
SASIMI: Sparsity-Aware Simulation of Interconnect-Dominated Circuits
with Non-Linear Devices

Jitesh Jain, Stephen Cauley, Cheng-Kok Koh, and Venkataramanan Balakrishnan
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907-1285
{jjain,stcauley,chengkok,ragu}@ecn.purdue.edu

Abstract
We present a technique for the fast and accurate simulation of large-
scale VLSI interconnects with nonlinear devices, called SASIMI. The
numerical efficiency of this technique is realized through linear-algebraic
techniques that exploit the sparsity and structure of the matrices that are
encountered in VLSI structures. Numerical results show that SASIMI
is up to 1400 times as fast as commercial-grade SPICE, for moderate-
size circuits, with little sacrifice in simulation accuracy.

1 Introduction
With aggressive technology scaling, the accurate and efficient mod-
eling and simulation of interconnect effects has become (and contin-
ues to be) a problem of central importance. For accurate modeling
of the distributive effects of interconnects, it is necessary to model a
long wire using many segments of lumped RLC elements. Owing to
the inductive and capacitive coupling between these elements, direct
simulation of the resulting models comes at a very high (and often
unacceptable) simulation cost. It has been highlighted in the past
that SPICE [11] is not amenable to the simulation of interconnect-
dominated structures, such as power/ground networks, clock net-
works, and busses.

There have been many studies to eliminate the bottleneck due
to SPICE in the past several years. A representative selection of
these advances in the simulation of large-scale interconnects, which
exploit the locality of capacitive and inductive coupling effects, can
be classified into techniques at the modeling and simulation levels as
follows:
Modeling level techniques: In [5], the authors propose a new circuit
element K to capture the inductive coupling using the inverse of the
inductance matrix. Window-based extraction of K elements are pro-
posed in [2], [15], and [16]. In [8], the authors use controlled voltage
and current sources to construct a SPICE-compatible circuit model
for K elements. A similar concept, called Vector Potential Equiv-
alent Circuit (VPEC), is introduced in [12] to obtain a localized
circuit model for inductive interconnects. These techniques involve
the inversion of the inductance matrix. To avoid matrix inversion, the
authors of [16] propose a wire duplication-based interconnect model,
in which the authors construct a sparse equivalent circuit by window-
ing the inductance matrix. However, it should be emphasized that all
these techniques ultimately rely on SPICE (and its variants) for the
simulation of dynamic responses, and thus are constrained by the
limitations of SPICE.
Simulation level techniques: The underlying solver in a simulation
tool essentially addresses the problem of solving Ax = b fast. In [14],
the authors propose a hierarchical analysis of power distribution net-
works. In this work the authors partition the power grid and model
each partition as a macro-model with a sparsified port admittance
matrix. In [3], INDUCTWISE, an efficient simulation tool for cir-

cuits modeled using conductance (G), capacitance (C), and K ele-
ments, is proposed. In [14], and [3], it is shown that the Cholesky
factorization of the A matrix, which is composed of G, C, and/or
K, can be very efficient due to the inherent sparsity of A. However,
the inverse of A is dense, which in turn implies that each simulation
step involves dense matrix-vector multiplications. In contrast, the
authors of [7] perform linear circuit simulation using a new formula-
tion, called RLP, to model circuits by resistance (R), inductance (L),
and the inverse of capacitance (P). Although the resulting A matrix
in the RLP formulation is dense, its inverse is sparse, which enables
fast sparse matrix inversion and sparse matrix-vector multiplication
in each simulation step. The above methods however, are unable to
handle non-linear devices. This problem is addressed in [4], where
the approach in [14] is extended to handle non-linear devices. How-
ever, it also inherits the limitation that the sparsity of matrix A is
exploited only for fast Cholesky factorization, and not in each simu-
lation step.

In this paper, we propose SASIMI which uses sparsity-aware
simulation techniques for interconnect-dominated circuits with non-
linear devices. Our contribution in this paper is two fold. First, we
extend the RLP formulation as described in [7] to include non-linear
devices, without sacrificing the computational benefits achieved due
to sparsity of the linear system. It should be noted that the A ma-
trix involved in the solution of the linear system is constant through-
out the simulation. In contrast, the A matrix involved in solving the
non-linear system changes in each simulation step. However, the A
matrix is sparse. Due to the sparse and time varying nature of the
problem at hand Krylov subspace based iterative methods could be
used for efficient simulation. Our second contribution is to intro-
duce a novel preconditioner constructed based on the sparsity struc-
ture of the non-linear system. The inverse of the preconditioner has
a compact representation in the form of the Hadamard product [10],
which facilitates not only the fast computation of the inverse, but also
the fast dense matrix-vector product. Experimental results show that
SASIMI is up to 1400 times faster than commercial grade SPICE,
even for moderate-size circuits.

2 Mathematical Preliminaries
VLSI interconnect structures, with non linear devices can be ana-
lyzed using the Modified Nodal Analysis (MNA) formulation which
yields equations of the following form

G̃x+C̃ẋ = b, (1)

where

G̃ =
[

G AT
l

−Al 0

]
, C̃ =

[
C 0
0 L

]
, x =

[
vn

il

]
,

b =
[

AT
i Is + Inl

0

]
, G = AT

g R−1Ag, and C = AT
c CAc.

R denotes the resistance matrix. The matrices G , L and C are the
conductance, inductance and capacitance matrices respectively, with
corresponding adjacency matrices Ag, Al and Ac. Is is the current
source vector with adjacency matrix Ai, and vn and il are the node
voltages and inductor currents respectively.

Vector, Inl captures the effect of non-linear loads and depends
on the node voltages as Inl = f (vn). f is a function which varies
depending on the load characteristics and in general can be a non-
linear function.

With N denoting the number of inductors, we note that

L,C,R ∈ RN×N , C ,G ∈ R2N×2N .

Differential equations such as (1) can be numerically solved us-
ing standard algorithms like the trapezoidal method [1]. Consid-
ering a uniform discretization of the time axis with resolution h,
xk = x(kh). Using the approximations

d
dt

x(t)
∣∣∣∣
t=kh

≈ xk+1 − xk

h
and xk ≈ xk+1 + xk

2

over the interval [kh,(k + 1)h], the determination of xk+1 from xk

requires the solution of a set of linear and nonlinear equations:(
G̃
2

+
C̃
h

)
xk+1 = −

(
G̃
2
− C̃

h

)
xk +

bk+1 +bk

2
(2)

and
Ik+1
nl = f

(
vk+1

n

)
. (3)

The nonlinearity in the above set of equations can be handled by
the standard Newton-Raphson technique of linearizing (3) and iter-
ating until convergence: Equation (2) is a linear equation of the form
L(x) = 0, where we have omitted the iteration index k for simplic-
ity. Equation (3) is a nonlinear equation of the form g(x) = 0. Let
g(x) ≈ G(x) be a linear approximation of g(x), linearized around
some x = x0. Then, simultaneously solving L(x) = 0 and G(x) = 0
yields numerical values for x and hence vn. These values are then
used to obtain a new linear approximation g(x) ≈ Gnew(x), and the
process is repeated until convergence. A good choice of the point x0

for the initial linearization at the kth time-step is given by the value
of vn from the previous time-step.

A direct implementation of this algorithm requires O(pqn3
1) op-

erations, where p is the number of time steps, q is the maximum
number of Newton-Raphson iterations in each time step, and n1 =
3N.

3 The RLP formulation
The mathematical framework that underlies our approach is an al-
ternative formulation of the MNA equations that uses the resistance,
inductance and the inverse of the capacitance matrix. This is the
so-called “RLP formulation”, first proposed in [7].

We begin by decomposing C, A, and Ai as:

C =

⎡⎢⎣ Ccc Ccv

Cvc Cvv

⎤⎥⎦ , AT =

⎡⎢⎢⎣ AT
1

AT
2

⎤⎥⎥⎦ AT
i =

⎡⎢⎢⎣ AT
i1

AT
i2

⎤⎥⎥⎦

Inl =

⎡⎢⎣ 0

Iv

⎤⎥⎦ . vn =

⎡⎢⎣ vc

vv

⎤⎥⎦ . Here Cvv denotes the sub-matrix

of the capacitance matrix that changes amid the simulation, while
all other sub-matrices remain constant. The matrix Cvv captures the
drain, gate and bulk capacitances of all devices, which are voltage-
dependent, while Ccc, and Ccv are the capacitance matrices that arise
from interconnects and are hence constant.

For typical interconnect structures, the above decomposition al-
lows us to manipulate the MNA equations (2) and (3):(

L
h

+
R
2

+
h
4

A1PccAT
1

)
︸ ︷︷ ︸

X

ik+1
l

=
(

L
h
− R

2
− h

4
A1PccAT

1

)
︸ ︷︷ ︸

Y

ikl

+ A1vk
c +

h
4

A1PccAT
i1

(
Ik+1
s + Ik

s

)
− A1PccCcv

(
vk+1

v − vk
v

)
+

A2

2

(
vk+1

v + vk
v

)
, (4)

vk+1
c = vk

c −
h
2

PccAT
2

(
ik+1
l + ikl

)
+

h
2

PccAT
i1

(
Ik+1
s + Ik

s

)
− PccCcv

(
vk+1

v − vk
v

)
, (5)

Cvvvk+1
v = Cvvvk

v −
h
2

AT
2

(
ik+1
l + ikl

)
+

h
2

AT
i2

(
Ik+1
s + Ik

s

)
− Cvc

(
vk+1

c − vk
c

)
+

h
2

(
Ik+1
v + Ik

v

)
, (6)

Ik+1
v = f

(
vk+1

v

)
. (7)

Here r denotes the size of interconnect structure connected di-
rectly to non linear circuit , and given l = N − r we note that

Ccc ∈ Rl×l , Cvv ∈ Rr×r.

Pcc = C−1
cc is the inverse capacitance matrix, and A is the adjacency

matrix of the circuit. A is obtained by first adding Ag and Al and then
removing zero columns (these correspond to intermediate nodes, rep-
resenting the connection of a resistance to an inductance).

The development thus far is similar to that in [7], with the ma-
jor difference being the addition of (6) and (7), which account for
the nonlinear elements. The main contribution in [7] was the fast
solution of (4) and (5), where all matrices are constant over the sim-
ulation period. We will show in §4.2 that the techniques in [7] can
be extended to handle the case when nonlinear elements are present.

For future reference, we will call the technique of directly solv-
ing (4), (5), (6), and (7) as the “Exact-RLP” algorithm. It can be
shown that the computational complexity of the Exact-RLP algo-
rithm is O

(
l3 + pq

(
l2 + r3

))
. For large VLSI interconnect structures

we have l >> r, reducing the complexity to O
(
l3 + pq

(
l2

))
.

4 Computationally efficient implementa-
tion

We now turn to the fast solution of equations (4) through (7). Recall
that the nonlinear equation (7) is handled via the Newton-Raphson
technique. This requires, at each time step, linearizing (7) and sub-

Figure 1: Sparsity structure of A. The nonzero entries are shown
darker.

stituting it into (6). The resulting set of linear equations have very
specific structure:

• Equations (4) and (5) are of the form Ax = b where A is fixed
(does not change with the time-step). Moreover, A−1 is typi-
cally approximately sparse (For details, see §4.2).

• Equation (6) (after the substitution of the linearized (7)) is
again of the form Ax = b, where the matrix A is obtained
by adding Cvv and the coefficient of the first-order terms in
the linearized equation (7). Recall that the matrix Cvv cap-
tures the drain, gate and bulk capacitances of all devices. It
also contains the interconnect coupling capacitances between
gates and drains of different non-linear devices in the circuit.
As each non-linear device is connected to only a few nodes
and the capacitive effects of interconnects are localized, the
A matrix is observed to be sparse in practice (For details,
see §4.1). Note that A changes with each Newton-Raphson
iteration and with the time-step.

Thus the key computational problem is the solution of a sparse time-
varying set of linear equations, coupled with a large fixed system of
linear equations Ax = b with A−1 being sparse.

4.1 Solving sparse time-varying linear equations
Krylov subspace methods have been shown to work extremely well
for sparse time-varying linear equations [6]. Specifically, the GM-
RES (Generalized Minimum Residual) method of Saad and Schultz [13]
allows the efficient solution of a sparse, possibly non-symmetric, lin-
ear system to within a pre-specified tolerance. This method performs
a directional search along the orthogonal Arnoldi vectors which span
the Krylov subspace of A. That is, given an initial guess x0 and cor-
responding residual r0 = b−Ax0, orthogonal vectors {q1,q2...,qm}
are generated with the property that they span Sm, the solution search
space at iteration m.

Sm = x0 + span{r0,Ar0, ...,A
mr0}

= x0 +κ(A,r0,m)
⊆ span{q1,q2...,qm} . (8)

These vectors are chosen according to the Arnoldi iteration: AQm =
Qm+1Hm where Qm = {q1,q2...,qm} is orthogonal and Hm ∈ Rm+1×m

Figure 2: Sparsity structure of A. The non-zero entries are
shown darker.

is an upper Heisenberg matrix.
For these methods the choice of a preconditioner matrix M, which

is an approximation of A, can greatly affect the convergence. A good
preconditioner should have the following two properties:

• M−1A ≈ I.

• It must accommodate a fast solution to an equation of the form
Mz = c for a general c.

Figure 1 depicts the sparsity structure of the A matrix for a cir-
cuit example of parallel wires driving a bank of inverters. For such a
sparsity structure, an appropriate choice of the preconditioner could
be of the form as shown in Figure 3. Although we have chosen a
circuit with only inverters for simplicity, a more complicated circuit
structure would simply distribute the entries around the diagonal and
off-diagonal bands and lead to possibly more off diagonal bands. To
see this, consider an extreme case where the circuit under consider-
ation has only non-linear devices and does not comprise of intercon-
nects. In this case the sparsity pattern of the A matrix is as shown in
Figure 2. Therefore, the chosen preconditioner would encompass not
only the sparsity structure shown in Figure 1 but also other sparsity
patterns that might arise with the analysis of more complicated non-
linear devices. Correspondingly the structure of the preconditioner
(see Figure 3) would have additional bands.

Matrices of the form shown in Figure 3 have the following two
properties which make them an ideal choice for preconditioner.

• The inverses of the preconditioner matrix can be computed
efficiently in linear time, O(r) (r denotes the size of intercon-
nect structure directly connected to non-linear devices), by ex-
ploiting the Hadamard product formulation as shown in [10].

• It can also be shown that this formulation facilitates the fast
matrix-vector products, again in linear time (O(r)), which
arise while solving linear systems of equations with the pre-
conditioner matrix.

A simple example which best illustrates these advantages is a

Figure 3: Preconditioner matrix.

symmetric tridiagonal matrix.

B =

⎛⎜⎜⎜⎜⎜⎝
a1 −b1

−b1 a2 −b2

. . .
. . .

. . .
−bn−2 an−1 −bn−1

−bn−1 an

⎞⎟⎟⎟⎟⎟⎠ (9)

The inverse of B can be represented compactly as a Hadamard prod-
uct of two matrices, which are defined as follows:

B−1 =

⎛⎜⎜⎜⎝
u1 u1 · · · u1

u1 u2 · · · u2
...

...
. . .

...
u1 u2 · · · un

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

U

◦

⎛⎜⎜⎜⎝
v1 v2 · · · vn

v2 v2 · · · vn
...

...
. . .

...
vn vn · · · vn

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

V

. (10)

There exists an explicit formula to compute the sequences {u} ,{v}
efficiently in O(n) operations which is detailed in [10]. In this case,
if we are interested in solving a linear system of equations By = c,
we only need to concern ourselves with the matrix-vector product
B−1c = y. This computation can also be performed efficiently in
O(n) computations as outlined below:

Pui =
i

∑
j=1

u jc j, Pvi =
n

∑
j=i

v jc j, i = 1, ...,n,

y1 = u1Pv1 ,

yi = viPui−1 +uiPvi , i = 2, ...,n. (11)

The above formulation for a tridiagonal matrix could be easily ex-
tended to handle the more general case when the preconditioner ma-
trix is a zero padded block tridiagonal matrix (matrix with zero di-
agonals inserted between the main diagonal and the non-zero super-
diagonal and sub-diagonal of tridiagonal matrix) as in Figure 3. Ele-
mentary row and column block permutations could be performed on
such a matrix to reduce it into a block tridiagonal matrix. This has

been shown with a small example as below.

B =

⎛⎜⎝ a1 0 −b1 0
0 a2 0 −b2

−b1 0 a3 0
0 −b2 0 a4

⎞⎟⎠ (12)

= P

⎛⎜⎝ a1 −b1 0 0
−b1 a2 0 0

0 0 a3 −b2

0 0 −b2 a4

⎞⎟⎠
︸ ︷︷ ︸

X

PT , (13)

where

P =

⎛⎜⎝1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎠ .

Hence

B−1 = PX−1PT

=

⎛⎜⎝u1 0 u1 0
0 u2 0 u2

u1 0 u3 0
0 u2 0 u4

⎞⎟⎠
︸ ︷︷ ︸

U

◦

⎛⎜⎝v1 0 v3 0
0 v2 0 v4

v3 0 v3 0
0 v4 0 v4

⎞⎟⎠
︸ ︷︷ ︸

V

. (14)

We have not included block matrices for simplicity of presentation,
however the zero padded block tridiagonal case is a natural exten-
sion of the above example. All the entries in U,V matrices have
to be now replaced by blocks and accordingly the row and column
permutations would be replaced by their block counterparts with an
identity matrix of appropriate size replacing the ’ones’ in the P ma-
trix. Table 1 gives the comparison for Incomplete-LU preconditioner
and the zero-padded (Z-Pad) preconditioner. Simulations were done
on circuits consisting of busses with parallel conductors driving bank
of inverters. ’Size’ denotes the number of non-linear devices. All the
results are reported as a ratio of run-time and iteration-count (num-
ber of iterations for the solution to converge to within a tolerance
of 1e-10) of Z-Pad to the Incomplete-LU preconditioner. As can be
seen from Table 1, Z-Pad offers a substantial improvement in run
time as compared to the Incomplete-LU preconditioner.

Size 400 800 1600 3200

Runtime .44 .42 .42 .43
Iterations 5/10 5/10 5/10 5/10

Table 1: Preconditioner comparison.

4.2 Solving Ax = b with a constant, approximately
sparse A−1

We now turn to the solution of equations (4) and (5). As mentioned
earlier, these equations reduce to the form Ax = b with a constant,
approximately sparse A−1. A (corresponding to X in (4)) is com-
posed of L, R and P. Each of these matrices has a sparse inverse
for typical VLSI interconnects which then leads to a approximately
sparse A−1 (Note that this argument is used for motivating the spar-
sity inherent in A−1 and cannot be used as a theoretical proof for the
same). In addition this sparsity has a regular pattern which can be
explained on the basis of how inductance and capacitance matrices
are extracted. The distributed RLC effects of VLSI interconnects can
be modeled by dividing conductors into small subsets of segments,

100 200 300 400 500 600 700 800 900 1000
75

76

77

78

79

80

81

82

83

84

85

Size

S
p
a
rs

it
y
 I
n
d
e
x

Figure 4: Average sparsity versus circuit size.

each of which are aligned [9, 3]. Each of these subsets leads to a
sparsity pattern (corresponding to a band in A−1). All the effects
when summed up lead to a A−1 matrix that has a regular sparsity
pattern. Window selection algorithm as described in [16, 3] could
then be employed to find out the sparsity pattern in A−1. It has been
recognized in earlier work that this property (sparsity) yields enor-
mous computational savings; it has been shown in [7] that an ap-
proximate implementation of the Exact-RLP algorithm, referred to
simply as the “RLP algorithm” provides an order-of-magnitude in
computational savings with little sacrifice in simulation accuracy.

To proceed, we rewrite (4) and (5) as

ik+1
l = X−1Yikl +X−1A1vk

c +
h
4

X−1A1PccAT
i1

(
Ik+1
s + Ik

s

)
−X−1A1PccCcv

(
vk+1

v − vk
v

)
+

A2

2

(
vk+1

v + vk
v

)
, (15)

X−1A1vk+1
c = X−1A1vk

c −X−1A1
h
2

PccAT
2

(
ik+1
l + ikl

)
+

h
2

X−1A1PccAT
i1

(
Ik+1
s + Ik

s

)−X−1A1PccCcv
(
vk+1

v − vk
v

)
. (16)

Although X is a dense matrix, X−1 turns out to be an approximately
sparse matrix. Moreover the matrices X−1Y , X−1A1, X−1A1PccAT

i1,
X−1A1PccCcv are also approximately sparse [7]. This information
can be used to reduce the computation significantly by noting that
each step of trapezoidal integration now requires only sparse vector
multiplications. Solving sparse (15) and (16) along with (6) and (7)
is termed as the RLP algorithm (SASIMI). To analyze the computa-
tional saving of the approximate algorithm over the Exact-RLP algo-
rithm, we denote “sparsity index” of a matrix A as ratio of the number
of entries of A with absolute value less than ε to the total number of
entries. The computation required for each iteration of (15) and (16)
is then O

(
(1−ν) l2

)
, where ν is the minimum of the sparsity indices

the matrices X−1Y , X−1A1, X−1A1PccAT
i1, X−1A1PccCcv. Figure 4 pro-

vides the average sparsity for the matrices for a system with parallel
conductors driving a bank of inverters. The sizes in consideration
are 100, 200, 500 and 1000. On top of this the computation time
of X−1 can be reduced to O(l) by using the windowing techniques
(details in [16]). Hence the computational complexity of RLP is
O

(
pq(1−ν) l2

)
as compared to O

(
pqn3

1

)
for the MNA approach.

σ ρ=5 ρ=20 ρ=50

100 .0054 .0053 .0088
200 .0078 .0052 .0071
500 .0006 .0022 .0001
1000 .0003 .0005 .0004
2000 .0003 .0004 .0004

Table 2: RMSE comparison.

5 Numerical results and conclusions
We implemented the Exact-RLP and RLP (SASIMI) algorithms in
C++. A commercially available version of SPICE with significant
speed-up over the public-domain SPICE has been used for reporting
all results with SPICE. Simulations were done on circuits consist-
ing of busses with parallel conductors driving bank of inverters, with
wires of length 1mm, cross section 1µm×1µm, and with a wire sepa-
ration of 1µm. A periodic 1V square wave with rise and fall times of
6ps each was applied to the first signal with a time period of 240ps.
All the other lines were assumed to be quiet. For each wire, the drive
resistance was 10Ω. A time step of 0.15ps was taken and the simula-
tion was performed over 30 ps (or 200 time steps). For the inverters
the W/L ratio of NMOS and PMOS were taken to be .42µm/.25µm
and 1.26µm/.25µm respectively.

In order to explore the effect of the number of non-linear ele-
ments relative to the total, three cases were considered. With ρ de-
noting the ratio of the number of linear elements to that of non-linear
elements, the experiments were performed for ρ equaling 5, 20 and
50. The number of linear elements in the following results is denoted
by σ.

We first present results comparing the accuracy in simulating the
voltage waveforms at the far end of the first line (after the inverter
load). The metric for comparing the simulations is the relative mean
square error (RMSE) defined as

∑i (vi − ṽi)
2

∑i v2
i

where v and ṽ denote the waveforms obtained from Exact-RLP and
SASIMI respectively.

Table 2 presents a summary of the results from the study of sim-
ulation accuracy. It can be seen that the simulation accuracy of the
Exact-RLP algorithm is almost identical to that of SPICE, while the
SASIMI has a marginally inferior performance as measured by the
RMSE. The error values for SASIMI are compared simply with the
Exact-RLP as it had the same accuracy as SPICE results for all the
experiments run. A plot of the voltage waveforms at the far end of
the active line, obtained from SPICE, Exact-RLP and SASIMI al-
gorithms, is shown in Figure 5. (The number of conductors in this
simulation example is 200.) There is almost no detectable simulation
error between the SASIMI, Exact-RLP and SPICE waveforms over
200 time steps. To give a better picture, the accuracy results reported
are for a larger simulation time of 2200 time steps.

We now turn to a comparison of the computational requirements
between Exact-RLP, SASIMI and SPICE. Table 3 summarizes the
findings. For a fair comparison our total simulation time is com-
pared against the transient simulation time for SPICE(i.e we have
not included any of the error check or set up time for SPICE). As
can be seen from the table, SASIMI outperforms the Exact-RLP al-
gorithm and SPICE. For the case of 500 conductors with ρ = 50,
the Exact-RLP algorithm is 390 times as fast compared to SPICE.
SASIMI is about 1400 times faster as compared to SPICE, and more
than three times faster than Exact-RLP. As can be seen, the computa-
tional savings increase as the ratio of linear to non-linear elements is

σ ρ=5 ρ=20 ρ=50
SPICE Exact-RLP SASIMI SPICE Exact-RLP SASIMI SPICE Exact-RLP SASIMI

100 11.96 1.34 1.26 13.73 .27 .21 13.54 .15 .12
200 100.25 3.28 2.68 68.72 .64 .28 67.68 .55 .22
500 3590.12 17.13 4.872 1919.21 13.47 3.01 1790.67 4.58 1.30

1000 >12hrs 87.75 22.71 >10hrs 79.07 16.49 >10hrs 77.56 15.20
2000 > 1day 545.6 78.06 > 1day 526.23 59.33 > 1day 408.54 56.05

Table 3: Run time (in seconds) comparisons.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−10

−1

0

1

2

3

4

5

6

Time −−−−−>

V
ol

ta
ge

 −
−−

−−
>

SPICE
Exact−RLP
SASIMI

Figure 5: The voltage waveforms obtained through SPICE,
Exact-RLP and SASIMI.

increased from 5 to 50. The savings also increase with increase in the
size of the problem considered. The computational efficiency of the
SASIMI can be explained on the use of sparsity-aware algorithms
for both the linear and non-linear parts of the problem.

6 Acknowledgments
This material is based on work supported by the NASA, under Award
NCC 2-1363, and by National Science Foundation under Award CCR-
9984553 and CCR-0203362.

References

[1] U. M. Ascher and L. R. Petzold. Computer Meth-
ods for Ordinary Differential Equations and Differential-
Algebraic Equations. SIAM, 1998.

[2] M. Beattie and L. Pileggi. Modeling magnetic coupling for
on-chip interconnect. In Proc. Design Automation Conf,
pages 335–340, 2001.

[3] T. H. Chen, C. Luk, H. Kim, and C. C.-P. Chen. IN-
DUCTWISE: Inductance-wise interconnect simulator and
extractor. In Proc. Int. Conf. on Computer Aided Design,
pages 215–220, 2002.

[4] T.-H. Chen, J.-L. Tsai, C. C.-P. Chen, and T. Karnik.
HISIM: Hierarchical interconnect-centric circuit simula-
tor. In Proc. Int. Conf. on Computer Aided Design, pages
489–496, 2004.

[5] A. Devgan, H. Ji, and W. Dai. How to efficiently capture
on-chip inductance effects: Introducing a new circuit ele-
ment K. In Proc. Int. Conf. on Computer Aided Design,
pages 150–155, 2000.

[6] G. H. Golub and C. F. Van Loan. Matrix Computations.
John Hopkins University Press, 1996.

[7] J. Jain, C.-K. Koh, and V. Balakrishnan. Fast simulation
of VLSI interconnects. In Proc. Int. Conf. on Computer
Aided Design, pages 93–98, 2004.

[8] H. Ji, Q. Yu, and W. Dai. SPICE compatible circuit models
for partial reluctance K. In Proc. Asia South Pacific Design
Automation Conf., pages 786–791, 2004.

[9] T. Lin, M. W. Beaftie, and L. T. Pileggi. On the efficacy
of simplified 2D on-chip inductance. In Proc. Design Au-
tomation Conf, pages 757–762, 2002.

[10] R. Nabben. Decay rates of the inverses of nonsymmetric
tridiagonal and band matrices. SIAM Journal on Matrix
Analasis and Applications, 20(3):820–837, May 1999.

[11] L. W. Nagel. SPICE2: A computer program to simulate
semiconductor circuits. Technical report, U.C. Berkeley,
ERL Memo ERL-M520, 1975.

[12] A Pacelli. A local circuit topology for inductive parasitics.
In Proc. Int. Conf. on Computer Aided Design, pages 208–
214, 2002.

[13] Y. Saad and M. Schultz. GMRES: A generalized mini-
mal residual algorithm for solving non-symmetric linear
systems. SIAM Journal on Scientific Computing, pages
856–869, 1986.

[14] M. Zhao, R. V. Panda, S. S. Sapatnekar, and D. Blaauw.
Hierarchical analysis of power distribution networks.
IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, pages 159–168, February 2002.

[15] H. Zheng, B. Krauter, M. Beattie, and L. Pileggi. Window-
based susceptance models for large scale RLC circuit anal-
yses. In Proc. Design Automation and Test in Europe
Conf., pages 628–633, 2002.

[16] G. Zhong, C.-K. Koh, and K. Roy. On-chip interconnect
modeling by wire duplication. In Proc. Int. Conf. on Com-
puter Aided Design, pages 341–346, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

