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Abstract— Finding DC operating points of nonlin-

ear circuits is an important problem in circuit sim-

ulation. The Newton-Raphson method employed in

SPICE-like simulators often fails to converge to a so-

lution. To overcome this convergence problem, homo-

topy methods have been studied from various view-

points. There are several types of homotopy meth-

ods, one of which succeeded in solving bipolar analog

circuits with more than 20000 elements with the theo-

retical guarantee of global convergence. In this paper,

an improved version of the homotopy method is pro-

posed that can find DC operating points of practical

nonlinear circuits smoothly and efficiently. It is also

shown that the proposed method can be easily imple-

mented on SPICE without programming.

I. Introduction

Finding DC operating points of nonlinear circuits is an
important problem in circuit simulation. SPICE-like cir-
cuit simulators, which are widely used in LSI design, em-
ploy the Newton-Raphson (NR) method for solving mod-
ified nodal (MN) equations. However, the NR method
or its variants often fails to converge to a solution un-
less the initial point is sufficiently close to the solution.
Therefore, many circuit designers experience difficulties in
finding DC operating points, especially for bipolar analog
integrated circuits.

To overcome this convergence problem, globally con-
vergent homotopy methods have been studied by many
researchers from various viewpoints. By these studies,
the application of the homotopy methods in practical cir-
cuit simulation has been remarkably developed, and the
homotopy method termed the Newton homotopy (NH)
method succeeded in solving bipolar analog circuits with
more than 20000 elements (that belong to a class of the
largest-scale circuits available with the current bipolar
analog LSI technology) with the theoretical guarantee of
global convergence [1]–[5]. However, since the NH method
is globally convergent only when we choose an initial point
on which the uniform passivity holds, we cannot choose a
good initial point (e.g., point in the forward active opera-
tion region of transistors).

The Newton-fixed-point homotopy (NFPH) method is
an improved version of the NH method [6],[7]. In this
method, we can trace a solution curve from a good initial
point, which often makes the solution curve short and the
algorithm efficient. However, the auxiliary equation of
this method contains a linear function that has no relation
to the original nonlinear function, which sometimes causes
complicated movement of solution curves, especially in
the neighbourhood of λ = 1.

As another efficient approach of the homotopy method,
the variable gain homotopy (VGH) method is well-known
[8], which is an extension of the homotopy method termed
the fixed-point homotopy (FPH) method [9]. Since this
method includes the excellent idea of variable gain, so-
lution curves often become smooth. However, in this
method, we sometimes have to trace a solution curve from
an initial point far from the solution; namely, the initial
state is sometimes far from the normal operation of tan-
sistor circuits. In order to solve large-scale circuits more
efficiently, it is necessary to develop a more efficient ho-
motopy method.

In this paper, an efficient homotopy method termed the
variable gain Newton homotopy (VGNH) method is pro-
posed that is based on the idea of the NFPH method and
that of the VGH method. The proposed method has the
following advantages: i) The auxiliary equation is closely
related to the original nonlinear equation. ii) Since this
method is globally convergent for any initial point, we
can choose a good initial point. iii) The idea of vari-
able gain is introduced. Therefore, we can trace solution
curves smoothly and efficiently. By numerical examples,
it is shown that the proposed method finds DC operat-
ing points of practical transistor circuits more efficiently
than the conventional methods. It is also shown that the
proposed method can be easily implemented on SPICE
without programming.

II. Homotopy Methods for MN Equations

We first review the homotopy methods for solving sys-
tems of nonlinear equations of the form:

f(x) = 0, f : Rn → Rn. (1)



In the MN equation, (1) is written as follows [2],[4]:

fg(v, i)
�
= Dgg(Dg

T v) + DEi + J = 0

fE(v, i)
�
= DE

T v − E = 0,
(2)

where v ∈ RN is the variable vector denoting the node
voltages to the datum node, i ∈ RM is the variable vector
denoting the branch currents of the independent voltage
sources, g : RK → RK is a VCCS type continuous func-
tion, Dg and DE are N ×K and N ×M (resp.) reduced
incidence matrices, J ∈ RN and E ∈ RM are source vec-
tors, f = (fg,fE)T : Rn → Rn, x = (v, i)T ∈ Rn, and
n = N + M .

In transistor circuits, the branch g is composed of tran-
sistors, diodes, resistors, etc. The relationship between
the branch voltage vector vq = (vbe, vbc)T and the branch
current vector iq = (ie, ic)T of a bipolar junction transis-
tor (BJT), for instance, is described by the Ebers-Moll
model as follows:

iq(vq) = Tq(vq), (3)

where

T =
[

1 −αr

−αf 1

]
(4)

and

q(vq) =
[

me(exp(nevbe) − 1)
mc(exp(ncvbc) − 1)

]
. (5)

Also, ie (ic) denotes the emitter (collector) current and
vbe (vbc) denotes the base to emitter (collector) voltage,
respectively. The model parameters αf , αr,me, mc, ne,
and nc are required to satisfy the passivity, no-gain, and
reciprocity conditions [10].

In the homotopy methods [9], we consider an auxiliary
equation f0(x) = 0 with a known solution x0 (or a solu-
tion easily obtained) and define a homotopy function:

h(x, λ) = λf(x) + (1 − λ)f0(x), (6)

where λ ∈ [0, 1] is the homotopy parameter. Then, the
solution curve (often called the path) of the homotopy
equation:

h(x, λ) = 0 (7)

is traced from the initial point (x0, 0) at λ = 0. If the
solution curve reaches the λ = 1 hyperplane at (x∗, 1),
then a solution x∗ of (1) is obtained.

There are several types of homotopy methods for solv-
ing MN equations. The NFPH method [6],[7] uses the
homotopy function:

h(x, λ) = f(x) − (1 − λ)f(x0) + (1 − λ)A(x − x0), (8)

where A is an n × n matrix represented as follows:

A =
[

DgGFP DT
g 0

0 −RFP 1M

]
. (9)

In (9), GFP is a positive semi-definite diagonal matrix
whose diagonal elements are positive and others are zero.
Also, RFP is a scalar positive value and 1M denotes an
M ×M identity matrix. Note that the auxiliary function
f0(x) at λ = 0 contains a linear function that has no
relation to the original nonlinear function f(x).

The VGH method [8] uses the homotopy function:

h(x, λ) = f(x, λα) + (1 − λ)G(x − a), (10)

where α is a vector consisting of forward current gains αf

and reverse ones αr of transistors, a is a random vector,
and G is an N × N diagonal matrix. The VGH method
is a two-stage procedure. In Phase 1, the initial point x0

that satisfies h(x, 0) = 0 is computed by the modified NR
method. In Phase 2, the solution curve of h(x, λ) = 0 is
traced from (x0, 0). In Phase 1, the circuit described by
h(x, 0) = 0 contains diodes as only nonlinear elements,
hence it has a unique solution.

Under some regularity assumptions of h, the solution
curve of h(x, λ) = 0 is guaranteed to reach the λ = 1
hyperplane if the uniqueness condition at λ = 0 and
the boundary free condition hold [4],[9]. Several homo-
topy methods including the NFPH method are proven
to be globally convergent for MN equations [1],[4],[6],[7];
namely, the solution curve of h(x, λ) = 0 is guaranteed
to reach the λ = 1 hyperplane.

III. Proposed Method

In this section, we propose a new homotopy method
that is not only globally convergent but also very efficient.
We first consider the following homotopy function:

h(x, λ) = f(x, λα) − (1 − λ)f(x0, 0 · α), (11)

where 0 · α implies the product of 0 and α. Note that
this homotopy function includes the concept of variable
gain. If we consider a circuit described by h(x, λ) = 0,
then each transistor of the circuit can be described by (3)
with T replaced by

T λ =
[

1 −λαr

−λαf 1

]
. (12)

If we put

T̃ =
[

0 αr

αf 0

]
, (13)

then
T λ = T + (1 − λ)T̃ (14)

holds.
Next, consider the following function:

f̃(x) �
[

Dgg̃(DT
g v)

0

]
, (15)

where the components g̃i (i = 1, 2, · · · , K) of g̃ = (g̃1,
g̃2, · · · , g̃K)T are defined as follows:



1. If gi and gi+1 are a pair of transistor branches, that
is, [

gi

gi+1

]
= Tq(vq), (16)

then the corresponding function g̃q = (g̃i, g̃i+1)T is

[
g̃i

g̃i+1

]
= T̃ q(vq). (17)

2. If gi is not a transistor branch, then

g̃i = 0. (18)

Then, from (14)–(18), it is easily seen that f(x, λα) =
f(x) + (1 − λ)f̃(x) and f(x0, 0 · α) = f(x0) + f̃(x0)
hold. Hence, (11) can be rewritten as:

h(x, λ) = f(x) + (1 − λ)f̃(x) − (1 − λ)(f(x0) + f̃(x0))
(19)

and we have

h(x, λ) = f(x)−(1−λ)f(x0)+(1−λ)(f̃(x)−f̃(x0)). (20)

Note that (20) is equivalent to (11). In this paper, we
propose a homotopy method using the homotopy func-
tion (11) or (20). From the form of (11), the proposed
method may be called the variable gain Newton homo-
topy (VGNH) method.

The basic VGH method requires some modifications to
the model subroutines such as (12), but as seen from (20),
the proposed method requires only additional subroutines
of T̃ . Thus, the proposed method can be implemented
on the SPICE-like simulators with no modification to the
existing model subroutines.

For the global convergence property of the proposed
method, the following theorem holds.

Theorem 1 Consider the homotopy function defined by
(11) or (20). Assume that g is uniformly passive [4] on
certain points. Then, for any initial point x0 ∈ Rn, the
solution curve of h(x, λ) = 0 starting from (x0, 0) reaches
λ = 1. �

Proof : To prove the theorem, it is sufficient to show that
i) x0 is the unique solution of h(x, 0) = 0, and ii) h is
boundary free [4],[9]. i) Consider the circuit described

by h(x, 0) = 0. Since T λ =
[

1 0
0 1

]
holds at λ = 0,

this circuit has diodes as only nonlinear elements as well
as in Phase 1 of the VGH method. Hence, this circuit
has a unique solution, which implies that the solution of
h(x, 0) = 0 is unique. ii) It is evident that the branch
g+(1−λ)g̃ satisfies the uniform passivity on certain points
for all λ ∈ [0, 1]. Hence, following the proofs discussed in
[1] and [4], it is trivial to show that h is boundary free.
Thus, the global convergence of the proposed method is
guaranteed for any initial point x0 ∈ Rn. �

Note that a fairly general class of resistive elements
including BJTs, diodes, tunnel diodes, and positive linear
resistors are known to be uniformly passive on certain
points [4]. Thus, the uniform passivity is a very mild
condition.

Next, we discuss the computational efficiency of the
proposed method, considering the factors that degrade
the efficiency in the conventional methods. In the VGH
method, the initial point x0 in Phase 2 is obtained by
solving a circuit that contains diodes as only nonlinear
elements. However, since the structure of such a circuit
often makes the operation of some transistors not be the
normal (foward active) operation of transistor circuits, the
initial point obtained in Phase 1 is sometimes far from the
solution. In the NFPH method, a good initial point can
be used as discussed in [7]. However, as stated before, the
auxiliary function contains a linear function that has no
relation to the original nonlinear function. Moreover, this
method requires relatively large values of some elements of
GFP in (9) to guarantee the uniqueness condition at λ = 0
[7]. Such linear function with large GFP sometimes causes
complicated movement of solution curves, especially in
the neighbourhood of λ = 1 [6],[7].

We show here that the proposed method is free from the
difficulties of the VGH method and the NFPH method.
First, since h(x0, 0) = 0 holds for any x0, we can choose
a good initial point as discussed in [7]. Secondly, the ho-
motopy function (11) or (20) contains no linear function,
and the auxiliary equation h(x, 0) = 0 is closely related
to the original nonlinear equation f(x) = 0. Hence, the
proposed method is free from the problem of the NFPH
method mentioned above. Moreover, since the proposed
method includes the concept of variable gain, it is ex-
pected that the solution curves become smooth and short.

We now propose an efficient variation of the proposed
method. As has been discussed, x0 is the unique solution
of h(x, 0) = 0 defined by (20), independent of the cir-
cuit parameters or topologies. However, it is well-known
among circuit designers that many practical transistor cir-
cuits cannot have multiple solutions under the condition
αf ≤ 0.5 (βf = αf/(1 − αf ) ≤ 1) [10]. Considering
this property, we can propose a more practical homotopy
function:

h(x, λ) = f(x) − (1−λ)f(x0) + (1−λ)
(f̃(x)−f̃(x0))

2
,

(21)
which is obtained by replacing T λ in (14) with

T λ = T + (1 − λ)
T̃

2

=
[

1 −αr

−αf 1

]
+ (1 − λ)

⎡
⎣ 0

αr

2αf

2
0

⎤
⎦ .(22)

This is the second homotopy function proposed in this
paper, where the current gains change from α/2 to α,
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not from 0 to α. Hence, it is expected that h(x, 0) = 0
defined by (21) is closer to the original nonlinear equa-
tion than that defined by (20). Thus, from the practical
viewpoint, we recommend the following algorithm.

1. We first apply the homotopy method using the ho-
motopy function (21).

2. If the above method happens to fail, then we apply
the homotopy method using the homotopy function
(20), whose global convergence is theoretically guar-
anteed.

IV. Numerical Examples

We implemented the proposed method on a Sun Blade
2000 (UltraSPARC-III Cu 1.2GHz) and have confirmed
the effectiveness of the proposed method using many prac-
tical transistor circuits. In all of the numerical experi-
ments, the proposed method was the most efficient. In
this section, we show the results applied to five types of
practical transistor circuits widely used in analog LSIs;
namely, the hybrid voltage reference circuit (HVRef) [6]–
[8], a basic two-stage operational amplifier (2sOA) [7], a
six-stage limiting amplifier (6sLA) [7], a high-gain oper-
ational amplifier µA741 that consists of 29 elements in-
cluding 22 BJTs, and a regulator circuit (RegCkt) with
an output voltage of 4.2 V that is used in bipolar LSIs
and consists of 41 elements including 24 BJTs.

In the numerical experiments, we used the typical set
of model parameters as those used in [7] for BJT models.
We chose the initial points in the forward active operation
region for all transistors [7]. It is natural to use v0

q =
(−0.7, 0)T as a typical forward active state for silicon npn
transistors and v0

q = (0.7, 0)T for pnp. We also used the
spherical method [1],[2] for tracing solution curves.

Figs. 1–3 show the solution curves for HVRef, µA741,
and RegCkt. In these figures, the emitter to base voltage
−vbe of a certain BJT is plotted, where marks indicate the
steps. In each step, a system of n+1 nonlinear equations
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is solved by the NR method. From these figures, it is seen
that the proposed method traces solution curves more
smoothly and efficiently than the conventional methods
(VGH and NFPH).

For the comparison of computational efficiency, we sum-
marize in Table I the number of steps and the total num-
ber of Newton iterations of the above three methods. For
the VGH method, the minimum (Min) and maximum
(Max) numbers are shown in the hundred trials, and the
left-hand numbers in the parentheses indicate the mod-
ified NR iterations in Phase 1. From the viewpoint of
Newton iterations, the proposed method is several times
more efficient than the VGH (Min) method and the NFPH
method.

V. Extension to Circuits Containing Tunnel Diodes

In this section, we extend the proposed method to cir-
cuits containing tunnel diodes.

In general, the v-i characteristic of a tunnel diode,
which will be written by i = g(v), is represented by a
polynomial:

g(v) = av3 − bv2 + cv, a, b, c > 0. (23)



TABLE I
Comparison of computational efficiency.

Method VGH (Min) VGH (Max) NFPH Proposed

Circiut n Number of steps (Number of Newton iterations)

HVRef 41 9 (11+25) 35 (13+99) 11 (44) 4 (16)
2sOA 42 4 (11+17) 21 (9+71) 3 (13) 3 (8)
6sLA 80 14 (10+46) 48 (10+152) 3 (12) 3 (9)
µA741 95 72 (16+177) 213 (17+494) 47 (173) 12 (33)
RegCkt 95 36 (16+99) 60 (16+161) 46 (128) 22 (67)

TABLE II
Comparison of convergence rate (%).

n NH Proposed

10 29 100
20 15 100
50 1 100

100 0 100

This function is not monotone because of the existence of
the second term −bv2. Hence, we consider the following
function:

g(v, λ) = av3 − λbv2 + cv, a, b, c > 0. (24)

At λ = 0, g(v, 0) is a monotone function and satisfies
the uniform passivity on any point. Hence, the uniqueness
condition at λ = 0 holds for any initial point. Moreover,
the function defined by (24) changes continuously from
a monotone function g(v, 0) to the original function g(v)
as λ changes from 0 to 1, which often makes the solution
curve smooth and short. This idea may be considered as
an extension of the VGH method to tunnel diode circuits.
Note that (24) can be realized by using g̃(v) = −bv in
(15) and (20).

Now we show some numerical examples. We consider
the circuit containing n tunnel diodes discussed in [5].

We first compare the global convergence property of
the NH method and the proposed method. Table II com-
pares the convergence rate when we applied the two meth-
ods from randomly chosen one hundred initial points for
n = 10, 20, 50, and 100. As seen from the table, the
NH method often fails to converge; more precisely, the
solution curve of the NH method often returned back to
λ = 0. This is because the global convergence of the NH
method is guaranteed only when we choose an initial point
on which the uniform passivity hold [1],[4]. However, the
proposed method always converged to a solution from any
initial point as guaranteed in Theorem 1.

We next compare the computational efficiency of the
NH method1 and the proposed method in Table III, where

1In the comparison, we chose the NH method because the VGH
method cannot be applied to this circuit, and the NFPH method
seems to be less efficient than the NH method for this circuit when
we used x0 = 0.

TABLE III
Comparison of computatinal efficiency.

NH method Proposed method

n S L T (s) S L T (s)

500 5 040 1 570 87 22 83 0.5
1000 16 040 4 480 1 591 52 153 8
1500 57 838 8 026 15 037 88 215 51
2000 83 941 12 352 55 410 120 282 190
2500 – – – 151 339 416
3000 – – – 145 389 658
3500 – – – 166 443 1 059
4000 – – – 176 495 2 977
4500 – – – 251 544 3 278
5000 – – – 236 600 3 934

S denotes the total number of steps, L denotes the arc-
length of solution curves, T (s) denotes the computation
time, and “–” denotes that it could not be computed in
one day. We used the initial point x0 = 0, on which g(v) is
uniformly passive. Both methods found the same solution
for all n. It is seen that the proposed method is much more
efficient than the NH method, and could solve this circuit
for n = 5000 in about one hour. It is also seen that
the arc-length of solution curves is much smaller in the
proposed method. Typical examples are shown in Figs. 4
and 5, where Fig. 4 shows the solution curve of the NH
method for n = 200 and Fig. 5 shows the solution curve
of the proposed method for n = 5000. In both figures, the
vertical line denotes the arc-length of the solution curve.
In Fig. 4, we can see a complicated solution curve with
many sharp turning points. Such solution curves have
often been observed when we applied the conventional
homotopy methods to large-scale circuits [1]. However,
In Fig. 5, we can see a smooth and short solution curves
although n is large.

VI. Implementation of the VGNH Method on
SPICE without Programming

Thus, the proposed method is not only globally con-
vergent for any initial point but also efficient because we
can use good initial points and the solution curves tend
to become smooth and short. In a sense, the proposed
method has all the advantages of the NH, NFPH, and
VGH methods, and is free from the difficulties of these
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methods.
However, the programming of sophisticated homotopy

methods is often difficult for non-experts or beginners. In
this section, we propose an effective method for imple-
menting the VGNH method on SPICE using the idea of
SPICE-oriented numerical methods [1],[11]–[13].

In the VGNH method, we trace the solution curve of
h(x, λ) = 0 where h is defined by (19). The solution curve
can be traced by integrating a system of the algebraic-
differential equations:

f(x) + (1 − λ)f̃(x) − (1 − λ)(f(x0) + f̃(x0)) = 0 (25a)

m∑
i=1

(
dvbei

ds

)2

+
(

dλ

ds

)2

= 1 (25b)

starting from (x0, 0) [1],[11]–[13], where m denotes the
number of transistors contained in the circuit, s denotes
the arc-length of the solution curve starting from (x0, 0),
and vbei denotes the base-emitter voltage of the ith tran-
sistor. Note that the points on the solution curve are
considered as functions of s, namely, they can be written
as (x(s), λ(s)).

In the approach of the SPICE-oriented numerical meth-
ods, we consider a circuit described by (25). Then, we
perform the transient analysis of SPICE to the circuit

λ

v

λ2

be1

be1

λ

v 1 1

vbe

bemv

m

bemv 12
be1v2

dR

λ

dR

Fig. 6. Circuits that describe (25b).

starting from (x0, 0), by which numerical integration is
applied to (25) and the solution curve of (25a) is traced.

As discussed in [1] and [11]–[13], (25b) is described by
the circuits shown in Fig. 6. In this figure, v̇bei or λ̇
denotes a node voltage that is independent of vbei or λ
but is equal to dvbei/ds or dλ/ds as a result, respectively.
Such circuits are called path following circuits.

Next, we consider a circuit that is described by (25a).
However, this is not an easy task because of the following
reasons.

1. In the VGNH method, we first determine a good
initial point x0. It is natural to choose x0 so that
vq = (vbe, vbc)T becomes a point in the forward ac-
tive operation region for all transistors. However,
since vq is a vector consisting of branch voltages but
x is a vector consisting of node voltages and branch
currents of the independent voltage sources, we have
to calculate the initial point x0 such that vq becomes
a point in the forward active operation region.

2. We have to determinte the constant term f(x0) +
f̃(x0) in (25a), which cannot be obtained by substi-
tuting x0 to f(x) or f̃(x) because the formulas of
f(x) do not appear explicitly in SPICE.

Therefore, the proposed implementation method consists
of two phases.

A. Determination of the initial point x0 and the constant
term f(x0) + f̃(x0).

In Phase 1 of the proposed method, we first set vq of
all transistors in the forward active operation region [e.g.,
vq = (0.7, 0)T ]. Let such a point be v0

q = (V 0
be, V

0
bc)

T .
Then, we connect the independent voltage sources V 0

be
and V 0

bc to each transistor as shown in Fig. 7.
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Fig. 7. The initial circuit for determining the initial point x0 and
the constant term f(x0) + f̃(x0).

We next connect the controlled current sources Jbe and
Jbc to each transistor as shown in Fig. 7, where currents
of Jbe and Jbc are described by g̃i and g̃i+1 in (17), re-
spectively. By the definition of f̃(x), it is easily seen that
connecting these controlled sources is equivalent to adding
f̃(x) to the left-hand side of the original MN equations
f(x) = 0. Such a circuit where two independent voltage
sources and two controlled current sources are connected
to each transistor of the original circuit is called the initial
circuit.

Then, we solve the initial circuit by the DC analysis of
SPICE. Since the initial circuit is essentially a linear cir-
cuit, it can be solved by the DC analysis of SPICE. Let the
solution of the initial circuit be x0. Since vq = (V 0

be, V
0
bc)

T

holds in x0, it can be used as a good initial point of the
VGNH method. Moreover, since the original circuit is de-
scribed by f(x) and the controlled sources Jbe and Jbc
are described by f̃(x), considering the Kirchhoff’s current
law, it is easily seen that the currents of the independent
voltage sources V 0

be and V 0
bc (that are denoted by Ibe and

Ibc in Fig. 7) give the linear term f(x0) + f̃(x0). Note
that it is sufficient to consider the constant term only at
the nodes where transistors are connected, because at the
node nj where transistors are not connected, fj(x0) = 0
and f̃j(x0) = 0 hold.

Thus, by solving the initial circuit, the initial point x0

and the constant term f(x0) + f̃(x0) are obtained.

B. Solving circuits that describe (25).

Now it is clear that (25a) is described by a circuit as
shown in Fig. 8, where four controlled current sources
are connected to each transistor. Namely, by connecting
(1 − λ)Jbe and (1 − λ)Jbc, (1 − λ)f̃(x) is described, and
by connecting (1−λ)Ibe and (1−λ)Ibc, −(1−λ)(f(x0)+
f̃(x0)) is described. In Phase 2 of the proposed method,
we perform the transient analysis of SPICE to this circuit
together with the path following circuits shown in Fig. 6,
and trace the solution curve of (25a).

( )1 λ Jbe

λ1 )( I

1 λ

bc

( )Jbc

( )1 Ibeλ

Fig. 8. The circuit that describes (25a).

TABLE IV
Comparison of computation time.

Program SPICE

Circuit n S T (s) S T (s)

HVRef 41 21 0.117 21 0.060
2sOA 42 19 0.133 19 0.020
6sLA 80 19 0.500 19 0.120
µA741 95 28 1.517 28 0.320
RegCkt 95 48 2.600 48 0.400

C. Proposed method.

Thus, the proposed implementation method is summa-
rized as follows.

1. We solve the initial circuit as shown in Fig. 7 by the
DC analysis of SPICE, and obtain the initial point x0

and the constant term f(x0) + f̃(x0) of the VGNH
method. (Since the initial circuit is essentially a lin-
ear circuit, it can be solved by the DC analysis of
SPICE.)

2. We perform the transient analysis of SPICE to the
circuits shown in Figs. 6 and 8 starting from (x0, 0)
and trace the solution curve of (25a). If the solution
curve reaches the λ = 1 hyperplane at (x∗, 1), then
a solution x∗ of (2) is obtained.

Since SPICE contains various efficient techniques such
as sparse matrix techniques, variable-step variable-order
implicit integration methods, and time-step control algo-
rithms, a high-level VGNH method can be realized by the
proposed method. Moreover, programming is not neces-
sary and making the netlist of Figs. 6–8 is quite easy in
the proposed method.

D. Examples.

We have applied the proposed implementation method
to many practical circuits and have obtained good re-
sults. In this subsection, we show some examples. We
used SPICE3f5 and the Sun Blade 2000.

Table IV shows the result of computation when we ap-
plied the VGNH method realized by i) our own program
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Fig. 9. Solution curves for HVRef (obtained by SPICE).
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Fig. 10. Solution curves for µA741 (obtained by SPICE).

that was used in Section IV and ii) the proposed imple-
mentation method to the five transistor circuits discussed
in Section IV. Since the number of steps changes by the
parameters such as the initial step size and the maximum
step size, we chose the parameters so that S becomes the
same in the two approaches. From the table, it is seen that
the proposed method is more efficient if the number of
steps is the same. This is because SPICE contains various
efficient techniques such as the sparse matrix techniques.
Thus, we can implement an efficient VGNH method by
using SPICE.

We also implemented the NH, FPH, and NFPH meth-
ods on SPICE using the similar idea. Figs. 9 and 10 show
the solution curves when we applied these three methods
and the VGNH method to HVRef and µA741, respec-
tively. From these figures, it is seen that the number of
marks of the VGNH method is the smallest, which im-
plies that the solution curves are traced smoothly and
efficiently in the proposed method.

VII. Conclusion

In this paper, an efficient and globally convergent ho-
motopy method has been proposed for finding DC op-
erating points of nonlinear circuits. Since the proposed
method can use good initial points, and since it includes
the concept of variable gain and does not include linear
auxiliary functions, we can trace solution curves smoothly
and efficiently. Furthermore, by using the method pro-
posed in Section VI, we can implement a “sophisticated
VGNH method with various efficient techniques” “easily”
“without programming,” “although we do not know the
homotopy method well.”
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