
Depth-Driven Verification of Simultaneous Interfaces

Ilya Wagner Valeria Bertacco Todd Austin
Advanced Computer Architecture Lab

University of Michigan

Ann-Arbor, MI 48109

e-mail: {iwagner, valeria, austin}@umich.edu

Abstract— The verification of modern computing systems has
grown to dominate the cost of system design, often with limited
success as designs continue to be released with latent bugs. This
trend is accelerated with the advent of highly integrated system-
on-a-chip (SoC) designs, which feature multiple complex subcom-
ponents connected by simultaneously active interfaces.

In this paper, we introduce a closed-loop feedback technique
targeting the verification of multiple components connected by
parallel interfaces. We utilize an environment with hierarchical
Markov models, where top-level submodels specify overarching
simulation goals of the system, while lower-level submodels spec-
ify the detailed component-level input generation. Test accuracy
is improved through the use of depth-driven random test gener-
ation. The approach allows users to specify correctness proper-
ties and key activity nodes in the design to be exercises. We ex-
amine three non-trivial designs, two microprocessors and a chip-
multiprocessor router switch, and we demonstrate that our tech-
nique finds many more bugs than constrained-random test gen-
eration technique and reduces the simulation effort in half, com-
pared to previous Markov-model based solutions.

I. INTRODUCTION

Systems-on-a-chip (SoC) are becoming predominant in
application-specific domains, such as portable media devices,
network processors, and so on. The development of an SoC
entails the integration of multiple heterogeneous integrated cir-
cuit (IC) blocks, with a mix of components developed in-house
and acquired through third-party IP, producing extremely com-
plex IC systems in a relative short time. Unfortunately, the ver-
ification of SoC has become a bottleneck in the design process,
as it commonly absorbs 70% of the design costs. In fact, the In-
ternational Technology Roadmap for Semiconductors (ITRS)
has determined that the most important productivity challenge
to be overcome, in order to maintain the current growth trends
in SoC development, is precisely verification [4].

Two aspects of SoC make their functional verification par-
ticularly challenging: first, the integration density offered by
state-of-the-art fabrication technologies is impressive: a typi-
cal SOC could contain hundreds of millions of transistors. The
result is a large complex stateful design that does not lend it-
self to existing verification techniques, either because of the
small fraction of state space that simulation-based approaches
can explore, or because the sheer complexity is beyond the
grasp of current formal and semi-formal technology. Second,
SOCs feature many heterogeneous autonomous components

connected by multiple simultaneously active interfaces, often
abiding to complex communication protocols. The inability
of exploring all the possible interactions among these compo-
nents further underscores the challenge of SoC verification.

A variety of techniques have been explored to assist the
designer in locating design bugs on systems such as this.
Simulation-based random test generation is a long-standing ap-
proach used to locate design errors [5, 9, 10, 8, 12]. How-
ever, due to the huge state spaces of even simple devices, it
is impossible to achieve sufficient confidence in the correct-
ness of a design by just using random generation techniques.
Formal and semi-formal solutions can help by providing pow-
erful mechanisms to achieve high coverage in verification, but
can only be deployed on the smallest components of a design.
The need for solutions that can address both the high-coverage
and design size requirements has been recently voiced by Intel,
which predicted that by 2007 designs will deploy 100M tran-
sistors and require 2000 person-years of effort for verification
[13]. The work presented here attempts a step in this direc-
tion by proposing a novel solution which targets both high-
coverage and scalability in the verification of complex systems
with multiple parallel interfaces.

A. Contributions of This Work

In this paper, we introduce a novel closed-loop test genera-
tion technique targeting the construction of high-quality tests
for large complex designs with multiple, simultaneously active
interfaces. Our solution generates constrained, automatically-
biased tests by modeling the interfaces’ communication pro-
tocols through abstract Markov models, and by sampling the
system’s reactions through signal sensors placed at relevant in-
ternal nodes of the designs. Specifically, the work makes two
novel contributions compared to previous efforts in this field:

1. The complications of modeling the input protocols and
the interactions among multiple simultaneous interfaces
are mitigated through the use of a hierarchical modeling
environment. The environment dictates the specification
of a high-level Markov model (through the use of sim-
ple templates) concerned with describing the overarching
testing goals. Subsequently, this high-level model spawns
off lower-level Markov models – threads – that specify
component-specific input generation.

2. To address complexity challenges, our constrained ran-
dom test generation technique introduces a depth-driven
test quality evaluation technique. In this context, the

1

user hints to the system the critical regions to cover
through the specification of key signals within the design.
The test generator then tunes its focus on input stimuli
that exercise the logic closer to these key signals (where
”closeness” is defined in terms of logic depth from the
key signal, hence the name).

In addition, we implement our proposed test generation in-
frastructure in a tool called IQTest (Interface Quality Tester),
and demonstrate that it is capable of finding more bugs than
constrained random testing techniques, and with less simula-
tion effort than previous Markov-model based solutions.

The remainder of this paper is organized as follows. Sec-
tion II highlights previous related work. Section III overviews
the high-level architecture of IQTest, while section IV provides
details on the novel aspects of the work. Rationale and details
of the implementation of IQTest are also discussed. Section
V presents experiments that compare IQTest to previous solu-
tions and naive random testing. We examine three non-trivial
designs, two microprocessors and a chip-multiprocessor net-
work router switch. Finally, Section VI gives conclusions and
suggests future directions.

II. PRIOR WORK

Random test generation has long been a focus of industry
and the academic research community [6]. The key aspects of
systems that differentiate the verification solutions are whether
or not simulation is pure random or directed, how constraints
on the random tests are specified, and the mechanics of the
underlying random test generation engine.

Recent advances in random test generation have focused on
generating feedback on previous tests to influence the gener-
ation of future tests. Tools such Specman Elite [2] and Vera
[1] provide on-the-fly data assertion and checking and methods
for validation of generated tests. In both cases the generation
process is directed by dynamically changing constraints based
on functional coverage analysis. Although these tools simplify
the work of the end user with GUIs and powerful verification
languages, most of the test set up and decision process is still
left to the verification engineer, who must specify functional
test plans [2] or implement constraint adjustment policies [1].

A number of tools have been developed to enable verifica-
tion engineers to have more control over the generation of ran-
dom tests. In particular, some of these techniques involve the
use of program templates that define the structure of the desired
test, along with primitives to control the randomization of the
related data, such as opcodes, register operands, and memory
addresses [3]. Most tools employ a coverage-directed genera-
tion process, but use sophisticated techniques for representing
relationships between coverage and input generation through
Markov-models (as in this work) [11, 14] or with Bayesian
networks and computer learning [7].

StressTest was recently proposed as a technique to imple-
ment closed-loop feedback directed random testing [14]. The
tool is based on an abstract representation of the input model,
specified using a template based specification language. In ad-

dition, users specify “activity monitors” which represent sig-
nals in the design that correspond to coverage concerns, so
that the underlying simulation engine directs simulation to-
wards the excitation of the activity monitors. Our solution,
implemented in IQTest, borrows the specification language and
Markov-model test generation from [14]. However, we make
a number of significant advances over that work. In particu-
lar, we extend the template language to include support for hi-
erarchical specifications, which simplifies the modeling of si-
multaneous interfaces. Moreover, we provide a highly respon-
sive and accurate link between activity monitors and model
response, through the use of a depth-driven activity analyzer.

III. AN OVERVIEW OF IQTEST

Figure 1 illustrates the high-level architecture of IQTest’s
random testing infrastructure. There are four primary inputs to
the system (colored in gray): 1) the design under test (DUT), 2)
a known-correct golden model, 3) the input template specifica-
tion, and 4) the activity signals. Based on the input template,
IQTest generates an input sequence which is fed to both the
DUT and the golden model. The outputs of the two models are
compared and, if any discrepancy is noted, a bug is detected.

Fig. 1. IQTest Structure. A template describing the legal DUT stimuli is used
by IQTest to generate input sequences. In addition, an activity analyzer closes
the feedback loop by scoring the quality of the stimuli. Bugs are detected by
validation against a golden model.

Markov models and Templates. The Markov models are
in charge of the stimuli generation in IQTest. In this context, a
Markov model is a graph where each vertex describes a legal
input sequence for the design. For instance, if the input inter-
face was a processor’s instruction bus, a vertex could describe a
single instruction, or a program segment. Or, if the input inter-
face was a bus protocol, than a vertex could describe a possible
transaction. The vertices in the graph are connected by edges
labeled with the probability of performing a graph transition
through them: at the beginning of the test generation, all the
outgoing edges from a vertex have equal probability. Proba-
bilities are adjusted over time so as to bias the stimuli towards
the interesting ”activity”, as specified by the ”activity signals”.

2

Moreover, the input sequence described by each vertex incor-
porates random aspects, based on the template specification.
As discussed in more detail in Section IV, templates are text
files providing a model for the input sequences at each vertex
of the Markov graph. For more details on the basics of tem-
plates and the related Markov model construction see [14]. To
address the specific needs of SoC verification, we devised a
novel technique to structure the Markov models hierarchically,
so that a system with multiple, simultaneously active interfaces
could be stimulated by IQTest through all its input channels
asynchronously and in parallel.

Activity Signals and Analyzer. The activity signals are in-
ternal nodes of a design under test selected by a user because
they are representative of critical activity in a component. Ex-
amples of such signals are collision indicators between differ-
ent ports of a network switch (which can be used to check
the correctness of the switch at high utilization), or a branch
misprediction signal (used to verify a pipeline recovery mech-
anism). The activity analyzer gathers the switching activity
of these signals and steers the test generation by indicating to
IQTest which transactions in the Markov models generate the
highest activity, and thus are most relevant in exercising critical
circuitry. During simulation, the edges of the Markov models
are adjusted continuously so that high-activity transactions are
associated to higher probabilities.

Activity signals may be any design’s internal node deemed
relevant by the user, or checkers (that is, properties that we are
trying to falsify). In the latter case, IQTest focuses on activat-
ing the output signal of the checker: the detection of switch-
ing activity at such a node corresponds to having triggered the
checker. Note that, particularly in the case of checkers, the ac-
tivity observed at the node would be non-existent during the
whole simulation, until when the checker is fired, thus reduc-
ing IQTest to a mere constrained random test generation with
no adaptive biasing. To solve this problem, IQTest introduces
a novel depth-driven activity feedback solution. The approach
works as follows: from the signals selected as activity sen-
sors, we derive an additional set of auxiliary signals, whose
values closely affect the value of the activity sensors. The ac-
tivity monitor then estimates the change to apply to the Markov
models’ edges based on a weighted sum of the activity in the
extended set of signals. The weights are heavier for the activ-
ity sensors and lighter for the auxiliary signals. We call the ap-
proach ”depth-driven” because the weights are inversely pro-
portional to the logical depth of a given auxiliary signal from
the sensor. We find that this approach reaches significantly
more bugs than simple constrained random simulation.

IV. ARCHITECTURAL INSIGHTS

In this section we focus on the two main contributions of
this paper, namely:

• The ability to specify the communication protocols of the
DUT hierarchically. The architecture of IQTest and the
template language we defined facilitates the simulation
and verification of simultaneous interfaces.

• The activity analyzer, our technique to produce an accu-
rate analysis of the design response to a stimulus trans-
action. At each simulation step we consider the signal
transitions at multiple nodes in the design and evaluate
the quality of the last transaction by weighing this data
based on the circuit depth from the critical node

A. Hierarchical Specification of the Stimulus Generator

For the specification of the input protocol at each interface
of the design, we deploy a hierarchical Markov model that gen-
erates valid legal input sequences based on the template speci-
fications. In previous work proposing random input generation
based on a Markov model [14], the model was used to partition
the set of inputs of a microprocessor core and generate instruc-
tion sequences based on activity feedback obtained from the
design. However, it is often the case that a design has mul-
tiple parallel input interfaces, unlike pipelines which can be
viewed as having only one stimuli entry point. A good exam-
ple of such a design is a network switch or a crossbar that has
multiple ports. In such situations, it is critical to be able to
generate stimuli at each individual port that are time- and data-
independent. Therefore, it is often more desirable to generate
multiple input streams in parallel and observe the interactions
between them. Since often the hardest bugs in an SoC design
are found when multiple input requests are competing for the
same hardware resources, we deemed crucial to allow the de-
signer to create sequences of input stimuli where the traffic
at each interface is independent, so that it becomes easier to
produce relevant input sequences. Finally, a methodology that
allows for hierarchical specification of the stimuli leads to a
description of the input transactions that is simpler and easier
to understand.

To cope with this problem we devised a new approach that
employs a multi-level Markov model. Each of the paral-
lel inputs of the circuit is assigned to an individual Markov
model for generating valid input stimuli according to the inter-
face specifications. However, some information between these
models can be shared to increase the competition for the re-
sources and intensify the pressure on the design. To allow this
information passing between the models, we use a global vari-
able space that is accessible from any model. Note that the
models can still generate valid input sequences independently
of their peers through local variables.

In addition to the individual Markov models assigned to in-
put ports of the design, a global model is used to encode possi-
ble scenarios of simultaneous stimuli generation. For example,
the model can determine the number of ports of the design acti-
vated simultaneously and values of the controlling inputs to the
design. The objective of the global Markov model is to coordi-
nate local models assigned to individual design ports. Note that
individual models supply sequences of stimuli with dependen-
cies between them, while the global model orchestrates them
to exert simultaneous pressure on the design. The activity feed-
back from individual inputs of the design in this framework is
used to reinforce transitions in local models. Moreover, com-
bined activity measures from different points in the circuit are
used for adjusting edges in the global Markov model.

3

/ Global variable space /
global {

dest(probCache=0.7,cacheSize=8,lambda=.5,
minVal=1,maxVal=15);

srcW(probCache=1,cacheSize=20,lambda=3)={’b0000, ’b1111};
}
/ Global Markov model/
none : TopModel(global) {

rand-send-one(probCache=1)={’b1000,’b0100,’b0010,’b0001};
command[3:0] : { portD, portC, portB, portA };
vertex(send_one_pkt) { command = ’bCCCC;

field(C)=$rand-send-one.read(); }
vertex(send_all) { command = ’b1111; } };

/ Local Markov models descriptions/
switchPort {

using global::dest;
using global::srcW;
vertex (message) { input=’bDDDDSSSS;

field(D)=$dest.read();
field(S)=$srcW.read();
$dest.write(field(D)); } };

burstingPort {
Bsrc (probCache=0,minVal=0,maxVal=15);
vertex (message){ input=’b0100SSSS;

field(S)=$Bsrc.read();
$Bsrc.write(field(S)); } };

/ Local Markov models binding /
dut.port_a : switchPort(portA) ;
dut.port_b : burstingPort(portB) ;
dut.port_c : switchPort(portC) ;
dut.port_d : switchPort(portD) ;

Fig. 2. Example Template file. Shown are a global Markov model along with
two local models bound to each port of a network switch.

switchswitch A C

B D
Switch

burst switch

top

Fig. 3. Switch and hierarchical Markov model for the template example.

An example of a hierarchical template file shown in Fig-
ure 2 indicates how hierarchical Markov models can be used
to model different interfaces of a DUT. See [14] for details of
Markov model and variable specification. In the case shown
in the example, the DUT is a network switch with four simul-
taneous interfaces port a to port d. The two input-generating
models switchPort and burstingPort produce different kinds of
data packets, while the global top level Markov model creates
different scenarios and orchestrates the work of the packet gen-
erators. The messages described here consist of a packet with
8 bits of data.

The top portion of the template contains the global variable
space with two random variables, dest and srcW. They are vis-
ible to any of the local models that declare using them via a us-
ing clause, as shown in model switchPort. The global Markov
model either runs a scenario where input is sent to only one
port or where it is sent to all ports simultaneously, by signaling
to the low level models with command bits. Model switchPort
produces packets with source and destination fields generated
by accessing the global variables, while model burstingPort
produces all messages to destination 0100.

B. Depth-Driven Activity Monitoring

One important assumption that was made in prior work re-
lated to Markov-model based testing is that a handful of key
activity signals is sufficient to guide the simulation towards
areas of interest and expose hard-to-find bugs. However, we
found this approach to be somewhat coarse. In other words,
the scores reported by the activity monitors manifest bipolar
behavior. Therefore the system was likely, after just a handful
of cycles, to strongly reinforce input sequences leading to high
activities and almost eradicate the possibility of generating in-
puts that lead to low activity rates.

In our improved test generation methodology, a different ap-
proach was taken. We have created a tool that traverses the
hierarchy of the design and extracts additional signals that in-
fluence the behavior of the selected activity points. Preference
was given to control signals that were relatively easy to iden-
tify from a register-transition level design description. The sig-
nals that directly influence the primary activity points were as-
signed depth one, the signals that influence them were assigned
depth two, and so on. The activity analyzer incorporates these
secondary signals using a weight proportional to depth of the
signal exercised (Figure 4-left). Note that the selection is done
automatically and does not require any additional user effort.

Fig. 4. Depth-driven activity monitoring selects auxiliary signals to monitor
based on their logic depth from the property output or activity signal

In the context of a verification methodology that attempts to
falsify properties embedded in a design, we deploy a special-
ized adapted technique for the evaluation of the activity ana-
lyzers. Often, a design includes several checker modules that
track signals vital to system operation, and are triggered when
a property is violated. Typically, these checkers are derived
from the design specification or embedded by the developer.
The analysis of the outputs of these checkers is the critical as-
pect of validating a design’s correctness, however, since these
properties are never asserted until the corresponding bug is ex-
posed, the guidance provided to the input generator is poor.
The input signals to the property expression, on the other hand,
change frequently and can be selected automatically from the
description of the checker (Figure 4-right). As it is shown in
our results, this depth-directed activity analysis technique is
able to achieve greater bug coverage with less effort, compared
to approaches that observe only a handful of key points.

4

V. EXPERIMENTAL EVALUATION

In this section, we introduce our experimental evaluation
framework and the designs we tested. We then compare the
performance of our proposed technique against an open-loop
random instruction generator and a recently proposed Markov-
model based test generator, comparing both coverage of bugs
and number of simulated instructions required to expose them.

A. Experimental Framework

Evaluation of the random test generators was performed on
three designs: two microprocessors and a chip-multiprocessor
router switch. The two microprocessor designs that we tested
were the DLX pipeline (MIPS-Lite ISA) and a DEC Alpha
processor core. For both designs we wrote a behavioral golden
model, against which the correctness of the design was com-
pared. Also we created 30 cores for the DLX and 10 for Alpha,
each containing one bug. The simplest bugs included incorrect
opcode interpretation and erroneous ALU operations, while
the hardest ones could only be exposed through complex in-
teractions between instructions. The templates for these exper-
iments were derived directly from ISA of the processors, with
one vertex corresponding to one instruction type. The amount
of effort needed to create the templates was under 8 man-hours.
The chip-multiprocessor router switch was included because it
features simultaneous parallel interfaces. The switch was ini-
tially designed for testing performance and traffic patterns of
different routing algorithms. In all experiments, we used a ver-
sion of the switch utilizing an adaptive cut-through minimal-
path routing algorithm for two-dimensional mesh networks.
The design consists of five input ports with three virtual chan-
nels each, five output ports, and crossbar logic.

For the switch experiments, the generator was a hierarchical
Markov model with the top level model specifying the num-
ber of packets to send simultaneously. The top model also
specified the state of the back pressure signals in the network
surrounding the switch. The local Markov models were used
to generate valid packets that were likely to have similar des-
tinations, thereby exerting high pressure on the switch. The
amount of effort to write templates for both global and local
Markov models for the switch was around 16 man-hours. To
guide the test generation during switch verification, we utilized
checkers written in Verilog. We derived ten distinct checkers
from the high level description of the switch routing algorithm
and buffer functionality. Each property module had a single-
bit output, which depended only on particular signals in the
design. The Depth-0 experiment only monitored the output
bits of the properties, while IQTest monitored the inputs to the
properties, i.e. Depth-1 signals, as well.

Incidentally, we were able to find three actual design bugs
during verification of the switch: one in the buffer control
logic and two in the routing logic of the crossbar. All of these
bugs were hard corner cases of the switch’s behavior, for ex-
ample, in one bug several internal counters were incorrectly
handled during a buffer-overflow situation, however from the
error could be seen several tens of cycles later.

B. Results and Analysis

Since our verification mechanism uses a random generator
in its kernel, each buggy design in both experiments was run
25 times with different random seeds and afterwards we cal-
culated average effort and coverage. In the first test, the maxi-
mum allowed time to search for a bug was limited to 75000
cycles for both DLX and Alpha. For performance evalua-
tion each bug was checked by an open-loop constrained ran-
dom generator (Random). We also compared IQTest against
StressTest, which is based on a closed-loop Markov model
structure but it observes only a handful of crucial control sig-
nals in the pipeline. IQTest itself was implemented with dif-
ferent depths of the observed signals, labeled correspondingly
(Depth-1, Depth-2, and Depth-3).

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8

bugs

D

E
C

 A
lp

ha
 in

st
ru

ct
io

ns

Random

Depth-0 (StressTest)

Depth-1

Depth-2

Depth-3

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
bugs

D

L
X

 i
n

st
ru

ct
io

n
s

Random

Depth-0 (StressTest)

Depth-1

Depth-2

Depth-3

a)

b)

Fig. 5. Effort vs. Bug coverage for DLX (a) and Alpha (b) cores

Figure 5 shows the effort in terms of number of instructions
produced, of these three techniques vs. the number of bugs
discovered. Here we present the results for the 16 hard bugs
in DLX and 8 hard bugs in the Alpha design. Since the easy
bugs were found by all techniques in just several hundred in-
structions, for these bugs there is no clear differences between
the approaches. As can be seen in both graphs, the curve for
Random stops short of the rightmost edge, that is, the hardest
bugs, while both StressTest and IQTest were able to find all the
bugs in the Alpha pipeline. Note that StressTest was unable to
find the most complex bug in the DLX pipeline. In general, we
note that a deeper activity analysis is better for harder bugs.

The results of the switch verification experiment are pre-
sented in Figure 6. The effort in this case is measured in num-
ber of packet transactions required to find a bug. Again only
the hard to find bugs are reported, since all three systems per-
formed equally well in discovering easy bugs. The three bugs

5

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7

bugs

#
 t

ra
n

s
it

io
n

s

Random
Depth-0 (StressTest)
Depth-1 (IQTest)

Fig. 6. Effort vs. Bug coverage for the switch design

on the far right of the graph are the three original bugs found
during the verification of the switch. Once again, the Random
configuration was unable to discover the last three bugs and
requires significant effort for covering easier bugs. That ex-
plains why the bugs were not discovered during the design of
the switch where only random testing was used. As can be seen
in the graph, the approach of monitoring just the output bits of
the property modules performs relatively well for intermedi-
ate bugs. We believe that is partially because our approach
enabled information sharing between local Markov models.
Moreover, this system explores more distinct input sequences
than Random. This is because observing property outputs pro-
duces low activity scores that stimulate negative reinforcement
in the Markov model, thus continuously steering the genera-
tion away from past sequences. The third approach produces
positive and negative reinforcement and therefore significantly
reduce the effort needed to uncover the bugs.

Finally, in Table I, we compare the wall-clock performance
of IQTest vs Random (we run on a 1 GHz UltraSPARC IIIi
machines with 1GB of RAM). Since Random discovers only a
fraction of the bugs that IQTest finds, we used the best achieve-
ments of Random as a reference. As shown in the table, IQTest
performs always better than Random. And after Random runs
out of steam, IQTest keeps finding more complex bugs.

VI. CONCLUSIONS

In this paper, we introduced a random simulation technique
targeting SoC devices, with stateful components connected by
parallel interfaces. The approach is based on a Markov-model
driven random simulation, with two novel enhancements: To
produce effective random vectors for multiple components
with parallel interfaces, we utilized a hierarchical modeling
environment where ”global” models specify overarching sim-
ulation goals of the system, while the ”local” models specify
the specific component-level input generation. To address the
statefulness of SoC devices, we utilize a depth-driven random
simulation search engine. The search engine allows users to
specify correctness properties and key activity points in the
design that are of particular concern. A closed-loop feedback
system then tailors the hierarchical Markov-models into one
that stresses the points of concern in the design.

We found that the hierarchical specification and depth-
driven random test generation are quite effective in reduc-
ing the amount of effort required to expose bugs in com-
plex designs, both in terms of the amount of human effort to

TABLE I - TIME COMPARISON OF RANDOM AND IQTEST

DLX Alpha Switch

up to bug 25 up to bug 8 up to bug 7
Random 135.5s 35.7s 39.1s
Depth-0 N/A N/A 32.1s
Depth-1 70.1s 21.3s 31.6s
Depth-2 75.7s 21.0s N/A
Depth-3 79.1s 21.5s N/A

craft the verification scripts and the amount of simulation re-
quired to reach the bugs. We examined three non-trivial de-
signs: two microprocessors and a chip-multiprocessor router
switch. We demonstrate that hierarchical specification of input
models yields a compact precise representation. Additionally,
we showed that depth-driven random simulation finds more
bugs more quickly than simple constrained random simula-
tion. Moreover, we found that depth-driven simulation cuts
the simulation effort in half, compared to a recently published
Markov-model based verification technique.

REFERENCES

[1] Constrained-random test generation and functional coverage
with Vera. Technical report, Synopsys, Inc, Feb. 2003.

[2] Specman elite - testbench automation, 2004.
http://www.verisity.com/products/specman.html.

[3] A. Adir et al. Genesys-pro: Innovations in test program gener-
ation for functional processor verification. IEEE Design & Test
of Computers, 21(2):84–93, 2004.

[4] A. Allan et al. 2001 technology roadmap for semiconductors.
IEEE Computer, pages 42–53, Jan. 2002.

[5] B. Bentley. Validating the Intel Pentium 4 microprocessor.
In DAC, Proceedings of Design Automation Conference, pages
224–228, 2001.

[6] E.A.Poe. Introduction to random test generation for processor
verification. Technical report, Obsidian Software, 2002.

[7] S. Fine and A. Ziv. Coverage directed test generation for func-
tional verification using bayesian networks. In DAC, Proceed-
ings of Design Automation Conference, 2003.

[8] I.Silas et al. System-level validation of the Intel Pentium M
processor. Intel Technology Journal, 07:38–43, May 2003.

[9] J. M. Ludden et.al. Functional verification of the POWER4 mi-
croprocessor and POWER4 multiprocessor systems. IBM Jour-
nal of Research and Development, 46:53–76, Jan. 2002.

[10] Y. Levhari. Verification of the PalmDSPCore using pseudo ran-
dom techniques. Technical report, VeriSure Consulting, Ltd.

[11] S. Tasiran et al. A functional validation technique: Biased-
random simulation guided by observability-based coverage.
ICCD, Proceedings of the International Conference on Com-
puter Design, pages 82–88, 2001.

[12] S. Taylor et al. Functional verification of a multiple-issue, out-
of-order, superscalar Alpha processor: The DEC Alpha 21264
microprocessor. In DAC, Proceedings of Design Automation
Conference, pages 638–644, 1998.

[13] G. Spirakis. Opportunities and challenges in building silicon
products in 65nm and beyond. In Design and Test in Europe
(DATE-2004), 2004.

[14] I. Wagner, V. Bertacco, and T. Austin. Stresstest: An automatic
approach to test generation via activity monitors. In DAC, Pro-
ceedings of Design Automation Conference, 2005.

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

