial orders between nodes, there are usually several valid
schedules that satisfy the partial ordering. Figure 1(b) shows
one of many possible scheduling results in a list form, where
2C means that node C is executed twice. The schedule will
be repeated with the streams of input samples to the applica-
tion. A code template according to the schedule of Figure 1(b)
is shown in Figure 1(d). The block definition is inlined in the
generated code, it is called inline-style. When a software code
is automatically synthesized from an SDF graph, buffer space
is allocated to each arc to store the data samples between the
source and the destination blocks as shown in Figure 1 (c). The
total buffer size becomes 14 in this example. The number of
allocated buffer entries should be no less than the maximum
number of samples accumulated on the arc at run-time.

If a schedule contains only one lexical appearance of each
node, this schedule is called a single appearance sched-
ule(SAS) (e.g. as 3(A2B)2C in Figure 1(b)). A single ap-
pearance schedule minimizes the code memory size since each
block has a single definition in a generated code. Consider
another schedule that is a non single appearance schedule,
2(A2B)C(A2B). Then, the generated code has two instances
for nodes A and B while it reduces the data buffer size from
14 to 10 in Figure 1. In general while an SAS is preferable to

minimize the code memory size, it requires larger buffer mem-
ory than a non SAS. The buffer size on each arc in a SAS is no
less than the least common multiplier of the producing sample
rate and consuming sample rate for the arc.

In this paper we propose a novel single appearance schedul-
ing technique whose key idea is introducing a dynamic de-
cision of loop count to make a schedule quasi-static. The
proposed quasi-static schedule produces a single appearance
schedule code with minimum data memory requirement. Sec-
tion II defines some notations and section III reviews the re-
lated works. In section IV, we introduce motivational exam-
ples. The proposed technique is explained in section V. We
will show experimental results in section VI and make a con-
clusion in section VII.

II. TERMINOLOGY

We use the following notation to represent the parameters of
arc a and node v in SDF graphs.

src(a) : the source node of a that produces samples on the
arc

sink(a) : the sink node of a that consumes samples from
the arc

p(a) : the number of samples produced by an invocation of
src(a)

c(a) : the number of samples consumed by an invocation of
sink(a)

d(a) : the number of initial delay samples on arc a
inputArc(v) : a set of incoming arcs to node v.
outputArc(v) : a set of outgoing arcs from node v.
For arc AB in Figure 1, src(AB) = A, sink(AB)=B,

p(AB)=2, c(AB)=1, d(AB)=0, outputArc(A) =
{AB, AC}, inputArc(B) = {AB} ,outputArc(B) =
{BC} ,and inputArc(C) = {AC, BC}.

III. RELATED WORKS

Since minimization of memory requirements in embedded
system is crucial, many researches have been performed to find
a schedule to minimize data memory and/or code memory.

Ade et al. [2] have developed the formula on the upper
bounds on the minimum buffer memory requirement for a
number of restricted subclasses of delayless, acyclic graphs,
including arbitrary-length chain-structured graphs. Some of
these bounds have been generalized to handle delays in [9]
which has shown that the problem of constructing a schedule
that minimizes the buffer requirement is NP-complete.

Ritz et al. [12] have proposed a buffer sharing optimiza-
tion among a subset of single appearance schedules, called
flat single appearance schedule. Since the flat SAS does not
allow nested loops, it usually requires large buffer memory
even though it shares buffers allocated on each arc. Murthy
et al. have developed several heuristics that produce SAS with
nested loop: APGAN, RPMC, and GDPPO [9]. These al-
gorithms have an inherent limitation that they require at least
buffer memory of LCM(p(a), c(a)) for each arc a.

To overcome the limitation of SAS, some techniques have
been developed, which give up the single appearance con-
straint for overall memory saving [13, 5]. These approaches
observe the tradeoff of code and data memory size and try to
minimize the code memory overhead by generating function-
style codes instead of inline-style code. By defining each block
as a function call, a generated code from a non SAS has only
one definition of each block but paying the extra overhead of
function calls.

Buffer sharing algorithms [8, 11] have been proposed to
minimize data memory. These sharing algorithms analyze
buffer life time and share buffers of which life-times are not
overlapped with each other.

Dynamic loop count schedule for a chained structure graph
has been developed, which requires optimal buffer size [10].
However the schedule is not optimal for general graphs with
delay samples and feedback arcs. In this paper, we extend the
previous schedule to memory optimal schedule for arbitrary
SDF graphs.

IV. MOTIVATION

As discussed earlier, single appearance scheduling algo-
rithms pay huge penalty of data memory for a graph with
large sample rate changes. Moreover, no SAS exists for cyclic
graphs in general. The following two examples show these
limitations of SAS. With those examples we will introduce the
proposed scheduling technique.

The first example is shown in Figure 2(a). The previous SAS
algorithms produce 2A3B5C as the schedule result, which re-
quires 6 and 15 data buffers on arc AB and arc BC respectively.
If a buffer optimal non SAS algorithm is applied, the schedule
becomes ABCABCCBCC(=2(ABC)CB2C) requiring 4 and 7
data buffers, which is minimum buffer size while additional
code memory is necessary to represent multiple appearances
of node B and C in a code.

To avoid the multiple lexical appearances of nodes in buffer
optimal non SAS, we propose a dynamic loop count single ap-
pearance scheduling called dlcSAS which converts a buffer op-
timal non SAS to a single appearance schedule while preserv-
ing the minimum buffer size. Examine the non SAS in Figure 2
(b). In the buffer optimal schedule, whenever a sink node has
enough samples on its input arc it should be executed. Hence,
node B can be executed twice after the second invocation of
node A while node B can be executed only once after the first
invocation of node A. In the proposed dlcSAS, we notate this
varying loop count of node B as 2(A{1,2}B) meaning that the
loop count values of node B are 1 and 2 alternatively every in-
vocation of node A. Similarly, node C can be executed twice
after the second and the third invocations of node B while it
can be executed only once after the first invocation of node B.
The schedule is represented as 3(B{1,2,2}C) in the proposed
dlcSAS. By combining the two schedules, we obtain the final
dlcSAS, 2(A{1,2}(B{1,2,2}C)). The generated code template
from this dlcSAS is shown in Figure 2 (c). Note that the gen-
erated code has a single appearance of each block while pre-

serving the minimum buffer memory as the buffer optimal non
SAS.

main()
{
int n,i,j, a[4],b[7],iC=0;
int lB[2]={1,2},lC[3]={1,2,2};
for(;;) {
for(n=0;n<2;n++) {
/* A’s code */
for(i=0;i<lB[n];i++) {
/* B’s code */
for(j=0;j<lC[iC];j++)
{ /* C’s code */}
iC=(iC+1)%3; }

}}}
(c)

A B

(a)

SAS : 2A3B5C
Buffer-optimal non SAS :

ABCABCCBCC
dlcSAS :

2(A {1,2}(B {1,2,2}C))

(b)

3 2 C35

Fig. 2. (a) An SDF graph (b) schedule results and (c) generated code by
dlcSAS

The second example illustrates a cyclic graph that has no
valid SAS as shown in Figure 3 where there are 4 initial delay
samples on arc BA. 2ABAB is the only valid schedule and it is
a buffer optimal non SAS. We can translate it as a dlcSAS that
is 2({2,1}A B). It means that the first loop count of node A is
2 and the second is 1.

For the simple examples discussed above, dlcSAS may be
regarded as a different representation of non SAS. In order to
transform non SAS to dlcSAS, we first choose the appearance
order of each node by applying topological sort. And then, we
determine the loop count of each node by comparing the non
SAS with the appearance order.

For instance, assume that ABACABBD schedule is given.
We choose the appearance order as ”ABCD”. By comparing
AB with ABCD, we make a schedule of {1}A{1}B{0}C{0}D.
By comparison of AC with ABCD, we build a sched-
ule of {1,1}A{1,0}B{0,1}C{0,0}D. Finally, the schedule
becomes {1,1,1}A{1,0,2}B{0,1,0}C{0,0,1}D by comparing
ABBD with ABCD.

Even though we can build dlcSAS equivalent to any sched-
ule, we are interested in a code with simple expression of loop
count computation to minimize code memory and performance
overhead. In the following section, we will discuss how to
compute the loop count with simple computation.

main()
{
int i,j, a[4],b[4],lA[2]={2,1};
for(;;) {

for(i=0;i<2;i++) {
for(j=0;j<lA[i];j++) {

// A’s code
}
// B’s code

}}}
(c)

A B

(a)

SAS : N/A
Buffer optimal non SAS :

2ABAB
dlcSAS : 2({2,1}A B)

(b)

2 3

2 3
4

Fig. 3. (a) An SDF graph with delay samples (b) schedule results and (c)
generated code by dlcSAS

V. DYNAMIC LOOP COUNT SINGLE APPEARANCE

SCHEDULING ALGORITHM

A. Dynamic Loop Count for a Chained Structure Graph

In this section, we briefly explain dlcSAS for chained struc-
ture in the previous paper [10].

When we change the loop count value of a source node, the
source node should be executed multiple times to produce the
sufficient number of samples for the sink node. Let r be the
accumulated number of samples on the arc. After the source
node is executed h times, h ∗ p(a) + r samples are available.
Since h ∗ p(a) + r ≥ c(a) in order to execute the sink node,
h becomes � c(a)−r

p(a) �. After executing both nodes, the accumu-
lated number r is updated as r+h ∗ p(a) − c(a).

When we change the loop count value of a sink node, the
sink node can be executed until the accumulated samples are
exhausted. Let k be the loop count of the sink node. Since
there are r + p(a) samples after execution of the source node
and r + p(a) − k ∗ c(a) ≥ 0, k becomes � r+p(a)

c(a) �. After
executing both nodes, there are r + p(a)− k ∗ c(a) samples on
the arc. Note that we use p(a)hc(a) and p(a)kc(a) to represent
loop counts.

Equation 1 summarizes the formulation of dynamic loop
count in both cases.

Equation 1. For each arc a, r = d(a) initially and
(i) if a schedule is (h src(a))(sink(a)), h = � c(a)−r

p(a) � and
r = r + h ∗ p(a) − c(a).

(ii) if a schedule is (src(a))(k sink(a)), k = �p(a)+r

c(a) � and
r = r + p(a) − k ∗ c(a).

B. Dynamic Loop Count for General Graphs

Now we explain the main dlcSAS algorithm for general
graphs. It is complex to minimize data buffer memory size
for a arbitrary graph. While for an acyclic graph without de-
lay samples an algorithm of which time complexity is O(e3)
have been developed [2] where e is the number of arcs, the
buffer minimum scheduling becomes NP [9] for a graph with
delay samples. Therefore it is practically impossible to build
a schedule with simple expression of loop count computation
without knowing buffer size.

Fortunately, when we know buffer size on each arc at com-
pile time we can compute loop count for each node at run time
with slight performance overhead. Therefore we assume that
the buffer size for each arc is already computed at compile time
by using existing heuristics in this paper.

Since a node consumes samples on input arcs and produces
samples onto output arcs, it can be executed while there are
sufficient samples on all input arcs and the number of samples
on every output arc does not exceed the given buffer size.

Since a node can be executed while there are enough sam-
ples on all of its input arcs, the maximum loop count k for the
node becomes minimum value among the number of live sam-
ples (r(ei)) over the consuming rate (c(ei)) on arc ei that is an
input arc. Since it consumes k ∗ c(ei) samples that should be

no greater than the number of samples r(ei) on arc ei when
the node is executed k times, k ∗ c(ei) ≤ r(ei) and k ≤ r(ei)

c(ei)
.

Moreover the node can produce samples while the number of
samples does not exceed buffer size on every arc. When the
node is executed h times, the number of produced samples is
h ∗ p(ej). Since there are r(ej) samples, the total number of
samples is h ∗ p(ej) + r(ej) that should be no greater than
buffer size bs(ej) on arc ej . So h∗p(ej)+ r(ej) ≤ bs(ej) and

h ≤
bs(ej)−r(ej)

p(ej) .
A loop count computation for a node A is summarized as

following:

Equation 2.
LoopCount = min(k, h)

k = min
ei∈inputArc(A)

�
r(ei)

c(ei)
�

h = min
ej∈outputArc(A)

�
bs(ej) − r(ej)

p(ej)
�

For ei ∈ inputArc(A), ei− = LoopCount ∗ c(ei)

For ej ∈ iutputArc(A), ej+ = LoopCount ∗ p(ej)

where r(ei) indicates the number of remained samples on arc
ei.

In Equation 2, k denotes loop count by considering input
arcs and h considering output arcs. Since the final loop count
is constrained by the number of samples on the input arcs and
the remained buffer size on the output arcs, the loop count be-
comes minimum number between k and h. After determining
the loop count, we update the number of samples on each arc
connected with the node. By using Equation 2, we can build
memory optimal dlcSAS for arbitrary SDF graphs.

Theorem 1. Every buffer optimal schedule for synchronous
dataflow graphs can be transformed to an equivalent dynamic
loop count single appearance schedule that requires same
buffer size.

Since we consider all arcs to compute loop count with pre-
serving the number of samples, the run time overhead of the
proposed scheduling is proportional to the number of arcs in
the given graph.

Consider Figure 4(a) in [2], in which bs on each arc indi-
cates optimal buffer size. Since the subgraph of node A and
B is chained structure, the algorithm for chained structure is
applied. Therefore we build (4h6A)B schedule. For the re-
mained nodes, we need to apply the scheduling algorithm for
general graphs. First we determine lexical appearance order
by applying topological sort. In this example, the order be-
comes (AB) C D E F G. Note that we use topological ordering
to minimize performance overhead by minimizing zero loop
count even though any ordering is applicable. Since the loop
count of node B is dependent on arc BC and BD, the loop count
denoted lB is the minimum between (10-rBC)/4 and (5-rBD)
where rBC and rBD indicate the number of samples on arc BC
and BD respectively. Similarly, we can compute loop counts

main() {
int I,j,lA,lB,lC,lD,lE,lF,lG;
int rA=0;rBC=0,rBD=0,rCE=0;
Int rCF=0,rCG=0,rDF=0,rEG=0,rFG=0;
for(;;) {
lB = min((10-rBC)/4,(5-rBD));
rBC+=4*lB; rBD+=lB;
for(i=0;i<lB;i++) {

if(rA <2) {lA=2;rA+=2;} else {lA=1;rA-=2;}
for(j=0;j<lA;j++) /* A */
/* B */ }

lC = min(BC/2,(12-rCE)/3,(10-rCF)/2,(30-rCG)/6);
rBC-=2*lC;rCE+=3*lC;rCF+=2*lC;rCG+=6*lC;
for(i=0;i<lC;i++) /* C */
lD = min(rBD/5,(2-rDF)/2);
rBD-=5*lD; rDF+=2*lD;
for(i=0;i<lD;i++) /* D */ }
lE = min(rCE/2,(8-rEG)/4);
rCE-=2*lE;rEG+=4*lE;
for(i=0;i<lE;i++) /* E */
lF=min(rCF/10,rDF,(6-rFG)/6);
rCF-=10*lF;rDF-=lF;rFG+=6*lF;
for(i=0;i<lF;i++) /* F */
lG=min(rCG/5,rEG/8,rFG);
for(i=0;i=lG;i++) /* G */

}}

(a)

lB((4h6A)B) lC(C) lD(D) lE(E) lF(F) lG(G)

lB=min(hBC,hBD),lC=min(kBC,hCE,hCF,hCG),
lD=min(kBD,hDF),lE=min(kCE,hEG),
lF=min(kCF,kDF,hFG), lG=min(kCG,kEG,kFG)

(b)

A

B

C

F

D

E

G

4
6

4
2

bs=8

bs=10 1
5

10
23

2 6

5
4

5

6

1

2
1

bs=5

bs=12

bs=8

bs=30
bs=2

bs=6

(c)

Fig. 4. (a) A general SDF graph, (b) schedule the graph and (c) generated
code by dlcSAS

for the other nodes by applying Equation 2 as shown in Fig-
ure 4(b). Finally we can generate a code as shown in Fig-
ure 4(c).

C. Optimization of Schedule for General Graphs

Since the loop count of a node is constrainted by the accu-
mulated samples and buffer size on each connected arc, 2 ∗ e
computations are required where e denotes the number of arcs
in the graph. Some constraints on arcs, however, can be elimi-
nated when the constraints have been never used. Hence opti-
mization techniques eliminate unnecessary constraints.

First we examine the loop count computation dependency
by running the unoptimized schedule for an iteration period. If
the number of samples on an arc is not used for computation
of a loop count then the expression referring to the arc can
be eliminated. Furthermore, when no node refers to an arc,
variables on the arc are removed.

If a loop count is computed by an expression on an arc, dlc-
SAS for chained structure graphs is applied. If the loop count
of a node is dependent on its output arc then Equation 1(i) is
applied. It is, however, not applicable when the loop count is
not zero even if the loop count of the sink node is zero. For
instance, the schedule of ABCAC = {1,1}A {1,0}B {1,1}C
cannot be represented by lB((h A)B)lCC since (h A)B can-
not express {1}A {0}B schedule. Similarly, Equation 1(ii) is
applicable if the loop count of the sink node is only dependent
on its input arc and its loop count becomes zero whenever its
source node loop count is zero.

In addition, if the loop count only has 0 or 1 then more com-
pact code can be generated.

We can summarize the optimization techniques as follows:
Algorithm
1: Run unoptimized dlcSAS for an iteration period.

2: Eliminate a loop count computation if the computation is
not used to compute minimum loop count value.

3: Eliminate the updating code of the number of samples
which is not referred to in a loop count computation.

4: For arc a, if the loop count lsrc(a) of source node src(a)
is only dependent on arc a and lsrc(a)=0 whenever lsink(a)=0
then Equation 1(i) is applied. Similarly if lsink(a) is only de-
pendent on arc a and lsink(a)=0 whenever lsrc(a)=0 then Equa-
tion 1(ii) is used.

5: If loop count lA of node A has only 0 or 1 then ”if-
statement” code is generated instead of ”for-loop” as follow-
ing:

if(
∧

ei∈outputArc(A) (r(ei) ≤ bs(ei) − p(ei))∧
ej∈inputArc(A) (r(ej) ≥ c(ej)))

{
For all ei ∈ outputArc(A), r(ei)+ = p(ei);
For all ej ∈ inputArc(A), r(ej)− = c(pj);
/* A’s code */
}

main() {
int i1,i2,lA,lB,lC,lD,lE,lF,lG;
int rA=0;rD=4,rBC=0,rCE=0;
Int rCF=0,rDF=0,rEG=0,rFG=0;
for(;;) {

lB = (10-rBC)/4;
rBC+=4*lB;
for(i1=0;i1<lB;i1++) {

if(rA <2) {lA=2;rA+=2;} else {lA=1;rA-=2;}
for(i2=0;i2<lA;i2++) /* A */
/* B */
if(rD==0) {rD=4; rDF+=2; /* D*/ } else rD--;

}
lC = (12-rCE)/3;
rBC-=2*lC;rCE+=3*lC;rCF+=2*lC;
for(i1=0;i1<lC;i1++) /* C */
lE = (8-rEG)/4;
rCE-=2*lE;rEG+=4*lE;
for(i1=0;i1<lE;i1++) /* E */
if(rCF>=10 && rDF>=1)
{ rCF -= 10; rDF--; rFG+=6; /* F */ }
if(rEG>=5 && rFG >=1)
{ rEG-=5;rFG-=1; /* G */ }

}}

(a)

lB((4h6A)B(1k5D)) lC(C)) lE(E) lF(F) lG(G)

lB=hBC, lC=hCE, lE=hEG ,
lF=min(kCF, kDF), lG=min(kEG, kFG)

(b)

A

B

C

F

D

E

G

4
6

4
2

bs=8

bs=10 1
5

10
23

2 6

5
4

5

6

1

2
1

bs=5

bs=12

bs=8

bs=30
bs=2

bs=6

(c)

Fig. 5. (a) Examine whether each arc contributes loop count computation or
not. Short arrows indicate the loop count of the node is dependent on the arc.
(b) Optimized schedule and (c) optimized code by dlcSAS

Now, we apply the optimization techniques to Figure 4 (a)
graph. During simulating the code of Figure 4 (c), we inspect
which arcs each loop count is dependent on. In Figure 5 (a),
short arrows represent the dependency of loop count on arcs.
The loop count of node B is (10−rBC)/4 ignoring (5−rBD)
since it is dependent on arc BC only. Node C just requires rCE
value to compute its loop count and lC=hCE=(12 − rCE)/3
although it has three arcs BC, CE and EF. Similarly, we know
that loop count of node D is dependent on rBD, node E is on
rEG, node F on rCF and rDF, and node G on rEG and rFG.
Since no node refers to arc CG, rCG is not necessary to be
maintained.

Figure 5(b) represents optimized schedule. By the optimiza-
tion, we can reduces loop count computations from 16 expres-
sions to 7 expressions. Furthermore, we can eliminate 8 condi-

tional expressions to find minimum values from 10 conditions
in the unoptimized schedule.

Since the loop counts of node F and node G have only two
values of 0 and 1, the generated code is more compact as shown
in Figure 5 (c).

main() {
int i,lB,lC,lD;
int rA=0;rBD=0,rCD=0;
for(;;) {

if(rBD<=0) {
if(rA<=1) { rA+=1; /* A */ }
else { rA-=2; }
rBD += 2;
/* B */

}
if(rCD<=2) {

rCD+=3;
/* C */

}
lD = min(rBD,rCD/2);
rBD-=lD;rCD-=2*lD;
for(i=0;i<lD;i++) /* D */

}}

(a)

lB((3h2A)B) lC(C) lD(D)

lB=hBD,lC=hCD, lD=min(kBD,hCD)

(b)

A D

B

C3

3
bs=4

3

2

2

2

1

2

11

bs=2

bs=2 bs=5

bs=4

(c)

�

Fig. 6. (a) cyclic SDF graph (b) Optimized schedule and (c) optimized code
by dlcSAS

Figure 6(a) indicates a graph with a cycle. First, it acquires
buffer size on each arc by using existent heuristics. And then
we determine the lexical appearance order by applying topo-
logical sort. In this example, assume that the order is ABCD.
By running a graph with (lAA)(lBBr)(lCC)(lDD) schedule,
we examine the dependency of loop count. This example
shows that node A can be clustered into node B since the loop
count of node A is only dependent on arc AB and the loop
count of node A is always 0 when that of node B is 0. Fig-
ure 6(b) represents the optimized schedule. The loop counts of
node B and C rely on arc BD and CD respectively and the loop
count of node D on both arc BD and CD. Figure 6(c) shows a
generated code with minimal performance overhead for com-
putation of loop counts.

VI. EXPERIMENTS

We have experimented several examples to demonstrate
effectiveness of our approach. Table I represents min-
imum buffer size for various examples between previous
SAS(APGAN) and proposed dlcSAS. The last column in-
dicates the buffer size reduction by dlcSAS compared with
the previous SAS, which is computed by (previousSAS-
dlcSAS)/previousSAS. For Figure 6 that contains feedback cy-
cle, the previous SAS is not applicable since there are not
enough delay samples on arc DA. Note that 6 delay samples are
required on arc DA for the previous SAS to produce a sched-
ule. Since sample rate is stable in the modem application [3],
both the previous SAS and dlc SAS require same size buffer.

In order to measure memory size and performance overhead
on real platform, we used the arm compiler and armulator for
ARM920T processor.

Figure 7 represents the SDF graph of a 4-channel non-
uniform filterbank. The sample rates are shown on each arch

TABLE I
COMPARISON OF BUFFER SIZE

application SAS(APGAN) dlc SAS reduction(%)
Figure 1 14 9 36
Figure 4 194 81 58
Figure 6 N/A 17 N/A
modem [3] 38 38 0
Figure 5 in [3] 120 28 77

8 7
8 7

8 7 7 8
7 8

7 8

8

8 8
8

20
8

88

Fig. 7. SDF graph for a non-uniform filterbank. The highpass channel retains
1/8 of the spectrum and the lowpass channel retains 7/8 of the spectrum

whenever they are different from unity. In the 4-channel non-
uniform filterbank, the lowpass filters retain 7/8 of the spec-
trum while the highpass filters retain 1/8. We can also save
more than 20% total memory with less than 1% performance
overhead in this example.

VII. CONCLUSION

In this paper, we presented a new single appearance schedul-
ing algorithm to minimize data memory and code memory
jointly for synchronous dataflow graphs. Our algorithm is dif-
ferent from previous algorithms in terms of determining loop
counts at run time even though the SDF graphs can be sched-
uled at compile time. Therefore while it introduces perfor-
mance overhead to compute loop counts(which is much lower
than function call approaches), it reduces buffer memory re-
quirement to buffer lower bounds of non single appearance
schedule for arbitrary graphs. Therefore we can argue that the
proposed schedule is memory optimal. For non uniform filter
bank application, we can reduce more than 20% of total mem-
ory size with less than 1% performance overhead compared
with the previous single appearance schedules.

In the future, we will extend the schedule to consider buffer
sharing.

TABLE II
COMPARISON FOR NON-UNIFORM FILTER BANK EXAMPLE

previous SAS dlcSAS ratio(%)
code memory 13128 bytes 13540 bytes 3.14
data memory 15720 bytes 9664 bytes -38.52
total memory 28848 bytes 23204 bytes -19.56
cycles 71060K cycles 71363K cycles 0.43

VIII. ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCR-
0203813, ACI-0204028, National Research Laboratory Pro-
gram (Grant No. M1-0104-00-0015), and IT leading R&D
Support Project funded by Korean MIC.

REFERENCES

[1] COSSAP User’s Manual. Synopsys Inc. 700 E. Middlefield Rd. Moun-
tain View,CA94043, USA.

[2] M. Ade, R. Lauwereins, and J. A. Peperstraete. Data memory minimiza-
tion for synchronous data flow graphs emulated on dsp-fpga targets. In
DAC, June 1997.

[3] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded
software from synchronous dataflow specifications. In Journal of VLSI
Signal Processing, volume 21, pages 151–166, June 1999.

[4] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschimitt. Ptolemy: A
framework for simulating and prototyping heterogeneous systems. In Int.
Journal of Computer Simulation, special issue on Simulation Software
Development, volume 4, pages 155–182, April 1994.

[5] M. Ko, P. K. Murthy, and S. S. Bhattacharyya. Compact procedural
implementation in DSP software synthesis through recursive graph de-
composition. In Proceedings of the International Workshop on Software
and Compilers for Embedded Processors, pages 47–61, Amsterdam, The
Netherlands, September 2004.

[6] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans, and J. V.
Ginderdeuren. Grape: A case tool for digital signal parallel processing.
In IEEE ASSP Magazine, volume 7, pages 32–43, April 1990.

[7] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
dataflow programs for digital signal processing. In IEEE Transaction on
Computer, volume C-36, pages 24–35, January 1987.

[8] P. K. Murthy and S. S. Bhattacharyya. Shared buffer implementations
of signal processing systems using lifetime analysis techniques. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, volume 20, pages 177–198, February 2001.

[9] P. K. Murthy, S. S. Bhattachayya, and E. A. Lee. Joint minimization of
code and data for synchronous dataflow programs. In Journal of Formal
Methods in Systems Design, volume 11, pages 41–70, July 1997.

[10] H. Oh, N. Dutt, and S. Ha. Single appearance schedlue with dyanmic
loop count for sy. In CASES2005, volume 2005, pages 514–529, Sept
2005.

[11] H. Oh and S. Ha. Memory-optimized software synthesis from dataflow
program graphs with large size data samples. In EURASIP Journal on
Applied Signal Processing, volume 2003, pages 514–529, May 2003.

[12] S. Ritz, M. Willems, and H. Meyr. Scheduling for optimum data memory
compaction in block diagram oriented software synthesis. In Proceedings
of the ICASSP 95, May 1995.

[13] W. Sung and S. Ha. Memory efficient software synthesis using mixed
coding style from dataflow graph. In IEEE Transaction on VLSI Systems,
volume 8, pages 522–526, October 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

