
1

IEEE Standard 1500 Compatible Interconnect Diagnosis
for Delay and Crosstalk Faults

Katherine Shu-Min Li1, Yao-Wen Chang2, Chauchin Su3, Chung-Len Lee1, Jwu E Chen4

1Department of Electronics Engineering, National Chiao Tung University, Hsichu, Taiwan
2Department of Electrical Engineering & Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

3 Department of Department of Electronic Control, National Chiao Tung University, Hsichu, Taiwan
4Department of Electrical Engineering, National Central University, Chungli, Taiwan

Abstract – We propose an interconnect diagnosis scheme based
on Oscillation Ring test methodology for SOC design with
heterogeneous cores. The target fault models are delay faults
and crosstalk glitches. We analyze the diagnosability of an
interconnect structure and propose a fast diagnosability
checking algorithm and an efficient diagnosis ring generation
algorithm which achieves the optimal diagnosability. Two
optimization techniques improve the efficiency and effectiveness
of interconnect diagnosis. In all experiments, our method
achieves 100% fault coverage and the optimal diagnosis
resolution.

I. Introduction
Interconnect delays, rather than gate delays, dominate overall

circuit performance in the nanometer era [1-2], especially for
System-on-chip (SOC) ICs. Interconnect diagnosis, including the
detection and location of faulty nets, plays a key role in enhancing
circuit reliability and yield. It is not easy to directly apply those
existing interconnect diagnosis techniques to SOC designs, and the
diagnosis costs greatly increase for manufacturing and yield
enhancement. Therefore, it is desired to develop an effective test
scheme to reduce the costs of interconnect diagnosis. Interconnect
diagnosis for various applications, such as printed circuit board
(PCB) and multi-chip module (MCM) has been studied extensively
in the literature [3-8]. However, their target fault models are mainly
traditional stuck-at and bridging faults. The diagnosis algorithms
include counting sequence, walking-0 and walking-1 sequence,
maximal independent test set, and focus mainly on special
interconnect structures, especially for bus-oriented or FPGA designs.
On the other hand, in this paper we consider delay and crosstalk
glitch faults, which are important in nanotechnology.

Oscillation ring based test is an efficient and effective method to
detect faults in a circuit or a device [9-10]. An oscillation ring is a
closed loop with an odd number of signal inversions. Once the ring
is constructed, oscillation signal appears on the ring. For a circuit
with faults, some rings will not oscillate correctly. Once a set of
oscillation tests have been conducted, we can locate some or all of
the faults according to the test outcome [11]. Whether each fault can
be correctly identified, or diagnosed, depends on the interconnect
structure and the test rings applied.

The advantage of oscillation ring based diagnosis for the
interconnect structure is that, in addition to functional faults like
stuck-at and open faults, it is also capable of identifying delay faults
and crosstalk glitch faults, the main sources for the loss of signal
integrity [2]. Therefore, the oscillation ring based technique is an
ideal approach to interconnect diagnosis.

In this paper, we propose an oscillation ring based scheme to
diagnose interconnect faults to reduce the test time for SOC
interconnect diagnosis. This approach is compatible with the P1500
standard [12], providing structural support for core testing as well as

interconnect testing in SOC. We analyze the diagnosability of an
interconnect structure and propose a fast diagnosability checking
algorithm and an efficient ring generation algorithm. We prove that
the generation algorithm can find the optimal diagnosability for any
interconnect structure. The predetermined diagnosis method
achieves the optimal diagnosability (i.e. the maximum diagnosis
resolution). We also propose two optimization techniques for test
time reduction with no hardware overhead. The first one is an
adaptive diagnosis method, which reduces test time by 1.54X-2.67X.
The other is a concurrent diagnosis method, which improves test
effectiveness by up to 9.66%. Experiments on the MCNC
benchmark circuits show our methods achieve 100% fault coverage
and the optimal diagnosis resolution. (Here, the diagnosis resolution
is defined as the cardinality of the largest set of indistinguishable
faults, and the maximum diagnosis resolution or the optimal
diagnosability implies that the cardinality is 1.)

The proposed approach provides many advantages. First, it is
applicable to arbitrary global interconnect. In contrast, previous
diagnosis methods are more concentrated on special structures.
Second, our approach can deal with faults that cause signal integrity
problems, while it is difficult to handle such faults under traditional
methods. We provide ring generation algorithms that achieve 100%
fault coverage and the optimal diagnosis resolution for the modeled
faults. A fast diagnosability checking methodoloty is given in this
paper, which greatly reduce the execution time.

II. Oscillation Ring Test Scheme for Interconnect
Detection and Diagnosis

A. The OR Test Architecture

We discuss the interconnect oscillation ring test (IORT for short)
for SOC interconnects [11]. Figure 1 illustrates a counter-based test
architecture for both delay and crosstalk glitch detection for SOC
ICs with the compatible IEEE P1500 core test standard. In P1500,
each input/output pin of a core is attached with a wrapper cell, and a
centralized test access mechanism (TAM) is provided to coordinate
all test processes. In addition to the normal input/output connections,
all wrapper cells in a core can also be connected with a shift register,
usually referred to as a scan path, to facilitate test access. A
modified wrapper cell design has been proposed to provide extra
connections and inversion control so that the oscillation rings can be
constructed through the wires and the boundary scan paths in cores
[11]. For example, the oscillation ring test architecture in Figure 1
consists of one oscillation ring and two neighboring nets.

The target fault models of this test architecture are stuck-at, open,
delay and crosstalk glitch faults. In addition to fault detection,
measuring the delay fault can also be achieved. If an oscillation ring
fails to oscillate, there exists stuck-at or open fault(s) in the
components of the oscillation ring. The period of the oscillation

2

C1

C4
…

Core
counter
for glitch
detection

b1

TAM System clock

Core
counter
for delay
detection …

…

SOC

…

…

a1

Oscillation
Ring

Central
counter

C2

C3
…

…

…

…

a2 b2

Figure 1. Test architecture for delay and crosstalk detection.

signal is measured by using a delay counter in a core to test
delay faults, and a similar scheme is also applied for crosstalk
glitch detection.

A local counter is included in each core, and a central counter is
in the TAM of an SOC. The central counter in the TAM is enabled
by the signal OscTest, and triggered by the system clock. A local
counter is connected to one wrapper cell in each core; however, it
can be accessed by every wrapper cell through the wrapper cell
chain. When an oscillation ring passes a core, an internal scan path
is formed to connect the oscillation signal to the local counter. For
example, core C1 is passed by the oscillation ring in Figure 1. The
oscillation signal is fed to the local counter through a series of
modified wrapper cells. When an oscillation test session starts
(OscTest = 1), the TAM enables its own central counter as well as
all local counters in cores. After the central counter in the TAM
counts to a specific number n, the oscillation test session terminates
and all local counters are disabled (OscTest = 0). Then all the local
counter contents can then be scanned out to ATE for inspection.

Assume that m oscillation rings are tested. Let the frequency of
the system clock be f, and the delay counter contents of the rings be
n1, n2, …, nm, respectively. An estimation of the i-th ring’s
oscillation frequency fi can be approximated by

fi = f ni / n (1)

Since the frequency of each ring is predetermined during the
design phase, a delay fault is detected and measured by inspecting
the contents of the delay counters. Let the oscillation frequency of
the rings, according to the timing specification, be fmin fi fmax,
with the unit of measuring T0 (= n/f). Thus, we have nmin ni nmax,
where nmin= fmin T0 and nmax= fmax T0. Let be the resolution of
delay measurement, and be the maximum measurement error.
Since a counter’s maximum measurement error is 1, the
requirement for should be the reciprocal of fmin and T0.

0min

1
Tf

 (2)

Let the frequency specification of the oscillation rings be 4 MHz
to 400 MHz and be 0.001, implying the counter content nmin is at
least 1000. From (2), we have the required T0 to be 250 s. This
example illustrates the feasibility of the oscillation test scheme from
a measurement prospect, and this frequency specification is actually
compliant with ATE specifications.

B. P1500 Wrapper Cell Design

An oscillation ring consists of interconnect wires and part of the
scan path in each core where the ring passes. Thus, a P1500 wrapper
cell must provide necessary paths between input/output ports and
scan in/scan out ports. If an oscillation test is used to test wires
connected to pads, the boundary scan cells also have to be modified
in a similar way. In order to facilitate the scheme, the P1500
boundary wrapper cells need to be modified.

A normal wrapper cell provides two types of paths: a scan path
connecting all wrapper cells into a shift register, and an interface
buffering between internal core and the wire connected to the pin.
Whenever an oscillation test is applied, a third combination path
must be provided. For an input pin, the wrapper cell must connect
the pin input (IN) to the scan output (SO); while for an output pin, it
should connect scan in (SI) to pin output (OUT) during an
oscillation test session.

The modified wrapper cell designs are shown in Figure 2. In each
cell, two MUXs are added for path selection. For an input wrapper
cell, the extra paths are SI SO and IN SO; while for an output
cell, the extra paths are SI SO and SI OUT. The added inverting
and non-inverting buffers are used to generate oscillation signals for
the OR test; however, in an input wrapper cell, only one type of
buffer is provided due to the limited control signals. Two control
signals are needed in each modified wrapper: signal OscTest is a
global control signal; while the signal sel is only used in the input
wrapper cell, and the signal inv is only used in the output wrapper
cell to ensure the odd parity of each ring. Signals sel and inv are set
individually and scanned into the wrapper cells before an oscillation
ring test session starts.

SI

IN

SO

1

0

OscTest

To Core

normal
wrapper

cell
SI

OUT

From Core

normal
wrapper

cell

0 1
OscTest

1

0

sel

OscTest

1

0

SOinv

(a) (b)
Figure 2. Modified wrapper cells with forced inversion; (a) input (b)
output.

C. Interconnect Diagnosis for SOC

A circuit consisting of three cores (C1, C2, and C3) and three nets
(n1, n2, and n3) is shown in Figure 3. The first ring consists of nets
n1 (and its right-hand side branch), n2, and n3, and it passes all three
cores. The second ring consists of n1 (and its left-hand side branch)
and n3, and scan paths in C1 and C3. The oscillation ring test scheme
detects which line is faulty (n1, n2 or n3), and the oscillation ring
diagnosis scheme diagnoses which segment is faulty (n11, n12, n13, n2

or n3).
In order to simplify the interconnect diagnosis problem, we

model the SOC circuit in Figure 3 by a hypergraph, and model
interconnects by a hypernet as shown in Figure 4.
Definition 1: A hypergraph H = (V, L) consists of a vertex set V and
an edge set L. A multi-terminal edge connects a set of vertices Vi

V, | Vi | 2, and it is referred to as a hypernet.
This hypergraph model is not good enough for diagnosis, since

different parts of the same net (i.e. different net segments) affect
different rings. Consider the 5-terminal hypernet with seven edge
segments e1 to e7 as shown in Figure 4(a). If edge e1 is faulty, all
four rings will not oscillate correctly. A faulty e2 affects rings 1 and
2, a faulty e3 affects rings 3 and 4, and faults on edges e4, e5, e6 and

3

e7 affect rings 1, 2, 3, and 4, respectively. For diagnosis purpose, all
these seven segments are different.

C3 C2

C1

n1

n2

n3

Signal path

Scan path

C3 C2

C1

n11

n2

n3

Signal path

Scan path

n13

n12

 (a) (b)
Figure 3. An example of SOC interconnect (a) interconnect
detection for each net (b) interconnect diagnosis for each net
segment.

Definition 2: A directed graph G = (V, E) consists of a vertex set V
and an edge set E, and each edge in E is an ordered pair (u, v),
where u, v V.

Ring 1

Ring 2

Ring 4

e1e2 e3

e4 e5

e1

e2 e3

e4 e5

(a) (b)

e6 e7

Ring 3

e6 e7

Figure 4. (a) a hypernet, and (b) the graph model for diagnosis.

III. Interconnect Diagnosability
A. Diagnosability Analysis

Given a circuit consisting of n edges E = {e1, e2, …, en} and a set
of m oscillation rings R = {r1, r2, …, rm}. Once a ring is constructed,
the test outcome is either “pass” (P) or “fail” (F). When an edge ei is
faulty, the test outcome of applying the m rings is said to be the
syndrome of faulty ei.
Definition 3: A fault on edge ei and a fault on edge ej are
distinguishable under the test set R if the syndrome of faulty ei and
faulty ej are different.
Definition 4: An edge is said to be single-fault diagnosable under
the test set R if a faulty edge can be correctly identified, given that
there is at most one fault in the interconnect structure.
Lemma 1: A fault on edge ei and a fault on edge ej are
distinguishable under the test set R Ri Rj.
Proof: The fact Ri Rj implies that there exists a ring r such that
either (1) r Ri r Rj, or (2) r Rj r Ri. Thus, the syndromes of
faulty ei and faulty ej are different.

 When Ri = Rj, both faulty ei and faulty ej fail the same set of
rings, and thus they have the same syndrome.

Theorem 2: Edge ei is single-fault diagnosable Ri Rj for all 1
j n and j i.

The correctness of Theorem 2 follows the result of Lemma 1. It
takes O(n2m) time to verify Theorem 2, since each pair of edges
have to be compared. In order to reduce the complexity for
diagnosability check, the following theorems can be used.
Theorem 3: Edge ei is single-fault diagnosable if |Ei| = 1.
Proof: Assume that edge ei is not single-fault diagnosable. From
Theorem 2, there must exist an edge ej such that j i and Ri = Rj.
Therefore, both ei and ej belong to Ei and thus |Ei| > 1.
Theorem 4: Let Ri’ be any non-empty subset of Ri for an edge ei,
and

'

'

iRri rE . Edge ei is single-fault diagnosable ek Ei’–

{ei}, ei and ek are distinguishable.

Proof: When at least one ring in Ri’ oscillates correctly, ei must
be fault-free. On the other hand, when no rings in Ri’ oscillate
correctly, at least one edge in Ei’ is faulty. Since all edges in Ei’–{ei}
are distinguishable from ei, we know whether ei is faulty. Therefore,
ei is also single-fault diagnosable.

 Assume that there is an ek Ei’–{ei} and ek is not distinguishable
from ei. When every ring in Ri’ fails, it may be attributed to either ek

or ei. Thus, ei is not single-fault diagnosable.

Theorem 4 shows that not all rings in Ri are necessary to diagnose ei,
and a subset Ri’ is informative enough if and only if ei is
distinguishable.
Corollary 5: Let Ri’ be any non-empty subset of Ri for an edge ei,
and

'

'

iRri rE . If for each ek Ei’–{ei}, ek is single-fault

diagnosable, then edge ei is also single-fault diagnosable.
An example for the above definitions, theorems and corollaries is

shown in Figure 5. Let the edge under consideration be ei, then Ri =
{r1, r2, r3, r4}, and Ei = {ei, ej, ek}. Since Ri’ can be any non-empty
subset of Ri, we may choose Ri’ = {r2, r3}, and thus Ei’ = {ei, ej, ek}.
It is not necessary to have both ej and ek diagnosable to make ei

diagnosable. For example, let faults on ej and ek be indistinguishable;
if a fault on ei is distinguishable with {ej, ek}, then ei is diagnosable
according to Theorem 4.

Note that the above analysis applies to all types of faults except
crosstalk glitches since they can be located directly from the test
results of each ring.

ej

r3r2r1

r5

ek

r4

ei

Figure 5. An interconnect diagnosis graph example.

B. Heuristic Diagnosability Check

In order to accelerate the process of diagnosability analysis, we
propose a diagnosability check heuristic. Consider two edges ei and
ej. According to Lemma 1, faults on these two edges are
distinguishable if |Ri| |Rj|. Thus, as the first step, we sort and
partition all edges according to the number of rings passing them
(i.e., |Ri| for edge ei). For example, in Figure 5, ej and ek are in the
same group as |Rj|=|Rk|=5, distinguishable from |Ri|=4.

The second heuristic is to apply Theorem 3 first to check the
diagnosability of an edge. Since the condition of Theorem 3, |Ei|=1,
is only sufficient but not necessary to guarantee that ei be single-
fault diagnosable, it is still possible that ei is single-fault
diagnosable when |Ei| 1. In this case, we need to compare Ri with Rj

for each ej in the same group as ei. To avoid the aforementioned
problem, a third heuristic is used. The most likely reason for
diagnosable ei with |Ei| 1 is that there exists an ej such that Rj Ri .
When the edge ej has been checked and removed from the check list
before edge ei is processed, we shall not run into this problem by
Corollary 5. The flowchart of the diagnosis checking heuristic is
shown in Figure 6.

Finally, when two faults are indistinguishable, they are put into
the same equivalent class so as not to be compared twice.

The interconnect diagnosis heuristic algorithm is illustrated as
follows. Consider the graph shown in Figure 7. There are three rings
in the figure: r1 = {e1, e4}, r2 = {e2, e5}, and r3 = {e1, e2, e3}.

4

The diagnosis matrix representation for Figure 7 is illustrated in
Figure 8(a), where each column represents an edge and each row
represents a ring. A “1” is put in cell (i,j) if ring i passes edge j.
Note that the edges are sorted and partitioned into two groups that
are separated by the broken line. The first group consists of edges e1

and e2, and each of them is passed by two rings (i.e., |R1|=|R2|=2).
The second group consists of three edges, and each of them is
passed by one ring only (i.e., |R3|=|R4|=|R5|=1).

Figure 6. Flow chart of the heuristic for diagnosability checking.

e1

e2

e3e4

e5

M1

M2 M3

Figure 7. An illustrative diagnosability example.

The diagnosability checking process works as follows. First,
apply Theorem 3 to edge e1. We see that it is passed by rings r1 and
r3, and the intersection of these two rings is {e1} (i.e., |E1|=1). Thus,
edge e1 is single-fault diagnosable. Similarly, edge e2 is also
diagnosable as shown in Figure 8(b).

Syndrome of e1 = {101} indicates that the test results of r1 and r3

are incorrect and r2 is correct when e1 is faulty; syndrome of e2 =
{011} indicates that r2 and r3 are incorrect and r1 is correct when e2

is faulty. Since the diagnosability analysis starts with the group with
the highest |Ri|, we start with group |Ri|=2, including e1 and e2 and
then group |Ri|=1, consisting of edges e3, e4, and e5. Then, edges e1

and e2 are then marked and removed from the rings, as shown in
Figure 8(b). There is only one edge remained in each ring, thus
edges e3, e4 and e5 are single-fault diagnosable due to Corollary 5.

e1

r1

r2

r3

1 1

1 1

1 1 1

e2 e4e3 e5

(a)

e1

r1

r2

r3

1 1

1 1

1 1 1

e2 e4e3 e5

(b)

Figure 8. Matrices for the heuristic diagnosability checking.

IV. Interconnect Diagnosis Algorithm
In order to uniquely identify the faulty net segment, we need to

ensure the optimal diagnosability or the maximum diagnosis
resolution. The diagnosis resolution is defined as the largest number
of nets with the same syndrome under a given set of test rings. Our
goal is to diagnose every fault on every net segment, defined as the
optimal diagnosability or the maximum diagnosis resolution.

We propose a heuristic to find a small set of rings for single fault
diagnosis. The algorithm is a modified depth-first search. The SOC
under test is modeled as a hypergraph H. This graph is then
transformed into graph G = (V, E) as outlined in Section 3.1. The
vertex set V consists of cores and fanout points (intermediate nodes).
The edge set E consists of edge segments partitioned from the
original hypernets as explained in Figure 4(b). Our goal is to
generate a predetermined set of rings to diagnose all edges in E.
Since we need to detect the interconnect structure before diagnosis,
the set of fault-detection test rings Rt should be applied first. A
heuristic to find Rt is outlined below in Figure 9.
Algorithm: IORT (Interconnect Oscillation Ring Generation for
Fault Detection)

Input: A hypergraph H = (V, L) representing a circuit

Output: A list of rings Rt

1. Transform hypergraph H into a new graph G = (V’, E) with
equivalent 2-pin nets;

2. Rt; = ;
3. for every e = (u, v) E and e is not visited
4. Rt = Rt find_ring(G, e);
5. reverse-order simulation for rings in Rt.

function find_ring(G, e)
1. Let e = (u, v) and v is an input pin in core C;
2. if v is a pin in the starting core
3. return the ring and mark all nets as visited;
4. for every output pin w in C
5. if there is an unvisited edge (w, x)
6. find_ring(G, (w,x));
7. else if there is an untried output net (w, x)
8. find_ring(G, (w,x));
9. else
10. return ;
11. end function

Figure 9. The ring generation for fault detection algorithm.

For interconnect detection in the IORT scheme, in order to find
Rt, we propose a heuristic algorithm to find a minimum set of rings
that cover all 2-pin nets under test. We generate a ring containing a
2-pin net (u, v) E by starting from vertex v, an input pin. Then we
find an output pin w that locates in the same core as v, and w is
connected to a 2-pin net that is not yet covered by any other ring.
Each new ring may cover as many other uncovered nets as possible.
After all rings having been generated, a simple reverse order
simulation is conducted to remove redundant rings. A net is
oscillation ring testable if there exists at least one ring containing
this net.

Our goal for the interconnect diagnosis in the IORD scheme is to
find a small set of rings Rd that can uniquely identify the faulty edge
or net segment. The hypernet graph model for interconnect
diagnosis (Rd) is the 2-pin net segment model shown in Figure 4(b),
different from the 2-pin net model for interconnect detection (Rt).
The set Rd is obtained by augmenting Rt as follows. We first apply
the diagnosability checking techniques discussed in Section 3 to Rt

to find out the net segments that are not diagnosable. For an edge e
that is not single fault diagnosable, we try to find a new ring passing

Edge ei is diagnosable, remove ei from
all rings in Rj with |Rj|=|Ri|

YYeess
NNoo

|Ei|=1

Compare ei to all ej with |Rj|=|Ri|

Sort all edges ei according to |Ri|

ej such that Ej =Ei

NNoo

Pick an edges ei

All edges processed or
enough resolution

YYeess
NNoo

YYeess

5

it without going through the edges that are indistinguishable to e. If
such a ring exists, it will be included in Rd. The diagnosability
checking should be conducted for each added ring so that other
edges that become diagnosable with the new ring will be found.

This algorithm can be adjusted to the required diagnosis
resolution to reduce the number of diagnostic rings in Figure 10.
Algorithm: IORD (Interconnect Oscillation Ring Generation for
Fault Diagnosis)
Input: A hypergraph H = (V, L) representing a circuit
Output: A set of rings Rd

1. Transform hypergraph H into a new graph G = (V’’, E) with
equivalent 2-pin net segments;

2. Generate a set of rings Rt for fault detection;
3. Rd = Rt;
4. Conduct diagnosability check;
5. for every e E {
6. if (e is not single-fault diagnosable)
7. Find a ring r to make e diagnosable;
8. Rd = Rd {r};
9. Modify the diagnosability of all edges in E;
 }
10. return Rd;

Figure 10. The ring generation for fault diagnosis algorithm.

The flowchart illustrating the process of diagnosis ring
generation is given in Figure 11.

V. Optimization Techniques for Interconnect Diagnosis
Multiple oscillation rings cannot be applied simultaneously if

they share some net segment (common edge constraint), or they go
through the same scan path in a core (scan path conflict). In order to
achieve the maximum concurrency (i.e., parallel test), we model all
the constraints by a conflict graph, in which each ring is represented
by a node, and two nodes are connected by an edge if they interfere
with each other. The problem of finding the maximum concurrency
tests can thus be reduced to the well-known graph coloring problem.

The number of test patterns can be greatly reduced whenever
adaptive diagnosis is possible. In the adaptive diagnosis, a test
pattern is selected according to the result of previous tests. An
adaptive diagnosis tree, typically a binary tree, can be constructed
according to the test patterns. For example, the adaptive diagnosis
tree for the diagnosis example given in Figures 7 and 8 is illustrated
in Figure 12.

For an n-net system, initially there are n+1 possible diagnosis
results, namely fault-free () and a single fault on net ei (fei) for 1
i n. Each node in the tree represents a test pattern (ring), and the
test outcome can be either pass (P) or fail (F). If the tree is balanced,
the minimum number of diagnosis patterns required is log2(n+1) .

In order to construct a balanced adaptive diagnosis tree, in
each internal tree node we need to select the test pattern (i.e. test
ring) that evenly partitions the possible outcomes into two groups:
Fail (F) and Pass (P). For example, in Figure 15, we choose the test
pattern r3 as the first test, since it evenly partitions the six possible
outcomes into Fail (fe1, fe2, fe3) and Pass (, fe4, fe5). It can be seen
that, in Figure 15, each test partitions possible outcomes into two
groups whose cardinalities differ by at most 1.

The upper bound on the number of adaptive diagnosis test
sessions needed in our method can be computed as follows. Let the
number of test rings (without diagnosis) be |Rt|, and the length of the
longest test ring be Lh. In the worst case, we need to apply |Rt| rings
to find out that there is a faulty net, and the last ring contains Lh net
segments that are all passed by the ring only. It takes up to Lh–1
rings to distinguish these Lh possible faults, and thus the maximum
number of diagnosis rings is |Rt|+ Lh–1.

Figure 11. Diagnosis ring generation procedure.

F r3

{fe1, fe2, fe3}

{ , fe1, fe2, fe3, fe4, fe5}

r1 PF

{ , fe4, fe5}

r2 PF
r2 PF

{fe1}

{fe2} {fe3} { }

{fe4}
{ , fe5}

{fe5}

r1 PF

P

{fe2, fe3}

Figure 12. An adaptive diagnosis tree.

VI. Experimental Results
We tested the diagnosis algorithm based on six benchmark

circuits. In Table I, where the first column gives the circuit names,
and the next four columns give the circuit statistics (“Statistics”),
including the number of cores (#core), the number of pads (#pads),
the number of hypernets (#hyp), and the number of net segments
(#net_segment). The 5th column, #net_segment, lists the number of
net segments to be diagnosed in each benchmark. The next three
columns (“Predetermined”) give the experimental results for
predetermined diagnosis, including the number of rings required to
detect all 2-pin nets (|Rt|) and to diagnose all single faults (|Rd|). The
last column, |Rd|/|Rt|, gives the ratio of rings from 1.25X to 2.81X
for the maximum diagnosis resolution vs. for fault detection. This
ratio means that we need extra test time of 1.25X to 2.81X to
diagnose the single fault in each net segment under the
predetermined diagnosis method, compared to the IORT scheme. In
each case, we also give the estimated testing time (given in
parenthesis), obtained by assuming only 4 MHz measuring period as
discussed in Section 2.1 to estimate the longest test application time
for each ring. The time needed to set up the rings should be roughly
proportional to the testing time.

The next four columns (“analysis”) give the diagnosis related
information after applying Rt rings. The column #OneRing gives the
number of nets passed by only one ring. Since the purpose of Rt is to
detect faults with the minimum number of rings, it is not surprising
that most nets are passed by one ring only. Most nets that are not
diagnosable at this stage fall into this set. Columns “#NoDiag” and
“#EquClass” give the number of nets that are not diagnosable and
the number of equivalence classes after applying Rt, respectively.
Two faults are in the same equivalence class if their syndromes for
the tests are identical. The last column in this group (“|Rd|–|Rt|”)
gives the number of extra diagnosis rings required in each case to

Generate a Diagnosis
Ring

Diagnosability Check

YYeess

NNoo

Diagnosability Check

Test Ring Generation

Enough diagnosis
resolution?

6

make all nets single-fault diagnosable. Assume that there are m
equivalence classes whose sizes are s1, s2, …, sm, respectively. The
upper bound on the number of additional diagnosis rings “|Rd|–|Rt|”
can be expressed as follows:

EquClassNoDiagmSS
m

i
i

m

i
i ##)1(

11

 (3)

The upper bound on the required number of extra rings (|Rd|–|Rt|) is
“(#NoDiag)–(#EquClass)”. The empirical results “|Rd|–|Rt|” differs
from the theoretical results “(#NoDiag)–(#EquClass)” given in
Equation (3) by small differences of only up to 6.64%.

The last three columns (“adaptive”) compare the number of rings
required in both predetermined (|Rd|) and adaptive diagnosis (|Ra|).
After applying Rt rings, the size of the largest equivalence class for
each benchmark is given in the column “max. EC”. In the worst
case, the adaptive diagnosis needs to apply |Rt| rings, and then (max.
EC)–1 rings for diagnosis. The number of the worst-case adaptive
diagnosis rings is given in column “|Ra|”. The last column (|Rd|/|Ra|)
shows the ratio of rings for the predetermined vs. adaptive diagnosis
schemes. For the results shown in the column, the adaptive
algorithm obtains 1.23X to 2.67X improvements over the
predetermined diagnosis scheme. Also, from the normalized |Ra| and
|Rt|, the test time of adaptive diagnosis is approximately equal to
that for detection alone and this reveals the effectiveness of adaptive
diagnosis.

The experimental results for the concurrent test are given in
Table II. The 3rd column (|Rc|) lists the number of test sessions after
applying the concurrency test under the assumed worst-case
scenario of net directions, core lists, scan paths and boundary scan
paths. When a set of rings are applied concurrently, we refer to
these rings as a test session. The 4th column (|Rd|-|Rc|) gives the
percentage of improvements. The improvement can be even better
for general interconnect structures. The reduction in test time due to
the concurrent test ranges from 0.27% to 9.66% with no hardware
overhead.

VII. Concluding Remarks
We have presented an IORD scheme for interconnect faults in

SOC. In addition to the 100% fault detection coverage for each net
achieved by the IORT scheme, we have shown that fault location or

fault diagnosis can also be done by including some extra test rings
to achieve the optimal diagnosability (or the maximal diagnosis
resolution) for each net segment. We have also presented two
heuristics, diagnosability check and diagnosis ring generation, with
theoretical study and integrated them into the IORD algorithm.
Finally, two optimization techniques for improving interconnect
diagnosability are proposed and showed to be effective. We have
further compared the predetermined, adaptive and concurrent
diagnosis schemes. Experimental results have justified the
efficiency and effectiveness of the proposed methods.

References
[1] M. Tehranipour, N. Ahmed, M. Nourani, “Testing SoC Interconnects

for signal integrity using boundary scan”, in Proc VTS, 2003.
[2] Semiconductor Industry Association (SIA), International Technology

Roadmap for Semiconductors 2003 Edition (ITRS), 2003.
[3] W. K. Kautz, “Testing of faults in wiring interconnects,” IEEE Trans.

Computers, vol. C-23, no. 4, pp. 358-363, Apr. 1974.
[4] X.-T. Chen, F. J. Meyer, and F. Lombardi, “Structural diagnosis of

interconnects by coloring,” ACM Trans. Design Automation Electronic
Systems, vol. 3, no. 2, pp. 249-271, Apr. 1998.

[5] Y. Kim, H.-D. Kim, and S. Kang, “A new maximal diagnosis algorithm
for interconnect test,” IEEE Trans. VLSI, vol. 12, no. 5, pp. 532-537,
May 2004.

[6] J.-C. Lien and M. A. Breuer, “Maximal diagnosis for wiring networks,”
in Proc. ITC, pp. 71-77, 1991.

[7] W.-T. Chen, J.-L. Lewandowski, and E. Wu, “Optima diagnostic
methods for wiring interconnects,” IEEE Trans. Computer-Aided
Design, vol. 11, no. 9, pp. 1161-1166, Sep. 1992.

[8] E.J. Marinissen, B. Vermeulen, H. Hollmann, and R.G. Bennetts,
“Minimizing pattern count for interconnect test under a ground bounce
constraint,” IEEE Design &. Computers, Vol. 20, No. 2, pp. 8-18, Mar-
April, 2003.

[9] M. Kaneko and K. Sakaguchi, “Oscillation fault diagnosis for analog
circuits based on boundary search with perturbation model,” in Proc.
ISCAS, pp93-96, 1994.

[10] K. Arabi and B. Kaminska, “Oscillation-based test strategy for analog
and mixed-signal integrated circuits,” in Proc. VTS, 1996.

[11] K. S.-M. Li, C.-L. Lee, C. Su, J.E. Chen, “Oscillation ring based
interconnect test for SOC” in Proc. ASPDAC, pp. 184-187, 2005.

[12] F. DaSilva, Y. Zorian, L. Whetsel, K. Arabi, R. Kapur, “Overview of
the IEEE P1500 standard,” in Proc. ITC., pp. 988-997, 2003.

Table I: Experimental results for Interconnect Diagnosis both for Predetermined and Adaptive Methods.

Statistics Predetermined Analysis AdaptiveCircuit
#core #pad #hyp #net_

segment
|Rt| |Rd| |Rd|/

|Ra|
#One
Ring

#No
Diag

#Equ
Class

|Rd|–|Rt| max.
EC

|Ra| |Rd|/
|Ra|

ac3 27 75 211 416 133(33.3ms) 374(93.5ms) 2.81 389 323 68 241 8 140(35ms) 2.67
ami33 33 42 117 343 242(60.5ms) 303(75.8ms) 1.25 309 126 59 61 5 246(61.5ms) 1.23
ami49 49 22 361 475 156(39ms) 386(96.5ms) 2.47 406 337 88 230 9 162(40.5ms) 2.38
apte 9 73 92 136 73(18.3ms) 122(30.5ms) 1.67 127 94 40 49 4 76(19ms) 1.61
hp 11 45 72 195 81(20.3ms) 164(41ms) 2.02 176 145 51 82 7 87(21.8ms) 1.89
xerox 10 2 161 356 218(54.5ms) 342(85.5ms) 1.57 346 214 86 124 5 222(55.5ms) 1.54
Comp. 0.9679 1

Table II: Concurrent Test Sessions.

Circuit |Rd| |Rc| (worst case) |Rd|-|Rc|
ac3 374 373 1 (0.27%)
ami33 303 290 17 (5.86%)
ami49 386 352 34 (9.66%)
apte 122 119 3 (2.52%)
hp 164 160 4 (2.50%)
xerox 342 327 15 (4.59%)
Comparison 1 4.57%

Table III: Comparison between Theoretical Bounds and
Experimental Results.

Circuit #NoDia
g

#EquCla
ss

Eq (3)
(#NoDiag-
#EquClass)

Extra
Rings

(|Rd|–|Rt|)

(#NoDiag-
#EquClass)

and (Rd|–|Rt|)
ac3 323 68 255 241 14 (5.49%)
ami33 126 59 67 61 6 (8.96%)
ami49 337 88 249 230 19 (7.63%)
apte 94 40 50 49 1 (2.00%)
hp 145 51 94 82 12 (12.77%)
xerox 214 86 128 124 4 (3.13%)
Comparison 1 6.64%

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

