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Abstract: In this paper, the Newton-Krylov method is explored 
for robust and efficient time-domain VLSI circuit simulation.
Different from the LU-factorization based direct method, the 
Newton-Krylov method uses a preconditioned Krylov-subspace 
iterative method for linear system solving. Our key contribution is to 
introduce an effective quasi-Newton preconditioning scheme for 
Krylov-subspace methods to reduce the number and cost of LU 
factorizations during time-domain circuit simulation. Experimental 
results on a collection of digital, analog and RF circuits have shown 
that the quasi-Newton preconditioned Krylov-subspace method is as 
robust and accurate as SPICE3. The proposed Newton-Krylov 
method is especially attractive for simulating circuits with a large 
amount of parasitic RLC elements for post-layout verification. 

1. Introduction 
In modern deep-submicron meter very-large-scale integrated 

(VLSI) circuits, parasitic effects are no longer ignorable with the 
higher operation frequency, lower supply voltage and smaller device 
feature size. It is desirable, especially for sensitive analog and 
mixed-signal circuit design, to perform full-chip time-domain 
simulation of massively parasitic-coupled systems [14] before tape-
out using SPICE-like circuit simulators [12]. This is, however, an 
extremely time-consuming task, since SPICE-like circuit simulators 
use LU factorization based direct methods for solving systems of 
nonlinear differential equations. For massively parasitic coupled 
systems, the complexity of LU factorization is approaching its worst 
case O(n3), where n is the size of a circuit, instead of its average 
case O(n1.1-1.5) [12]. 

Existing work to reduce the cost of LU factorization for circuit 
simulation can be classified into three categories. The first category 
is so-called relaxation-based methods [15], including relaxation 
methods for nonlinear iteration, such as Gauss-Jacobi, Gauss-Seidel, 
Successive Over-Relaxation (SOR), etc. [17]. In [2], the 
preconditioner for the Gauss-Seidel method has been carefully 
studied to improve its robustness, which leads to the partial Gauss-
Seidel (PGS) method. For time-domain simulation, semi-implicit 
integration methods [20], including alternating-direction-implicit 
methods [17], have been applied to substrate analysis [14] and 
power/ground network analysis [10]. The drawback of relaxation-
based methods is that their stability and convergence properties 
strongly depend on circuit structures. 

The second category, which has been explored extensively since 
the inception of SPICE, belongs to a class of methods known as 
quasi-Newton methods [5]. The purpose of quasi-Newton methods 
is to reduce the number of LU factorizations for circuit simulation. 
For numerical integration, several fixed leading coefficient 
integration methods [4][7][11] have been proposed for variable time 
step-size integration to keep the circuit matrix constant – thus to 
have a less number of LU factorizations. For nonlinear iteration, 
virtually all SPICE-like circuit simulators explore quasi-Newton 
methods to reduce the number of LU factorizations [1][11], also 
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known as Jacobian matrix bypass. However, it is well known that 
the convergence rate of quasi-Newton methods for nonlinear 
iteration can degrade to linear. 

The third category is to apply Krylov-subspace based iterative 
methods [17] to solve the system of linearized equations in the inner 
Newton-Raphson iteration, so called the Newton-Krylov method [9]. 
The Newton-Krylov method can have the same stability and 
convergence properties as the classical Newton-Raphson method 
provided that the linearized system can be solved accurately by 
Krylov-subspace methods. The key issue is how to construct an 
effective preconditioner for iterative methods. For special 
applications such as in the shooting-Newton method and harmonic 
balance analysis for RF circuit simulation [18], where a circuit 
matrix is generally block-diagonally dominant, a preconditioner can 
be well constructed. Similarly, Krylov-subspace methods are 
applied for model order reduction of interconnect lines [13], 
substrates [8], and power/ground networks and direct analysis of 
well-structured large-scale linear circuits, such as substrate [14] and 
power/ground networks [3]. 

In this paper, we explore Krylov-subspace methods for time-
domain simulation of general nonlinear circuits. The basic idea of 
our approach is to reuse the LU factorized matrices from the 
previous time point/nonlinear iteration as the preconditioner for 
Krylov-subspace methods. With this, the number and cost of LU 
factorizations can be reduced dramatically. Additionally, the 
stability and convergence properties will not be compromised, 
thanks to Krylov-subspace methods. The Texas Instrument research 
team explored a similar idea using a conjugate gradient squared 
method with a partial LU preconditioner, called PLUCGS [2]. 
However, it was concluded in [2] that the PLUCGS method was 
even less efficient than the PGS method, a variant of the Gauss-
Seidel method. 

The main contribution of our work is a systematic method to 
construct effective preconditioners based on quasi-Newton 
principles to perform as few LU factorizations as possible during the 
whole time domain nonlinear circuit simulation. Our 
implementation is as robust as LU factorization based direct 
methods, and can be orders of magnitude faster than SPICE for 
time-domain simulation of VLSI circuits with a large amount of 
linear parasitic elements. 

Specifically, the efficiency comes from the following four ideas: 
. The preconditioner is kept constant when time step-sizes vary 
within a predefined range. 

. We propose a generalized way to partition the entire operating 
region of nonlinear devices into piecewise weakly nonlinear 
(PWNL) regions. With this, the preconditioner is kept constant 
if all nonlinear devices reside in their present operating PWNL 
regions.

. When nonlinear devices switch their operating PWNL regions 
during nonlinear iteration, the low-rank update technique [6] is 
applied to update the preconditioner efficiently rather than 
performing new LU factorization. 

. We further explore incomplete LU preconditioners derived 
from factorized full L and U matrices for the best efficiency. 

This paper is organized as follows. In Section 2, we provide an 
overview of quasi-Newton methods and Krylov-subspace methods.  
Section 3 introduces Newton-Krylov based time-domain nonlinear 
circuit simulation with the quasi-Newton preconditioning scheme. 



Section 4 describes the proposed time-domain nonlinear circuit 
simulation flow. Experimental results on general nonlinear circuits
and power/ground network examples are reported in Section 5.
Section 6 concludes the paper. 

2. Iterative Methods for Time-Domain Circuit Simulation 
LU factorization based direct methods are efficient for small-

scale to medium-scale circuit simulation. However, the cost of LU
factorization is becoming the dominant per-iteration cost for large-
scale circuit simulation incorporating parasitic effects [11][14]. To
tackle this problem and to continue exploiting the robustness of LU 
factorization, a key idea is to reuse the previous LU factorization to
solve circuit matrix equations Ax=b for as many time points and/or 
nonlinear iteration steps as possible. This leads to two categories of 
iterative methods – quasi-Newton methods and Krylov-subspace
methods.

2.1 Quasi-Newton methods
Suppose that we have a LU factorized matrix M, which is 

considered to be close enough to the circuit matrix A, circuit matrix
equations Ax=b can be solved by Eq. (1) derived from the first-order 
Taylor expansion with the matrix M as the approximate Jacobian 
matrix (representing the first-order derivatives). 

)( )1(1)1()( kkk AxbMxx (1)
For nonlinear circuits, Eq. (1) is further written as follows, 

)()( )1(1)1()1()1()1(1)1()( kkkkkkk fMxxAbMxx (2)
where f is the vector contributed by input sources, nonlinear devices, 
and numerical integration of charge/flux storage devices. It should
be noted that Eq. (2) will reduce to the Newton-Raphson method if 
M=A.

It should be noted that the search direction with quasi-Newton 
methods is  for each nonlinear iteration step. )( )1(1 kAxbM

2.2 Krylov-subspace methods
Given an initial guess x(0) to the circuit matrix equation Ax=b,

Krylov-subspace methods seek an approximate solution x(m) from 
the subspace of x(0)+Km(A, x(0)) by imposing the Petrov-Galerkin 
condition [17],

)(mAxb  Lm(A, x(0))    (3) 
where Km(A, x(0))=span{r(0), Ar(0), A2r(0), …, Am-1r(0)},

) , and L0()0( Axbr m(A, x(0)) is a subspace of dimension m.
It is well known that a preconditioner [17] (or a preconditioning 

matrix) M is the key to the fast convergence of Krylov-subspace
methods. The purpose of a preconditioner is to make the
preconditioned matrix M-1A as close to the identity matrix as 
possible. With left-preconditioned Krylov-subspace methods, circuit 
matrix equations to be solved become M-1Ax= M-1b and the Krylov
subspace Km is defined as follows, 

Km=span{r(0), M-1Ar(0), (M-1A)2r(0), …, (M-1A)m-1r(0)}     (4) 
where . It is not surprising that the effect of
the preconditioner M on preconditioned Krylov-subspace methods is
similar to that of the approximate Jacobian matrix M on quasi-
Newton methods. 

)( )0(1)0( AxbMr

The advantage of preconditioned Krylov-subspace methods over 
quasi-Newton methods is that, for each nonlinear iteration step, an 
orthogonal Krylov subspace Km is used for constructing the search 
direction, rather than only one single search direction 

as in quasi-Newton methods. As the result, the 
search direction of the Newton-Raphson method could be well 
approximated with the Newton-Krylov method. 

)( )1(1 kAxbM

We choose to use the flexible GMRES (FGMRES) method [16],
an extension of the original right-preconditioned GMRES method 
[17], to solve the linearized circuit equations (AM-1)(Mx)=b.

3. Quasi-Newton Preconditioner Construction
In this section, we present a systematic method to construct 

effective preconditioners based on quasi-Newton methods. Section 
3.1 presents adaptive time-step size control for preconditioner
computation. Section 3.2 describes the generation of generalized 
PWNL definition of nonlinear devices.

3.1 Quasi-Newton preconditioners by adaptive time step-size
control

Suppose that h is the base time-step size, and hn is the current 
time-step size. To develop a guideline for adaptive time step-size
control for preconditioner computation, let us write the system of 
linearized circuit equations as:

bxCGx     (5)
where G and C represent the conductance and susceptance 
(capacitance) matrices, and b is the vector due to input sources and 
nonlinear devices. Replace time derivatives by the standard
trapezoid formula, we have 

bxCxCxCG nn
k
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)( 22

hh
(6)

where hn = h. To solve the above equation with preconditioned
Krylov-subspace methods, the preconditioner we use is chosen to be 

h
CG 2 , which should be as close to 

h
CG 2  as possible.

Therefore, we introduce a parameter 0 < < 1 so that the 
preconditioner should satisfy the following inequality
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hhhh
CCGICGCG  (7) 

where || || represents the spectral radius of the matrix. The above 
inequality can be re-written as 

1
1

/11
z

   (8) 

where z = -h/(2 ) and is an eigenvalue of the matrix G . Let us 
refer to the region defined by the above inequality as the effective 
preconditioner region. To ensure the effective preconditioner region
to include the left half of the complex-z plane for covering all poles 
of a decaying system, we always choose =|1-1/ |<1 so that the

effective preconditioner region is 

C1

1
/11

1z . Then we can

draw the effective preconditioner region in the complex-z plane as
in Fig. 1, in which the black region represents the effective 
preconditioner region. 

Re(z)

Im(z)

1 20

Figure 1. The effective preconditioner region. 

A large range of  is helpful to reduce the number of LU
factorizations when time steps vary. However, the preconditioner M-

1 will diverge from A-1 when is far away from 1. This will
unfortunately increase the cost of Krylov-subspace methods. In our 
implementation, 0.625 < < 2.5 is used for a tradeoff. We note that



the effective preconditioner region is similar to the convergence
region for the iterative integration formulae in SILCA [11].

3.2 Quasi-Newton preconditioners by piecewise weakly
nonlinear definition of nonlinear devices
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Figure 2. The PWNL definition of a nonlinear function.

In this sub-section, we present a systematic method for quasi-
Newton preconditioner computation during nonlinear iteration. The 
central idea is to partition any nonlinear device function into a
collection of regions, where in each region the nonlinear function is 
a weakly nonlinear function, i.e., its derivatives can be 
approximated by a constant (called a chord). As an example, Figure
2 shows an example of the PWNL definition of a nonlinear function, 
where three PWNL regions are defined with three different chords 
(fixed first-order derivatives). 

Now consider how to generate PWNL regions automatically for 
arbitrary nonlinear functions. Suppose that nonlinear iteration is 
performed within a PWNL region of a nonlinear function f(x) to 
solve f(x)=0, the nonlinear iteration equation can be expressed by,

g
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where g is the chord for this PWNL region. Let the exact solution be
x* = xi + i = xi+1 + i+1. Subtracting x* from the both sides of Eq. (9) 
gives

g
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After applying the Taylor expansion on f(x) at xi, we obtain the
following error estimation,
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From Eq. (11), if g is always equal to f’(xi), as in the Newton-
Raphson method, the convergence rate is quadratic. The smaller the 
|1- f’(xi)/g| is, the closer to the quadratic convergence rate Eq. (11) is. 
On the other hand, the larger the |1- f’(xi)/g| is, the larger the range 
of a PWNL region could be. In practice, we define the following 
condition with a parameter 0< <1,

g
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1     (12)

In our implementation, for simplicity, the chord is chosen to be 
the maximum first-order derivative in each PWNL region. Note that 
PWNL regions for a nonlinear function are equivalent to piecewise
constant (PWC) regions for first-order derivatives of the same
nonlinear function. 

Now that the chord is chosen to be the maximum first-order
derivative in each PWNL region, PWNL regions for MOSFETs can
be generated automatically with the following rules: 

1.

2

The maximum voltages of Vds and Vgs are predefined. In our 
experiments, we use Vdd as the maximum voltage for both of

them. Given model parameters, the maximum gds and gm for all 
operating regions can then be calculated. 

. With a predefined 0< <1, PWC region values for gds and gm
can be calculated as follows,

2,...,1,,)1(1

max

nnigg
gg

ii

n

3.

4

A lower bound of gds and gm is predefined, so that rule (2) will 
stop whenever gds and gm are less than the predefined lower
bound. This is necessary to avoid a PWC region for gds and gm
to be too narrow. 

. A voltage step-size is chosen so that at least one PWC region 
exists for each of the calculated PWC region values of gds and 
gm in the Vds–(Vgs-Vth) plane. A uniform voltage step-size has 
been used in our implementation for simplicity. Once the 
voltage step-size is finalized, gds and gm at each grid point of 
the Vds–(Vgs-Vth) plane can be evaluated, so that each patch of 
the Vds–(Vgs-Vth) plane will be allocated to a PWC region of gds
and gm.

As an example, the PWC regions for gds of the MOSFET level 1 
model are shown in Fig. 3, where is set to 1/3. It can be seen that 
there are a total of six PWC region values for gds (including the 
cutoff region #0). 

The proposed method can be easily incorporated into model 
compilers [19] for automatic generation of piece-wise weakly
nonlinear regions for any nonlinear device with any device model. It 
should be noted that rules (1)~(4) are applicable to multi-
dimensional PWNL region generation. However, one thing to keep 
in mind is that the PWNL definition of nonlinear devices is only
used for the preconditioner, rather than the circuit matrix equation
Ax=b. Therefore, reasonable approximation can be made to ease the 
PWNL region generation. 

Figure 3. PWC regions for gds in the Vds-(Vgs-Vth) plane.

The PWNL definition of nonlinear devices will introduce
discontinuous first-order derivatives of a device model equation. It
is well known that the continuity of a device model equation and its 
first-order derivatives is important for the successful convergence of 
the Newton-Raphson method. However, this requirement is not
necessary for the Newton-Krylov method. The merit of the Newton-
Krylov method in our framework is that the exact Newton-Raphson
direction, which is determined by the exact first-order derivatives of 
a device model equation, can be well represented by the Krylov
subspace constructed based on the approximate first-order
derivatives (i.e., PWC first-order derivatives). 

3.3 Low-Rank Updating
If only a few nonlinear devices change their operating PWNL

regions during nonlinear iteration, the low-rank update technique [6]
can be used to efficiently update the previously factorized L and U
matrices rather than LU factorization. Therefore, in practice, the 
ratio of the number of nonlinear devices switching their operating 
PWNL regions vs. the total number of nonlinear and linear devices 



could be used as a guide for choosing either the low-rank update 
technique or LU factorization. To utilize the low-rank update
technique, it is required that the new circuit matrix Anew be derived 
from the old circuit matrix Aold as follows,

T
oldnew crAA    (13) 

where Anew and Aold are both n n matrices, c and r are both n m
matrices, and m<<n.

When a MOSFET switches its operating PWNL region within
either the normal operating mode or the reverse operating mode (i.e., 
the drain and source terminals are flipped), its (gds, gm, gmbs) stamp 
on a circuit matrix will change. The stamp change of this MOSFET 
on the circuit matrix can be represented as follows,

mbsmbsmdsmds

mbsmbsmdsmds

gggggg
gggggg

S
D

BSGD

where D, G, S, and B represent the drain, gate, source and bulk
terminal indexes in the circuit matrix, respectively. It can be further
represented in the following rank-one update (m=1) format, 
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When a MOSFET switches its operating PWNL region from the
normal mode to the reverse mode, the contribution of this MOSFET 
to the circuit matrix is changed similarly.

The low-rank update is efficient when the number of switching
nonlinear devices is much less than the total number of nonlinear
devices and linear elements. This is generally true in our framework, 
due to the two reasons. First, the PWNL definition of nonlinear 
devices are used for preconditioner construction, which requires a 
fairly coarse region partition than in the traditional piece-wise linear 
device modeling for device model evaluation. Second, our focused 
application is parasitic-coupled VLSI systems, where the number of 
linear parasitic elements is generally dominant. Therefore, we 
always use low-rank update during nonlinear iteration. 

4. FGMRES-based Transient Simulation Flow
Algorithm I. Transient simulation flow.

DC operating point analysis
Choose an initial step size h0, the basis step size h = h0, t = 0 
WHILE (t<Tfinal){

OUTER LOOP: do{ 
= hn/h, iter_no = 0 

INNER LOOP: do{ 
IF(0.625< <2.5){

 IF(PWNL region is changed)
Apply low-rank update on L/U matrices

}ELSE{
IF(iter_no==0)

Apply LU factorization
ELSE{

IF(PWNL region is changed)
Apply low-rank update on L/U matrices

}
}
Apply the preconditioned FGMRES method
iter_no = iter_no + 1 

} while (not converged)
Choose a new hn based on LTE requirement

} while (LTE greater than predefined error limit)
t = t + hn

}

The flow of the proposed method for time-domian nonlinear 
circuit simulation is shown in Algorithm I. It can be seen that LU 
factorization is only performed when time step-sizes vary out of the

predefined hn/h range (0.625 < hn/h < 2.5 has been set to make 
comparison with SILCA [11]). In other cases, L and U matrices are
either kept unchanged or updated by the low-rank update technique 
when nonlinear devices change their operating PWNL regions.
During the whole process, L and U matrices are used for 
preconditioning the FGMRES method. 

Two types of preconditioners have been tested in our 
experiments:

1) A LU preconditioner composed of factorized full L and U
matrices.

2) An incomplete LU preconditioner composed of matrices
approximated from the factorized full L and U matrices – a
matrix element l(i,j) is removed if |l(i,j)|<c·max(|l(*,j)|) in L
or |u(i,j)|< c·max(|u(i,*)|) in U. c is a coefficient for the 
incomplete LU factorization, 0.001 is mainly used in our 
experiments. Since the incomplete LU preconditioner we 
use is derived from the already factorized L and U matrices,
it is more robust and effective than general incomplete LU
preconditioners [17] at the cost of more memory resources.
The incomplete LU preconditioner is helpful to reduce the 
cost of forward/backward substitution during the 
preconditioning process. 

5. Experimental Results
5.1 General nonlinear circuits

To verify the robustness of the proposed method for the
simulation of general nonlinear circuits, several digital, analog and 
RF circuits have been tested. The simulation results are summarized
in Table I. During the test, the full LU preconditioner has been used 
for the FGMRES method. Our implementation is based on SPICE3. 
For simplicity, the MOSFET level 1 model is used in our test. 
Parameter   is set to 1/3 to automatically generate PWNL regions
for MOSFETs. 
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Figure 4. The average number of FGMRES iterations for general 
nonlinear circuits. 

It can be seen from Table I that, with the preconditioned
FGMRES method, the number of LU factorizations (#Tran LU) 
during transient simulation is reduced dramatically compared to that
with SPICE3 (#Tran LU = #Tran iteration). Further, the number of 
total simulated time points (#Total points), the number of accepted 
time points (#Accepted points), and the number of transient
iterations (#Tran iteration) with the preconditioned FGMRES 
method are kept almost the same as those with SPICE3, and are 
generally less than those with quasi-Newton base SILCA [11].
Figure 4 shows the average number of FGMRES iterations in each 
FGMRES solving process for test circuits (the dimension m of the 
Krylov subspace Km). The average number of FGMRES iterations is 
below 5 for most of test circuits. 



5.2 Power/ground network examples
To test the efficiency of the proposed method for the simulation

of VLSI circuits with a large amount of parasitic elements, a 
power/ground network example as that used in [11] is simulated. 
The power and ground supply networks are modeled as two RCL 
mesh layers. In our example, between these two layers is a 20-stage
inverter chain representing nonlinear circuits, different inverters of 
which are connected to different power/ground nodes. Furthermore, 
RCL loads are added for each inverter to model interconnect lines
between adjacent stages. The size of two RCL meshes is changed to 
vary the number of linear parasitic elements (#Elemts in Table II 
and III). Parameter  is set to 1/3 to generate PWNL regions for
MOSFETs.

Table II summarizes the simulation results for the power/ground
network example using SPICE3 and the FGMRES method with the 
full LU preconditioner. The error tolerance is set to 1e-10 for the 
preconditioned FGMRES method. The speedup over SPICE3 is over
10X for the largest example we test. It can be expected that more
speedup could be achieved for larger power/ground networks. The 
average number of FGMRES iterations in each FGMRES solving
process (#FGMRES Iter / #Tran Iter) is about 5. It is worthy noting
that the number of LU factorization (#Tran LU) is reduced greatly
with the preconditioned FGMRES method compared to SPICE3
(#Tran LU = #Tran Iter). As shown in Table II, the number of
transient iterations with the preconditioned FGMRES method has
been kept almost the same as that with SPICE3, which shows that 
the SPICE-like convergence property has been preserved. 

Figure 5. The run time vs. the number of elements in the power/ground
network.

Figure 6. The histogram of the number of FGMRES iterations with the
ILU preconditioner. 

The simulation results of the FGMRES method with the
incomplete LU (ILU) preconditioner are shown in Table III. It is
seen that the FGMRES method with the ILU preconditioner 
achieves the best speedup over SPICE3 for the largest power/ground 
network – 20.68X, which is about 2X speedup over the FGMRES 
method with the LU preconditioner (The run time comparison is
shown in Fig. 5.). The reason is that the number of matrix elements

in the ILU preconditioner is much less than those in the LU 
preconditioner. For the power/ground network example with 61602 
elements, the histogram of the number of FGMRES iterations per
FGMRES solving process is shown in Fig. 6. The average number
of FGMRES iterations is about 6 to 7. 

Finally, to test how the efficiency of the proposed method is 
affected by the percentages of linear parasitic elements in a circuit, 
we vary the amount of transistors in the logic circuit of the power-
ground example. The results are shown in Table IV. Clearly the
larger amount of linear parasitic elements, the more speed up.

From Table IV, we can see that for the P/G example
(1600/4482), the cost of LU factorization has been reduced greatly,
and the cost of FGMRES is comparable to that of LU factorization.
However, the cost of low-rank update is becoming dominant. Shown 
in Fig. 7 is the histogram of the number of MOSFETs switching 
PWNL regions during one low-rank update. It can be seen that the 
number of MOSFETS switching their PWNL regions can be more 
than 200 during one low-rank update, and it is more expensive to 
compute LU factors by low-rank update than by full LU
factorization. Therefore, in practice, whether to use low-rank update
or full LU factorization should be determined based on the pre-set 
ratio of the number of switching nonlinear devices over that of total 
nonlinear devices. It is worthy noting that from Fig. 7, for most low-
rank updates, only a few MOSFETS switch their PWNL regions. 

Figure 7. The histogram of the number of FGMRES iterations with the
ILU preconditioner. 

6. Conclusions and Future Research 
In this paper, a quasi-Newton preconditioned Newton-Krylov

method has been presented and implemented for efficient, accurate,
and robust time-domain simulation of VLSI circuits with large 
amount of parasitic elements. Systematic methods of adaptive time-
step size control and piece-wise weakly nonlinearity (PWNL)
partitioning of any nonlinear device, combined with low-rank 
updating, have been proposed to minimize the number and cost of
LU factorizations during the entire variable time step-size transient
simulation. Orders of magnitude speedup has been achieved on
power/ground network examples with the SPICE-like accuracy and 
robustness.
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Table I. Simulation results on test circuits. 
SPICE3 FGMRES w LU Preconditioner 

Test Circuits #Total 
points

#Accepted
points

#Tran 
iteration

#Total 
points

#Accepted
points

#Tran 
iteration

#Tran 
LU

#Low-rank 
update

1 Inverter 142 127 340 141 127 338 63 64
2 20-stage inverter chain 356 260 1159 369 266 1185 69 643
3 Nand2 132 123 305 132 123 305 64 51
4 One-shot trigger 431 371 1360 431 371 1348 169 639
5 Comparator 140 126 410 140 126 403 47 163
6 Opamp follower 220 148 814 221 149 819 18 44
7 Ring oscillator 243 173 1020 256 176 1060 21 746
8 VCO 1281 887 4529 1280 887 4524 30 2251
9 Power amplifier 873 587 3451 840 581 3331 43 1761

Table II. Simulation results for the power/ground network example ( =1e-10, LU preconditioner). 
SPICE3 Preconditioned FGMRES 

#Elems #Tran 
Iter

Tran LU 
(sec)

Tot Tran 
(sec)

#Tran 
Iter

#Tran 
LU

#FGMRES 
Iter

Tran LU 
(sec)

FGMRES
(sec)

Tot Tran 
(sec)

Speedup

4002 4023 371.20 403.99 4106 54 19982 4.89 92.70 110.00 3.67 
34802 4006 4.549e4 4.760e4 4087 55 18879 730.97 5919.82 6944.40 6.85 
61602 4377 1.797e5 1.848e5 4253 53 20341 2279.88 13647.74 16556.52 11.16 

Table III. Simulation results for the power/ground network example ( =1e-10, ILU preconditioner). 
#Elems #Tran 

Iter
#Tran 

LU
#FGMRES 

Iter
Tran LU 

(sec)
FGMRES

(sec)
Tot Tran 

(sec)
Speedup

4002 4241 52 24208 4.83 67.20 84.01 4.81 
34802 4199 53 28311 688.40 3081.03 4066.19 11.71 
61602 4254 56 28901 2323.74 5995.01 8938.69 20.68 

Table IV. Simulation results for the power/ground network example ( =1e-10, ILU preconditioner). 
SPICE3 (sec) FGMRES w ILU Preconditioner (sec) #MOSFETs 

vs. 

#RCL
LU FBS Load Total LU Low-rank FGMRES Load Total Speed-

up

400/4122 2742.41 90.24 158.62 2991.27 59.74 184.09 234.84 55.21 533.88 5.60 

800/4242 5269.12 297.40 544.76 6111.28 158.69 679.79 803.22 224.80 1866.50 3.27 

1600/4482 35998.68 750.74 1235.39 37984.81 1723.75 10254.65 1533.65 472.36 13984.41 2.72 
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