
An O(mn) Time Algorithm for Optimal Buffer Insertion of Nets
with m Sinks

Zhuo (Robert) Li and Weiping Shi
Department of Electrical and Computer Engineering
Texas A&M University, College Station, TX 77843

Abstract— Buffer insertion is an effective technique to reduce
interconnect delay. In this paper, we give a simple O(mn) time
algorithm for optimal buffer insertion, where m is the number
of sinks and n is the number of buffer positions. This is the
first linear time buffer insertion algorithm for nets with constant
number of sinks. When m is small, it is a significant improvement
over our recent O(n log2 n) time algorithm, and the O(n2) time
algorithm of van Ginneken. For b buffer types, the new algorithm
runs in O(b2n + bmn) time, an improvement of our recent
O(bn2) algorithm. The improvement is made possible by a clever
bookkeeping method and an innovative linked list data structure
that can perform addition of a wire, and addition of a buffer in
amortized O(1) time. On industrial test cases, the new algorithm
is faster than previous best algorithms by an order of magnitude.

I. INTRODUCTION

Delay optimization techniques for interconnect are increas-
ingly important for achieving timing closure of high perfor-
mance designs. One popular technique for reducing intercon-
nect delay is buffer insertion. A recent study by Saxena et al
[1] projects that 35% of all cells will be intra-block repeaters
for the 45 nm node. Consequently, algorithms that can effi-
ciently insert buffers are essential for the design automation
tools.

This paper studies buffer insertion in interconnect with a
set of possible buffer positions and a discrete buffer library.
In 1990, van Ginneken [2] proposed an O(n2) time dynamic
programming algorithm for buffer insertion with one buffer
type, where n is the number of possible buffer positions. His
algorithm finds a buffer insertion solution that maximizes the
slack at the source. In 1996, Lillis, Cheng and Lin [3] extended
van Ginneken’s algorithm to allow b buffer types in time
O(b2n2). In 2003, Shi and Li [4] used a number of techniques
to improve the time complexity to O(b2n log n) for 2-pin nets,
and O(b2n log2 n) for multi-pin nets. To reduce the quadratic
effect of b, Li and Shi [5] recently proposed an algorithm with
time complexity O(bn2). However, all these algorithms do not
utilize the fact that in real applications most nets have small
numbers of pins and large number of buffer positions. As a
result, the running time is still long for large nets, especially
when other constraints such as slew and cost are considered.

In this paper, we first propose a new algorithm that performs
optimal buffer insertion for 2-pin nets in time O(b2n). The
speedup is achieved by an observation that the best candidate
to be associated with any buffer must lie on the convex hull

This research was supported by the NSF grants CCR-0098329, CCR-
0113668, EIA-0223785, ATP grant 512-0266-2001.

of the (Q, C) plane, a clever bookkeeping method and an
innovative linked list that allow O(1) time update for adding a
wire or a candidate. The new data structure, which is a linked
list, is much simpler than the candidate tree used in [4] and the
skip list used in [6]. We then extend the algorithm to m-pin
nets in time O(b2n+bmn). Experimental results show that our
algorithm is faster than previous best algorithms by an order
of magnitude. Note that all previous research assumed m and
n are of the same order. But in fact, m is often much less than
n. For example, in one group of nets reported in [13], which
is extracted from industrial ASIC chips with 300k+ gates and
consists the 5000 most run time consuming nets for buffer
insertion, over 90% of nets has less than 50 sinks. For another
group with 1000 nets, all of nets has less than 20 sinks. On
the other hand, each net has several hundreds to thousands of
buffer positions. Note that even if m > n, we can merge sinks
in a branch that contains no buffer position, without changing
the problem. Therefore in this paper we assume m ≤ n.

Many extensions have been made based on van Ginneken
style algorithms, include wire sizing [3], simultaneous tree
construction [7], [8], noise constraints [9] and resource min-
imization [3], [10]. Our new algorithms are fundamental
improvements, and are therefore applicable to some of these
extensions.

Finally, we note that for 2-pin nets, when there is no
restriction on where a buffer is allowed, Dhar and Franklin
[11] gave a closed form solution, assuming buffers can be
continuously sized. Chu and Wong [12] proposed a convex
quadratic programming method to find the optimal buffer
insertion location and buffer sizing with discrete set of buffers.
However in real applications, buffer blockage is always a
serious restriction. Such information should be considered as
early as possible to reduce the design cycle. Therefore these
algorithms are often used in the very early stage of design
planning when buffer blockage information is not available,
not in actual physical synthesis. Also for multi-pin nets, no
simple closed form solution is available.

The paper is organized as follows. Section II formulates
the problem. Section III describes the new algorithm for 2-
pin nets. Section IV extends the algorithm to multi-pin nets.
Simulation results are given in Section V, and conclusions are
drawn in Section VI.

II. PRELIMINARY

A net is a tree T = (V, E), where V = {v0} ∪ Vs ∪ Vn,
and E ⊂ V × V . Vertex v0 is the source vertex and also

2

the root of T , Vs is the set of sink vertices, and Vn is the
set of internal vertices. Each sink vertex s ∈ Vs is associated
with sink capacitance C(s) and required arrival time RAT (s).
A buffer library B contains b types of buffers. For each
buffer type B ∈ B, the intrinsic delay is K(B), driving
resistance is R(B), and input capacitance is C(B). A function
f : Vn → 2B specifies the types of buffers allowed at each
buffer position. Each edge e ∈ E is associated with lumped
resistance R(e) and capacitance C(e).

Following previous researchers [2], [3], [4], [7], we use
Elmore delay for the interconnect and the linear delay for
buffers due to their high fidelity in the synthesis stage. For each
edge e = (vi, vj), signals travel from vi to vj . The Elmore
delay of e is

D(e) = R(e)
(

C(e)
2

+ C(vj)
)

,

where C(vj) is the downstream capacitance at vj . If vi is
inserted a buffer of type Bk, then the buffer delay is

D(vi) = R(Bk) · C(vi) + K(Bk),

where C(vi) is the downstream capacitance at vi, and the
capacitance viewed from the upper stream is C(Bk).

For any vertex v, let T (v) be the subtree downstream from
v, and with v being the root. Once we decide where to insert
buffers in T (v), we have a candidate α for T (v). The delay
from v to sink si ∈ T (v) under α is

D(v, si, α) =
∑

e=(vj ,vk)

(D(vj) + D(e)),

where the sum is over all edges e in the path from v to si. If
a buffer is inserted at vj in α, then D(vj) is the buffer delay.
Otherwise, D(vj) = 0. The slack of v under α is

Q(v, α) = min
si∈T (v)

{RAT (si) − D(v, si, α)}.
Max-Slack Buffer Insertion Problem: Given a net T =

(V, E), capacitance and RAT for all sinks, capacitance and
resistance for all edges, possible buffer position function f ,
and buffer library B, find a candidate α for T that maximizes
Q(v0, α).

The effect of a candidate α for tree T (v) at v to the upstream
is traditionally described by slack Q(v, α) and downstream
capacitance C(v, α) [2]. For any two candidates α1 and α2 of
T (v), we say α1 dominates α2, if Q(v, α1) ≥ Q(v, α2) and
C(v, α1) ≤ C(v, α2). The set of nonredundant candidates
of T (v), which we denote as N(v), is the set of candidates
such that no candidate in N(v) dominates any other candidate
in N(v), and every candidate of T (v) is dominated by some
candidates in N(v). Once we have N(v0), the candidate that
gives the maximum Q(v0, α) can be found easily.

III. TWO-PIN NETS

In this section, we show how to compute optimal buffer
insertion for 2-pin nets in O(b2n) time. We use van Ginneken
style dynamic programming paradigm, enhanced with two
techniques 1) convex pruning to find the best candidate and
delete redundancy, and 2) a simple implicit data structure to
store and update (Q, C) values. Our data structure is inspired
by the candidate tree of Shi and Li [4], but much simpler.

A. Convex Pruning

The concept of convex pruning was first proposed by Li and
Shi [5]:

Definition 1: Let α1, α2 and α3 be three nonredundant
candidates of T (v) such that C(α1) < C(α2) < C(α3) and
Q(α1) < Q(α2) < Q(α3). If

Q(α2) − Q(α1)
C(α2) − C(α1)

<
Q(α3) − Q(α2)
C(α3) − C(α2)

, (1)

then we call α2 non-convex, and prune it.
Convex pruning can be explained by Figure 1. Consider Q

as the Y -axis and C as the X-axis. Then candidates are points
in the two-dimensional plane. It is easy to see that the set of
nonredundant candidates N(v) is a monotonically increasing
sequence. Candidate α2 = (Q2, C2) in the above definition is
shown in Figure 1(a), and is pruned in Figure 1(b). The set
of nonredundant candidates after convex pruning M(v) is a
convex hull.

c

q

c1 c2 c3

q1

q2

q3

Pruned

(a)

c

q

c1 c3 c4

q1

q3

q4

(b)

c4

q4

Fig. 1. (a) Nonredundant candidates N(v). (b) Nonredundant candidates
M(v) after convex pruning.

Lemma 1: For 2-pin nets, convex pruning preserves opti-
mality.

Proof: Let α1, α2 and α3 be candidates of T (v) that
satisfy the condition in Definition 1. In a 2-pin net, every
candidate will be connected to some wires, which could be
empty, before reaches an upstream buffer or the source driver.
Let v′ be the upstream buffer or driver, D be the total sum of
the delay of wires from v′ to v and the delay of the buffer or
driver at v′ driving wires from v′ to v, and R be the sum of
the resistance of wires from v′ to v and the resistance of the
buffer or driver at v′. Then

Q(v′, αi) = Q(v, αi) − R · C(v, αi) − D,

where i = 1, 2 or 3. Therefore when

R <
Q(v, α3) − Q(v, α2)
C(v, α3) − C(v, α2)

,

we have

R(C(v, α3) − C(v, α2)) < Q(v, α3) − Q(v, α2),

and

Q(v, α2) − R · C(v, α2)) < Q(v, α3) − R · C(v, α3).

Therefore

Q(v′, α2) < Q(v′, α3).

3

On the other hand when

R ≥ Q(v, α3) − Q(v, α2)
C(v, α3) − C(v, α2)

,

condition (1) implies

R >
Q(v, α2) − Q(v, α1)
C(v, α2) − C(v, α1)

.

Therefore

R(C(v, α2) − C(v, α1)) > Q(v, α2) − Q(v, α1),

which implies

Q(v′, α1) > Q(v′, α2).

This shows α2 gives a slack that is worse than either α1 or
α3 when the source or an upstream buffer is reached. When
a buffer is attached, the input capacitance of that buffer will
reset C(αi). Therefore α2 is redundant.

We note that this lemma only applies to 2-pin nets. For
multi-pin nets when the upstream could be a merging vertex,
nonredundant candidates that are pruned by convex pruning
could still be useful.

Convex pruning of a list of non-redundant candidates sorted
in increasing (Q, C) order can be performed in linear time [5].
Furthermore, when a new candidate is inserted to the list, we
only need to check its neighbors to decide if any candidate
should be pruned under convex pruning. The time is O(1),
amortized over all candidates.

B. Best Candidates

Assume v is a buffer position, and we have computed the
set of nonredundant candidates N ′(v) for T (v), where N ′(v)
does not include candidates with buffers inserted at v. Now we
want to add buffers at v and compute N(v). Define Pi(v, α) as
the slack at v if we add a buffer of type Bi for any candidate
α:

Pi(v, α) = Q(v, α) − R(Bi) · C(v, α) − K(Bi). (2)

If we do not insert any buffer, then every candidate in N ′(v)
is a candidate in N(v). If we insert a buffer, then for every
buffer type Bi, i = 1, 2, . . . , b, there will be a new candidate
βi:

Q(v, βi) = max
α∈N ′(v)

{Pi(v, α)},
C(v, βi) = C(Bi).

Define the best candidate for Bi as the candidate α ∈ N ′(v)
such that α maximizes Pi(v, α) among all candidates in
N ′(v). If there are multiple α’s that maximize Pi(v, α), choose
the one with minimum C. From Lemma 1, it is easy to see
that all best candidates are on the convex hull.

The following lemma says that if we sort candidates in
increasing Q and C order from left to right, then as we add
wires to the candidates, we always move to the left to find the
best candidates.

Lemma 2: For any T (v), let nonredundant candidates after
convex pruning be α1, α2, . . . , αk, in increasing Q and C
order. Now add wire e to each candidate αj and denote it

as αj + e. For any buffer type Bi, if αj gives the maximum
Pi(αj) and αk gives the maximum Pi(αk + e), then k ≤ j.

Proof: From the definition,

Pi(αj + e) = Q(v, αj + e) − R(Bi)C(v, αj)
−R(Bi)C(e) − K(Bi)

= Pi(αj) − R(e)C(αj)
−R(e)C(e)/2 − R(Bi)C(e).

Since Pi(αj + e) ≤ Pi(αk + e), we have

Pi(αj) − R(e)C(αj) ≤ Pi(αk) − R(e)C(αk),

which is equivalent to

Pi(αj) − Pi(αk) ≤ R(e)(C(αj) − C(αk)).

On the other hand, Pi(αj) ≥ Pi(αk) and R(e) > 0, therefore

C(αj) − C(αk) ≥ 0.

This implies k ≤ j.
The following lemma says the best candidate can be found

by local search, if all candidates are convex.
Lemma 3: For any T (v), let nonredundant candidates after

convex pruning be α1, α2, . . . , αk, in increasing Q and C
order. If Pi(αj−1) ≤ Pi(αj), Pi(αj) ≥ Pi(αj+1), then αj

is the best candidate for buffer type Bi and

Pi(α1) ≤ · · · ≤ Pi(αj−1) ≤ Pi(αj),
Pi(αj) ≥ Pi(αj+1) ≥ · · · ≥ Pi(αk).

Proof: From Pi(αj−1) ≤ Pi(αj), we have

Q(αj−1) − R(Bi)C(αj−1) ≤ Q(αj) − R(Bi)C(αj).

Therefore,

R(Bi) ≤ Q(αj) − Q(αj−1)
C(αj) − C(αj−1)

.

Since all candidates are convex, (1) is false. Hence

R(Bi) ≤ Q(αj−1) − Q(αj−2)
C(αj−1) − C(αj−2)

,

which implies Pi(αj−2) ≤ Pi(αj−1). Then, we can easily get

Pi(α1) ≤ · · · ≤ Pi(αj−1) ≤ Pi(αj).

The other direction is similar. From Pi(αj) ≥ Pi(αj+1),
we have

Q(αj) − R(Bi)C(αj) ≥ Q(αj+1) − R(Bi)C(αj+1).

Therefore,

R(Bi) ≥ Q(αj+1) − Q(αj)
C(αj+1) − C(αj)

.

Since all candidates are convex, (1) is false. Hence

R(Bi) ≥ Q(αj+2) − Q(αj+1)
C(αj+2) − C(αj+1)

,

which implies Pi(αj+1) ≥ Pi(αj+2). We can also easily get

Pi(αj) ≥ Pi(αj+1) ≥ · · · ≥ Pi(αk).

Since Pi(αj) is the maximum Pi(α) among all candidates,
αj is the best candidates for buffer type Bi.

4

C. Data Structure

We store all nonredundant candidates of T (v) in a linked
list L(v) of the following data structure:

typedef struct Candidate {
double q, c;
Candidate *next, *prev;

} Candidate;

We also have three global variables:

double Qa, Ca, Ra;

L(v) is organized in increasing C and Q order, and pruned
by convex pruning. The value of Q and C of each candidate
α, pointed by a, are given by fields a->q and a->c, as well
as global variables Qa, Ca and Ra:

Q(α) = (a->q) − Qa− Ra · (a->c),
C(α) = (a->c) + Ca. (3)

To facilitate the search for best candidates and the insertion
of new candidates, we have two arrays of pointers:

Candidate *best[b], *new[b];

where best[i] points to the most recent best candidate for
Bi, and new[i] points to the most recent new candidate for
Bi.

D. Algorithm

When we reach an edge e with resistance e->R and
capacitance e->C, we update Qa, Ca and Qa to reflect the
new values of Q and C of all candidate in L in O(1) time,
without actually touching any candidate:

void AddWire (e)
{

Qa = Qa + e->R*e->C/2 + e->R*Ca;
Ca = Ca + e->C;
Ra = Ra + e->R;

}

This is similar to Shi and Li’s algorithm [4], but much simpler.
When we reach a buffer position, we may generate a new

candidate for each buffer type Bi. But first, we have to find
the best candidate for Bi. This is done by pointer best[i]:

void AddBuffer (i)
{

Candidate *a;
while (P(i, best[i]->prev) >

P(i, best[i]))
best[i] = best[i]->prev;

...

Function P(i, ...) computes Pi of a candidate defined in
(2). From Lemma 2, the best candidate is always to the left
of where we found the best candidate last time. From Lemma
3, we can find the best candidate by local search. Therefore
the while loop can find the best candidate that gives the
maximum Pi. Now form the new candidate:

...
a = new Candidate;
a->c = B[i]->C - Ca;

a->q = P(i, best[i]) + Qa + Ra*a->c;
...

With Eqn. (3), it is easy to verify that the above transformation
of q and c fields will make the new candidate consistent with
every other candidate in L. Now insert the new candidate into
L:

while (a->c < new[i]->c)
new[i] = new[i]->prev;

a->next = new[i]->next;
new[i]->next->prev = a;
a->prev = new[i];
new[i]->next = a;
...

The location to insert new candidates also moves to the left in
L, because the capacitances of all candidates increase when
wires are added. Finally, we perform convex pruning around
the new candidate:

if (! Convex(a->prev, a, a->next)) {
a->prev->next = a->next;
a->next->prev = a->prev;
Delete(a);
return;

}
while (! Convex(a, a->next,

a->next->next)) {
a->next = a->next->next;
a->next->next->prev = a;
Delete(a->next);

}
while (! Convex(a->prev->prev,

a->prev, a)) {
a->prev = a->prev->prev;
a->prev->prev->next = a;
Delete(a->prev);

}
}

Function Convex(...) checks if the middle candidate is
convex. Function Delete(...) deletes a candidate, and
moves best and new pointers to the right by one if the
pointer points to the candidate to be deleted. Now we describe
the entire algorithm:
Algorithm 2-Pin
Input Routing tree T (v1) consists of path v1, . . . , vn+1,

where vn+1 is the sink.
Output Nonredundant candidates of T (v1) stored in

linked list L.
Begin
1: Let Qa=0, Ca=0, Ra=0;
2: Let L contain one candidate (Q, C), where

Q = RAT (vn+1) and C = C(vn+1);
3: Let all best and new pointers point to the only

candidate in L;
4: For i = n to 1 do
5: AddWire(e), where e = (vi, vi+1);
6: For each buffer type Bj allowed at vi do
7: AddBuffer(j);
8: Return L;

5

End.

Theorem 1: Algorithm 2-Pin finds the optimal buffer inser-
tion of any 2-pin nets in worst-case time O(b2n).

Proof: The only difference between our algorithm and
previous algorithms, other than speedup, is convex pruning.
Lemma 1 guarantees convex pruning does not lose the opti-
mality. Therefore our algorithm is correct.

Now consider the time complexity. The outer loop between
lines 4 and 7 is executed n times. The inner loop between
lines 6 and 7 is executed b times. This requires O(bn) time. In
addition, the number of times that any pointers best[i] and
new[i] move equals the total number of candidates, which
is bn. Since there are b best pointers and b new pointers,
the total time to move these pointers is O(b2n). The total
deletion time is the same as the number of candidates, which is
O(bn). Therefore, the overall time complexity of our algorithm
is O(b2n).

Some properties can be used to speed up the implementa-
tion, but it does not change the asymptotic time complexity.
If buffers are sorted in decreasing driving resistance R(B1) ≥
R(B2) ≥ · · · ≥ R(Bb), and let αi be the best candidate for Bi.
Then it is easy to see that C(α1) ≥ C(α2) ≥ · · · ≥ C(αb).
This helps to reduce the search time for best pointers. A
similar order can be explored to reduce the search time for
new pointers.

IV. MULTI-PIN NETS

We now extend the 2-pin algorithm to multi-pin nets. In a
multi-pin net, a candidate for a 2-pin segment may be merged
with a candidate of a different branch, before associated with
a buffer. In this case, optimal solution could come from a
non-convex candidate. Therefore we need all nonredundant
candidates of every 2-pin segment, not only the convex ones.

This is done by a subroutine 2PinSubroutine(...)
for 2-pin segments. The subroutine is similar to Algorithm
2-Pin, but in addition to list L(v), maintains a second list
A(v). A(v) contains ALL nonredundant candidates of T (v),
including non-convex ones. So A(v) is a superset of L(v). Best
candidates are still found through L, yet new candidates are
inserted to both L and A. Note that to facilitate the insertion
of new candidates into A, another array of pointers newA[b]
is used and the operation is similar to new[b]. For any 2-pin
segment u1, u2, . . . , uk, the subroutine takes as input A(uk),
prunes non-convex ones to get L(uk), and computes each
L(ui) and A(ui) as it moves to u1.

Algorithm M-Pin
Input Routing tree T (v) with root v.
Output List A(v) that contains all nonredundant

candidates of T (v).
Begin
1: If T (v) consists of path v to v1 where v1 is a branch

vertex then
2: Recursively compute A(v1) for T (v1);
3: A(v) = 2PinSubroutine(A(v1));
4: Else T (v) consists of subtrees T (v1) and T (v2)
5: Recursively compute A(v1) and A(v2);
6: Merge A(v1) and A(v2) to form A(v);

7: Return A(v);
End.

Theorem 2: Algorithm M-Pin computes the optimal buffer
insertion of an m-pin net in time O(b2n + bmn).

Proof: We compute the same set of all nonredundant
candidates as previous algorithms. Therefore the algorithm is
correct.

For all 2-pin segments, the total time is bounded by O(b2n).
At each branch vertex, the time is O(bn). Therefore the total
time is O(b2n + bmn).

Our new algorithm can be easily integrated with predictive
pruning [10], [4], and inverting buffer types [3].

V. SIMULATION

All algorithms are implemented in C and run on a Sun
SPARC workstations with 400 MHz clock and 2 GB memory.
The device and interconnect parameters are based on TSMC
180 nm technology and are same as those used in [5] and [4].
We have 4 different buffer libraries, of size 1, 4, 8, and 16
respectively. The value of R(Bi) is from 180 Ω to 7000 Ω,
C(Bi) is from 0.7 fF to 23 fF, and K(Bi) is from 29 ps to
36.4 ps. The sink capacitances range from 2 fF to 41 fF. The
wire resistance is 0.076 Ω/µm and the wire capacitance is
0.118 fF/µm.

Table I shows for a 2mm long two-pin net with different
possible buffer insertion locations, the new algorithm is up to
20 times faster than previous best algorithms. Table II shows
for large industrial multi-pin nets where m is as high as 337,
the new algorithm is still faster than previous best algorithms.
All algorithms generate same slacks.

VI. CONCLUSION

We presented a new O(mn) algorithm for optimal buffer
insertion on nets with m sinks. When m is small, the
new algorithm is a significant improvement over the recent
O(n log2 n) time algorithm [4], and the O(n2) time algorithm
of van Ginneken. Also, the new algorithm is much simpler
than the O(n log2 n) algorithm. Simulation results show the
new algorithm is faster than these algorithms by an order
of magnitude. In addition, for large buffer libraries, the new
algorithm is faster than recent O(bn2) algorithm [5]. In the
journal version of this paper, we will apply our algorithm to
resource minimization to show significant speedup. Since the
new algorithm could run for large number of buffer positions
and large buffer libraries in just few seconds, synthesis tool
can use very refined buffer positions to select the best quality
solutions with small amount of run time overhead.

REFERENCES

[1] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “Repeater
scaling and its impact on CAD,” IEEE Trans. Computer-Aided Design,
vol. 23, no. 4, pp. 451–463, 2004.

[2] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree
network for minimal Elmore delay,” in Proc. IEEE Int. Symp. Circuits
Syst. 1990, pp. 865–868.

[3] J. Lillis, C. K. Cheng, and T.-T. Y. Lin, “Optimal wire sizing and buffer
insertion for low power and a generalized delay model,” IEEE J. Solid-
State Circuits, vol. 31, no. 3, pp. 437–447, 1996.

6

TABLE I

SIMULATION RESULTS FOR A 2MM TWO-PIN NET.

CPU Time (sec)
Buffer Library Lillis-Cheng-Lin [3] Shi-Li [4] Li-Shi [5] New
pos. n size b O(b2n2) O(b2n log n) O(bn2) O(b2n)

1 0.02 0.01 0.03 0.001
404 4 0.04 0.11 0.04 0.01

8 0.08 0.41 0.04 0.02
16 0.14 1.64 0.06 0.04
1 0.51 0.10 0.80 0.01

2044 4 1.08 0.70 0.84 0.04
8 1.78 2.50 0.92 0.10
16 3.28 9.09 1.01 0.21
1 13.70 0.56 21.85 0.05

10404 4 28.11 4.33 23.01 0.23
8 46.71 16.18 23.26 0.49
16 83.97 59.64 23.75 1.10

TABLE II

SIMULATION RESULTS FOR INDUSTRIAL MULTI-PIN TEST CASES.

CPU Time (sec)
Sinks Buffer Library Lillis-Cheng-Lin [3] Shi-Li [4] Li-Shi [5] New

m pos. n size b O(b2n2) O(b2n log2 n) O(bn2) O(b2n + bmn)

1 0.01 0.002 0.002 0.002
107 4 0.01 0.03 0.01 0.01

8 0.02 0.16 0.01 0.01
16 0.05 0.67 0.02 0.03
1 0.24 0.04 0.14 0.02

25 1337 4 1.06 0.48 0.44 0.11
8 1.95 2.06 0.60 0.20

16 3.32 8.62 0.78 0.33
1 0.75 0.08 0.50 0.05

2567 4 4.08 1.04 1.47 0.19
8 7.07 4.30 2.07 0.36

16 12.12 17.94 2.58 0.64
1 0.02 0.02 0.02 0.03

337 4 0.05 0.04 0.04 0.06
8 0.09 0.75 0.08 0.12

16 0.19 3.23 0.14 0.20
1 0.89 0.17 0.41 0.22

337 5647 4 2.51 2.03 0.98 0.59
8 4.46 8.34 1.51 0.98

16 7.34 31.55 2.03 1.73
1 3.40 0.34 1.24 0.42

10957 4 9.29 4.10 2.95 1.16
8 16.03 16.88 4.44 1.93

16 26.96 64.59 5.85 3.26

[4] W. Shi and Z. Li, “A fast algorithm for opitmal buffer insertion,” IEEE
Trans. Computer-Aided Design, vol. 24, no. 6, pp. 879–891, 2005.

[5] Z. Li and W. Shi, “An O(bn2) time algorithm for buffer insertion with
b buffer types,” in Proc. Design, Automation and Test in Europe 2005,
pp. 1324–1329.

[6] R. Chen and H. Zhou, “A flexible data structure for efficient buffer
insertion, ” in Proc. IEEE Int. Conf. Computer Design 2004, pp. 216–
221.

[7] T. Okamoto and J. Cong, “Buffered steiner tree construction with wire
sizing for interconnect layout optimization,” in Proc. IEEE/ACM Int.
Conf. Computer-Aided Design 1996, pp. 44–49.

[8] M. Hrkic and J. Lillis, “S-tree: a technique for buffered routing tree
synthesis,” in Proc. ACM/IEEE Design Automation Conf. 2002, pp.
578–583.

[9] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion for noise
and delay optimization,” in Proc. ACM/IEEE Design Automation Conf.
1998, pp. 362–367.

[10] W. Shi, Z. Li, and C. J. Alpert, “Complexity analysis and speedup
techniques for optimal buffer insertion with minimum cost,” in Proc.
Asia South Pacific Design Automation Conf. 2004, pp. 609–614.

[11] S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long
uniform lines,” IEEE J. Solid-State Circuits, vol. 26, no. 1, pp. 32-40,
1991.

[12] C. C. N. Chu and D. F. Wong, “A quadratic programming approach
to simultaneous buffer insertion/sizing and wire sizing,” IEEE Trans.
Computer-Aided Design, vol. 18, no. 6, pp. 787-798, 1999.

[13] Z. Li, C. N. Sze, C. J. Alpert, J. Hu and W. Shi, “Making fast buffer
insertion even faster via approximation techniques,” in Proc. Asia South
Pacific Design Automation Conf., 2005, pp. 13–18.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

