
SAVS: A Self-Adaptive Variable Supply-Voltage Technique for Process- Tolerant and 
Power-Efficient Multi-issue Superscalar Processor Design 

Abstract -  Technology scaling and sub-wavelength optical 
lithography is associated with significant process variations. We 
propose a self-adaptive variable supply-voltage scaling (SAVS) 
technique for multi-issue out-of-order pipeline to improve parametric 
yield with minimal power dissipation. Our error-correction circuitry 
and recovery mechanism allow the proposed fault-tolerant pipeline to 
work at a dynamically tuned supply voltage with a very low error rate. 
Experiments on an 8-issue, out-of-order superscalar processor show 
that SAVS can achieve 93.3% yield with 8.66% total power reduction 
under a scaled VDD, compared to the same yield achieved by 
conventional microarchitecture. The increased execution time is 
negligible (0.014%). 

1. Introduction 

With technology scaling, power dissipation has become a limiting 
factor in high-performance microprocessor design.  Among 
existing power management techniques, supply voltage (VDD)
scaling has been proven to be effective for both dynamic and 
leakage power reduction:  with VDD scaling, dynamic power 
decreases quadratically [1] and leakage power decreases 
exponentially [2], associated with the increase of circuit delay. 

The latency increases of different circuit styles due to VDD scaling 
are different [3].  Fig. 1 shows the simulation results of the relative 
latency increases of a gate-dominant circuit and an 
interconnect-dominant circuit when VDD is scaled, under BPTM 
70nm technology.  Compared to interconnect-dominant circuit (e.g., 
result bus), the latency of gate-dominant circuit (or logic circuit, e.g., 
ALU), is less sensitive to VDD scaling.  Obviously, the circuit whose 
latency increases slower with VDD scaling may get a larger benefit 
from VDD scaling. 
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Fig. 1. VDD scaling and relative delay 

To ensure correct timing and consequently, acceptable chip yield 
at scaled VDD, most of VDD scaling techniques have to increase the 
clock period.  The prolonged clock period leads to a longer 
execution time and consequently, the degradation of system 
performance.  Hence, VDD scaling is usually adopted in embedded 
systems that have relatively less stringent performance requirements 
[3][4]. For performance-oriented systems, VDD scaling is applied 
only when the system has a low throughput.  For example, 
processor can work at a scaled VDD with a low clock frequency when 
pipeline idles during L2 cache misses [1].  The conflict between 
VDD scaling and circuit delay (and consequently, the chip yield), 
severely limits the application of VDD scaling technique in 
high-performance microprocessors. 

In reality, due to the variability of device parameters (e.g. random 
doping, transistor dimension and threshold voltage variation) and 

the fluctuation of environment factors (e.g. temperature shifting and 
power supply voltage noise), a margin has to be added to the supply 
voltage adopted in the design time.  This ensures a certain chip 
yield, which is defined as the ratio of the number of chips that work 
properly over the total number of chips, under a certain VDD.
However, the traditional corner-based VDD selection, which assumes 
that all worst-case conditions occur simultaneously, may heavily 
overestimate the actual needed VDD.

Several studies show that for logic circuits, the worst-case VDD
requirement may seldom occur.  For example, [5] shows that for 
random input vectors, the average carry propagation length of a 
carry look-ahead adder (CLA) is much less than 1/3 of the longest 
one.  Therefore, power management techniques that scale VDD
below the worst-case VDD requirement, have been recently 
investigated:  In [6] and [7], ALU works under a scaled VDD and 
timing-errors due to incomplete operation of ALU are detected and 
corrected by/from a result checker or a shadow latch.  

We note that timing-error correction techniques can be also 
adopted to tolerate circuit delay variation due to the process 
parameter fluctuations and environment factor variations.  By 
detecting and correcting the incomplete operations of circuit at the 
scaled VDD, timing-error correction mechanism can improve chip 
yield as well as reduce the power dissipation.  This is especially 
important to the application of VDD scaling in high-performance 
processors and is the motivation of our work. 

In this paper, we propose a self-adaptive variable supply-voltage 
scaling (SAVS) technique that targets the process-tolerance and the 
power-efficiency in multi-issue high-performance microprocessors. 
Timing-error correction mechanism is applied to selected pipeline 
stages for chip yield enhancement by correcting the errant timing 
due to the delay variation.  The selected stages can work at a scaled 
VDD with a tolerable timing error rate while the chip yield is still 
maintained.

Simulations on 23 SPEC2000 benchmarks show that on average, 
SAVS can reduce up to 8.66% of microprocessor power with 
negligible instruction per cycle-based (IPC-based) performance 
degradation (0.014%) while maintaining a required chip yield of 
93.3% and same clock frequency.  

2. Self-Adaptive Variable Supply-Voltage Scaling (SAVS) 

2.1. SAVS Mechanism 

Shadow latch has been proven to be effective and economic for 
data retention and checking. For example, in [8], data is stored in 
shadow latch when circuit switches to power-saving mode. When 
circuit switches back to active mode, system status is restored from 
the data stored in shadow latch. In [7], a shadow flip-flop-based 
technique (called Razor latch) is proposed for timing-error detection 
and recovery. The mechanism of shadow flip-flop can be 
summarized as follows: 

At the end of each clock cycle, the output of pipeline stage L1 is 
latched by the main flip-flop (FF) (Fig. 2(a)). When an errant output 
occurs, i.e., when operation latency Lop exceeds the original clock 
period Tclk, the incomplete output is latched by  main FF at the end 
of clock cycle i+1. After time Lop-Tclk, operation in L1 completes 
and the output of L1 switches to the correct data. Time T after the 
end of cycle i+1, detection signal SHW triggers shadow latch to 
capture the correct data. If the data captured by shadow latch is 
different from the data stored in main FF, an ‘ERROR’ signal is 
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generated in the subsequent cycle i+2 and the correct data is 
restored to main FF. Obviously, any operation with the latency 
longer than Tclk+ T cannot be captured by shadow latch. In such a 
case, system may not recover from the timing-error. The 
corresponding timing diagram, which is extracted from HSPICE 
simulation, is shown in Fig. 2(b). After a timing-error has occurred 
at the end of cycle i+1, the errant output data of stage L1 is sent to 
the subsequent stage L2. Hence, the instruction executed in the 
subsequent stage L2 in cycle i+2 must be re-executed after getting 
the correct input from L1 at the beginning of cycle i+3. One cycle 
penalty is introduced in the procedure above since the execution of 
Instr 1 in stage L1 actually takes two clock cycles.  
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In our SAVS technique, a modified robust shadow FF is 
developed for high-performance application and shown in Fig. 3(a). 
Compared to the shadow flip-flop design in [7] (shown in Fig. 3(b)), 
our shadow FF design has the following advantages: 

1. Additional control transmission gate in the inverter loop of 
each latch and careful sizing up of inverters and transmission gates 
provide [9] more robust design to prevent the “drive fight” of two 
inverters and consequently, occurrence of meta-stability. 

2. In the Error_L hold logic in Fig. 3(a), signal Error_L is 
triggered by a delayed clock signal CLK_del, based on the result of 
comparison of the values stored in the main slave latch and the 
shadow latch. This design avoids the false switching of Error_L due 
to any glitch at the circuit output D in shadow latch evaluation time 
1 (see Fig. 2(b)).  

3. When an errant output is detected, the FF structure of Error_L 
control logic keeps Error_L at logic ZERO until the next shadow 
latch evaluation time 2 (see Fig. 2(b)) completes. This mechanism 
masks the evaluation signal SHW of shadow latch in shadow latch 
evaluation time 2 and prevents the complete result of Instr 1 at Q 
from being corrupted by the result of Instr 2 (if Instr 2 is a 
long-latency instruction and switches in the shadow latch evaluation 

time 2).  
We note that only one such a flip-flop-based Error_L control 

logic is required by the whole pipeline stage L1 in Fig. 2(a): The 
Error_L signal in Fig. 3(a) is the Error_L signal in Fig. 2(a), which 
indicates any Error in any output bits of stage L1. The incurred 
area/power overhead is negligible. 

For the non-critical pipeline stages whose latency is always short 
enough (less than one clock cycle at scaled VDD), no error correction 
circuitry is required. Moreover, the output bits that are not located in 
the critical data paths also do not require error correction circuit. 
Here the critical data paths are defined as the data paths that may not 
complete execution within one clock cycle at the scaled VDD, due to 
process variations or other environmental factors.  

As pointed out in [7], in Fig. 2(b), if the execution time (TS) of 
Instr 2 in the cycle i+2 is shorter than T, the complete output of 
Instr 1 may be corrupted by the result of Instr 2. Hence, buffers need 
to be added at some inputs of stage L1 to ensure TS > T for the 
output bits with shadow latch. Such input buffers do not increase the 
critical path of stage L1. 

The simulation of a 32-bit CLA under BPTM 70nm process [10] 
considering Vt variations shows that that only 7 output bits may 
generate errors when scaling the VDD from 1.0V to 0.725V for a chip 
yield of 93.3%. More details of experiment setup are given in 
Section 4.1. Because the scaled VDD applied to the stages with SAVS 
technique (SAVS stages) is different from the normal VDD of other 
stages, FFs with level-conversion function (FFLC) [11] may be 
required at the output of SAVS stages. Our simulation shows the 
modification of the execution/bypass stage in SAVS technique 
results in about 6% area overhead, with respect to the conventional 
execution/bypass stage design in an 8-issue out-of-order superscalar 
microarchitecture [12][13]. 

2.2. Principle of SAVS 
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Fig. 4. Delay distribution of 32-bit CLA 

Fig. 4 shows the delay distribution of the 32-bit CLA over 8192 
random inputs. We can observe that at most of time, the delay of 
CLA is far shorter than the longest possible delay (normalized to 1 in 
Fig. 4). Very few operations really go through the longest data path 
of CLA. If we lower the VDD and are able to correct all possible 
timing errors due to process variations or environmental factor 
fluctuations, power dissipation can be lowered without any 
degradation of chip yield while maintaining the same working 
frequency. 

For some interconnect-dominant circuits, the delay also varies 
from case to case. Fig. 5 shows the layout of an 8-way bypass 
mechanism in execution/bypass stage of pipeline. Result bus 
bypasses the data between 8 different ALUs. To reduce the bypass 
delay, Register File (REG) is located at one end [12][13]. 
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Bypass delay includes bypass logic delay and interconnect delay. 
The bypass delays between different ALU pairs in Fig. 5 are shown 
in Fig. 6 (delays are normalized over the longest bypass delay 
occurring between ALU8 and ALU1). We use the dimensions of 
ALUs given in [12] and carefully scale them to 70nm technology. 
Repeaters are inserted in some result bypass buses to reduce the long 
RC delay of long metal interconnect. 

It is known that for superscalar pipeline, the usage of ALUs is 
limited by the ILP (instruction level parallelism). Most of time, 
bypassing is constrained among first several ALUs that are in 
physical proximity in layout. The corresponding bypass delays are 
much shorter than the longest one (from ALU8 to ALU1). 

Fig. 6. Bypass delay between different ALU pairs 

We note that the latency of circuit does not rely on the input 
vector when: 1) in gate-dominant circuit, every operation has to go 
through the longest data path; 2) in interconnect-dominant circuit, 
the data transmission is point-to-point, i.e., transmitter- receiver pair. 
In such cases, VDD scaling may result in a high error rate with a fixed 
clock frequency. SAVS may not be applicable.  

2.3. Overview of SAVS in High-Performance Microprocessors 

Fig. 7 depicts the general pipeline model for a superscalar 
processor [13]. The delays of each stage in the 8-issue baseline 
superscalar pipeline are carefully analyzed in [7], [13] and [14]. The 
delays of every stage in terms of FO4 delay, which measures the 
delay of an inverter driving a-fanout-of-four, are shown in Table I 
for 70nm technology. It has been shown that in 0.18µm technology 
and beyond, for the superscalar microprocessor whose issue width is 
equal to or more than 6, execution/bypass stage becomes the critical 
stage (e.g., execution/bypass stage with a delay of 18+18=36 FO4 in 
Table I in an 8-issue pipeline) [13][14]. The corresponding 
simulation parameters of baseline pipeline will be shown in Section 
4.3.1. 
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Fig. 7. Baseline superscalar model 

Instruction cache (I-cache), data cache (D-cache) and register 
files involve RAM (random access memory) structure [14]. As the 
analysis in Section 2.2, due to different interconnect lengths from 
the active cell to sense amplifier, cache core access delay (along 
wordline and bitline) relies on the physical position of data cell in 
RAM array. However, the cache core access time usually occupies 
limited percentage (less than 35%) of total cache access time [15]. 
The delays of other peripheral circuitries, including decoder, sense 
amplifier and data bus, are insensitive to the data address in RAM. 

Therefore, SAVS may not be applicable to fetch, register read, 
D-cache and writeback stages since the delays of those RAM-based 
stages (30 FO4 for Fetch (I-Cache) and D-Cache, 24 FO4 for 
register read and writeback) are close to the clock period (36 FO4).  

The register rename logic is used to translate logical register 
designators into physical register designators. Its two functions – 
mapping and check-pointing – are also usually implemented by 
RAM structure [13][14]. However, the delay of rename stage (18 
FO4) is only around half of the clock period (36 FO4). Therefore, 
SAVS can be applied to rename stage with error-free operations (at 
scaled VDD of SAVS: 0.725V in our simulation, Section 4.1).  

Table I  
Stage Delays of 8-issue Superscalar Pipeline 

 Delay (FO4)  Delay (FO4) 
Fetch 30 Decode 18 

Rename 18 Register Read 24 
Issue Queue 12 Execution 18 

Selection 12 Bypass 18 
Load/Store. Queue 12 Writeback 24 

I-Cache 30 D-Cache 30 

The complexity and the latency of decode stage greatly depends 
on ISA (instruction set architecture) and circuit design. In many 
practical microprocessor design, decode stage latency is shorter than 
the execution time of ALU [7][16]. In the execution/bypass stage of 
multi-issue out-of-order pipelines, bypass logic delay is equal to or 
greater than ALU delay [12][13][14]. In such a case, the decode 
delay is around half of clock cycle. Consequently, SAVS may be 
applied to decode stage with error free operations. However, to be 
conservative, we did not apply SAVS to decode stage in our design. 

The issue queue is a CAM (content addressable memory) 
structure [13][14]. In every entry of issue queue, the content is the 
decoded instruction and the tag is the sources of instruction’s 
operands. Wakeup logic works as follows: The tags associated with 
the executed results of ALU are broadcasted to all entries in issue 
queue. If each tag in an entry matches one tag associated with the 
execution results, the corresponding instruction is ready to be issued 
in the next cycle. Wakeup logic latency is mostly determined by the 
length of issue queue and the physical position of stored instruction 
in issue queue.  

Selection logic is composed of stacked arbiters to select 
instructions to be issued from the pool of ready instructions in issue 
queue. The number of instructions to be issued in the next cycle 
determines the latency of selection logic: more arbiters are required 
when more instructions are to be issued [17]. Although the latency 
of wakeup/selection stage is input vector (address) dependent, the 
extremely high-cost recovery mechanism makes the application of 
SAVS difficult: after an instruction is issued, it is popped out from 
the issue queue right away. Recovery from such errors may need to 
restore the issued instructions back to issue queue, and, introduce 
large power/area overhead and design complexity. To be 
conservative, we did not apply SAVS to wakeup/selection stage. 

The load/store queue in memory stage is also a CAM structure. 
The delay of writing into or reading from memory queue (12 FO4) is 
around 1/3 of the delay of critical stage (36 FO4). Hence, SAVS can 
be applied to memory stage (not cache). 

Because of the increasing gap between the delays of 
execution/bypass stage and other stages with technology scaling, the 
yield of pipeline is mainly determined by the timing error in 
execution/bypass stage. In execution/bypass stage, each of the ALU 
execution and data bypass takes about half of clock period 
[12][13][14]. Correcting the timing error in execution/bypass stage 
at the scaled VDD can improve the yield of execution/bypass stage 
and consequently, the yield of whole pipeline, with minimal power 
dissipation. Carefully choosing the range of VDD scaling ensures that 
the error rate of execution/bypass stage and the incurred 
performance penalty are low while other pipeline stages still work 
with error free.  

We note that the discussion above may not be applicable to some 
deeper pipelines since the design objective of deep pipeline is to 



uniform the delay of each stage of pipeline [14]. However, deep 
pipeline has been proven unsuitable to scaled technology because of 
the extremely high power dissipation and a large number of critical 
paths [18].  

In summary, for a multi-issue out-of-order pipeline, SAVS can be 
easily applied to rename, execution/bypass stages and load/store 
queue. VDD scaling causes the timing-errors only in 
execution/bypass stage. Hence a timing-error correction circuitry is 
required in execution/bypass stage. Although other stages keep 
working at the conservatively high VDD (it is important if cache is 
another critical stage), our experimental results in Section 4 show a 
significant power reduction with negligible performance penalty and 
energy overhead, when SAVS is applied.  

3. Implementation of SAVS 

3.1. Pipeline recovery mechanism 

In Fig. 2(b), the errant outputs of execution/bypass stage at the 
end of cycle i+1 may be bypassed back to the inputs of the 
execution/bypass stage and also sent to the memory stage in the 
subsequent cycle i+2. In such a case, the operations committed in 
execution/bypass stage and memory stage in the current cycle i+2 
must be re-executed (or re-sent) in the following cycle i+3. The 
error recovery mechanism of the pipeline needs to ensure that: (1) no 
new instructions are issued out from the issue queue until the 
re-executions complete; (2) the incorrect execution results in the 
previous cycle is flushed out from the pipeline; and (3) no errant 
register or cache writing is committed.  
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Fig. 8 shows the modified FU arbiter for SAVS scheme. The 
ready instructions in issue queue can be issued out only when the 
ENABLE signal of the corresponding FU is raised to logic ONE 
[13][14][17]. In Fig. 2(b), the ERROR_L is pulled down to logic 
ZERO once an error in execution/bypass stage is detected in cycle 
i+2. We piggyback on this ERROR_L signal to block the ENABLE 
signal and prevent instructions from issuing out in cycle i+3. No 
extra performance penalty is introduced. 
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During the re-execution of instructions, the output latches of 
wakeup/selection stage and register read stage must be stalled at the 
end of cycle i+2. The data stored in the latches of register file stage 
and the correct data bypassed from execution/bypass stage are resent 
into execution/bypass stage for re-execution in cycle i+3. In modern 
high-performance microprocessors, the output of execution/bypass 
stage is sent to a load/store queue before it is written into the 
memory. Hence, the errant entry of load/store queue can easily 
recover by using the modified FFs of execution/bypass stage (see 
Section 2.1). A clock-gating-based stalling scheme is shown in Fig. 
9. Compared to the modified in-order pipeline in [7], the additional 
pipeline stage between execution/bypass stage and memory stage (to 
prevent writing the errant data to the memory) is removed. 

The whole pipeline is separated by issue queue into the front-end 
and the back-end. The stages in the front-end – fetch, decode and 
rename – are not stalled when the re-execution is committed. New 
instructions can still be fetched and sent to issue queue as long as 
issue queue is not full. Unlike the global clock-gating scheme 
implemented in an in-order pipeline [7], in our design, clock-gating 
is applied to the latches of only two back-end stages: 
wakeup/selection and register read. These two circuit blocks are 
located in physical proximity in the floorplan. The clock-gating 
control signal, which is the ERROR_L signal generated by 
timing-error correction circuit, can easily reach those latches by the 
end of current cycle.  

Pipeline writes the results to register file at writeback stage. Since 
the information of date correctness has been available at the end of 
memory stage, errant writing to register file is avoided. 

For pipelined multi-cycle ALU, e.g., multiplier and floating point 
ALU, the timing-error correction circuit is implemented on the 
output of each stage. Moreover, similar clock-gating scheme can be 
applied to every slice of multi-cycle ALU for the recovery from any 
possible timing error in the slice of multi-cycle ALU.  

3.2. Supply-Voltage Scaling Control 

3.2.1. Supply-voltage control scheme 

Due to bypass mechanism, even if only one ALU operation is 
incorrect in the previous cycle, all the instructions being executed in 
the present cycle need to be re-executed. Hence, the error-induced 
performance and energy overheads are determined only by the error 
rate of program (ERp). We also refer the error rate of an ALU as ERa.
If each ALU’s error rate is independent of others’, ERp
approximately equals ERa·IPC when ERa is small. 

Because of the process variations and the time-varying 
environmental factors, ERp changes from program to program or 
even from portion to portion within the same program. Hence, VDD
must be automatically adjusted to achieve an acceptable chip yield 
with acceptable performance and energy overheads.  

In our design, we select two switching thresholds, ERhigh and 
ERlow, and monitor the ERp of the running program. VDD does not 
change when ERp is between ERhigh and ERlow. Otherwise, we 
decrease VDD to reduce power consumption if ERp is lower than 
ERlow, or increase VDD to avoid unacceptable performance/energy 
overhead if ERp is higher than ERhigh.

However, our VDD adjustment mechanism never reduces VDD
under a critical voltage level VDD-min, and hence, guarantees a desired 
chip yield. This constraint is very crucial when the chip yield is 
considered. More details will be given in Section 4.2. 

3.2.2. Limitations of the VDD scaling 

VDD ramping is limited by two factors: the response time of 
voltage regulator and the power supply noise tolerance. [7] 
described a typical commercial voltage regulator that takes 10’s of 
microseconds to adjust VDD by 100mV. Moreover, VDD shifting 
results in the charging/discharging of the intrinsic capacitance of 
circuits and consequently, current surge in power supply network. 
VDD ramping must be slow enough so that the induced power supply 
noise is below the allowed threshold. In our experiments, we 
conservatively set VDD ramping rate to 5mV/µs.  

4. Experimental results 

4.1. Yield Analysis with Timing-Error Correction Mechanism 

Our Monte-Carlo simulation on chip yield is conducted by 
HSPICE with BPTM 70nm Technology. Without loss of generality, 
only the variations of Vt and interconnect width are considered in 
our experiments. The STDs of both inter-die and intra-die Vt
variations are set to 30mV [19]. The lumped RC model of 
interconnect [20] is used while the STD of interconnect width for 
each segment of lumped RC model is set to 10% of the nominal 
width. The spatial correlation coefficient between the intra-die Vt
variations of any two transistors and the one between the widths of 



any two interconnect segments are both set to 0.4. Execution/bypass 
(E/B) stage is implemented with 32-bit CLA and the corresponding 
bypass logic. Fig. 10 shows the yield of E/B stage under different 
VDD’s. Clock period is selected to ensure that when E/B stage 
operates at the normal VDD (1.0V), chip yield is 93.3% ( (1.5),
where  is the cumulative distribution function of a standard normal 
distribution). 
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Fig. 10. Yield of ALU under different VDD’s.  

To take account of the area overheads of timing-error correction 
circuit, we introduce the effective yield, defined as:  

origeff
chip chip

orig ovhd

A
Y Y

A A
=

+
    (1) 

Here Aorig and Aovhd are the area of E/B stage and the area 
overhead incurred by timing-error correction circuit, respectively. 
Ychip is the yield of whole E/B stage and eff

chipY  is the effective yield. 
The effective yields of the E/B stage with SAVS under different 
VDD’s are also shown in Fig. 10. Here the switching time of the 
error-detection signal ∆T is set at half clock cycle (see Fig. 2(b)). 
The whole pipeline’s yield is largely determined by the yield of E/B 
stage, which is the critical stage for sub-0.18µm technology and 
beyond [13][14]. Hence, the yield of whole chip can be improved 
significantly by SAVS with the negligible area overhead (compared 
to the whole chip area of pipeline). It should be noted that yield 
considered in this paper is only due to SAVS. In reality, the exact 
yield calculation for a system depends on multitude of factors and is 
a lot more involved. 

Increasing VDD can also enhance the chip yield, albeit with 
significant power penalty. Although the highest possible effective 
yield of modified E/B stage is limited by the area overhead of 
timing-error correction circuit, when VDD is low (less than the actual 
needed VDD, say, 1.0V), the effective yield of modified E/B stage is 
much higher than the yield of non-modified ones. For an acceptable 
yield, 93.3% (say), the modified E/B stage requires only
VDD=0.725V while the non-modified one requires VDD=1.0V. We 
select the minimal VDD that ensure the desired chip yield in SAVS 
technique as the critical VDD of SAVS (VDD-min).

4.2. Error Rate with Aggressively Scaled VDD

In our error rate simulation, if the latency of an operation at the 
scaled VDD exceeds original clock cycle (considering flip-flop set up 
time and hold time), it is counted as an error. Obviously, the actual 
error rate of a circuit greatly depends on the process parameter and 
environmental factor variations. Fig. 11 shows the error rates of a 
CLA-based ALU with 8192 random input vectors at different VDD’s: 
when the Vt’s of all transistors in the 32-bit CLA: 1) equal the 
designed value (-designed). Here, the designed value is the Vt
adopted in design time; 2) +42.4mV deviation from the designed 
value toward 0V (-slow); 3) -42.4mV deviation from the designed 
value toward 0V (-fast). We note that the error rate of ALU actually 
relies on the particular benchmark.  

The error rate of bypass logic is different for various benchmarks. 
Based on the simulation results in Fig. 6, we use Wattch [21] to 
simulate the data bypass in an 8-way, out-of-order pipeline for 23 
SPEC2000 benchmarks [22]. Results show that benchmark art has 
the highest error rate of bypass logic.  

Fig. 11 also shows the error rate of E/B stage (including both 
ALUs and bypass logic): when the interconnect width of bypass 

logic: 1) equals the designed value (-designed); 2) -10% deviation 
from the designed value toward 0 (-slow); 3) +10% deviation from 
the designed value toward 0 (-fast). Here, we assume that the longest 
latencies of ALU and data bypass take half clock period at VDD=1.0V, 
respectively [12][13][14]. The behaviors of ALU and bypass logic 
are based on 8192 random input vectors for benchmark art.
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Fig. 11. Error rate of CLA and execution/bypass stage 

We point out that, when VDD is scaled under 0.725V, the error rate 
may still be at a low level: when VDD is 0.7V, the corresponding error 
rate of E/B stage is only 0.05%. The incurred performance and 
power overheads is still small. However, the over scaled VDD, i.e., 
0.7V, cannot guarantee a desired chip yield (say, 93.3%): Some 
errors cannot be detected and recovered by the error correction 
circuitry (Section 2.1). Thus, when chip yield is considered, a pure 
error-rate-based (or performance/energy penalty-oriented) dynamic 
VDD adjustment mechanism [7] is not sufficient: to maintain the 
desired chip yield, VDD should not be scaled under the critical VDD of 
SAVS (0.725V in our simulation).  

In our simulations in Section 4.3, we assume all Vt's of transistor 
and the bypass interconnect width in microprocessors equal the 
designed (nominal) value,  The corresponding error rates of E/B 
stage are shown as curve “Exec/bypass-designed” in Fig. 11. [7] 
shows that the random input-based simulation overestimates the 
error rate of an ALU in reality. Since we also adopted the error rate 
of bypass logic in benchmark art to come up with the curve 
“Exec/bypass-designed”, in our simulation, the performance penalty 
and energy overheads due to the errant operations are actually 
overestimated. Consequently, for the error-rate-driven VDD scaling, 
power reduction is underestimated. 

[7] also shows that complex logic structures, such as multipliers, 
generally have lower error rate than adder-based ALU’s. In our 
simulation, we assume that integer multiplier and floating-point 
ALU have the same error rate as that of CLA at the same VDD. This 
assumption does not underestimate the error rate or overestimate the 
effectiveness of our methodology. 

4.3. System-Level Simulations 

4.3.1. Simulation environment 

Table II 
Baseline Processor Configuration 

Processor 
8-way issue, 128 RUU, 64 LSQ, 8 integer ALUs, 2 
integer mul/div units, 4 FP ALUs, 4 FP mul/div units, 
uses clock gating (DCG) and s/w prefetching 

Branch 
prediction 

8K/8K/8K hybrid predictor; 32-entry RAS, 8192-entry 
4-way BTB, 8 cycle misprediction penalty 

Caches 64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-cycle L2, 
both LRU 

MSHR IL1 - 32, DL1 – 32, L2 – 64 
Memory Infinite capacity, 400 cycle latency 
Memory 

bus 
32-byte wide, pipelined, split transaction, 4-cycle 
occupancy 

We used a modified version of Wattch to simulate an 8-way, 
out-of-order SAVS processor, which is summarized in Table II, 
under BPTM 70nm process. A deterministic clock gating (DCG) 
technique [23] is involved in all simulations. The extra power 
dissipation of the timing-error correction circuitry and the additional 
energy overhead due to the re-execution of errant operation have 
been included in our power saving and overhead estimation.  



Alpha-SPEC2000 binaries that are pre-compiled with SPEC peak
setting are accepted in our simulation. We used ref inputs, 
fast-forwarded 2 billion instructions, and simulated 500 million 
instructions.  

In our simulation, ERhigh and ERlow are set to 0.1% and 0.05%, 
respectively. VDD ramping rate is set to 5mV/µs. Under the 
assumption of the 2GHz clock frequency, it takes 2000 cycles to 
ramp the VDD up/down by 5mV. 

4.3.2. Effectiveness of SAVS 

Fig. 12 depicts the simulation results of SAVS pipeline on 23 
SPEC2000 benchmarks. The gray bar (with Y-axis on the left) 
represents the total microprocessor power savings ratio (including 
the cache power), with respect to the 8-issue baseline processor 
under VDD=1.0V. The line (with Y-axis on the right) shows the 
percentage of the execution time increase of SAVS pipeline, with 
respect to the 8-issue baseline pipeline under VDD=1.0V. The X-axis 
shows benchmarks.  
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Fig. 12. Power savings and performance overhead of SAVS 

The simulation results show that SAVS effectively reduces the 
power consumption of processor with negligible performance 
penalty while maintaining the same chip yield: on average, SAVS 
improves 8.66% of processor power consumption by paying only 
0.014% performance penalty (the maximum performance overhead 
is within 0.032%). The average energy reduction is 8.64% while the 
chip yield is maintained at 93.3%.  

The benchmarks with high ILP achieve higher power savings. For 
example wupwise, whose IPC is 4.10, achieves 12.1% reduction of 
processor power dissipation. The power savings for the benchmarks 
with low ILP, such as ammp, are insignificant. It can be explained as 
following: under clock gating scheme, for the program with higher 
ILP, ALUs are used more frequently and consume more power. 
Hence, more power saving can be achieved when SAVS is applied.  

We point out that the application of SAVS in the critical stage of 
pipeline decreases the critical VDD for whole system. Hence, the VDD
applied to other non-SAVS stages can be reduced to lower level that 
is determined by the new critical stage(s) of pipeline (for example, 
0.85V in our simulation), without incurring additional performance, 
power and yield penalties. This fact provides an new methodology 
to design a high performance, power efficient, pipelined system 
under scaled technology. 

5. Conclusion 

In this paper, we proposed an error-tolerant self-adaptive variable 
supply-voltage scheme (SAVS) for multi-issue out-of-order 
superscalar microprocessors. Besides maintaining the chip yield, 
SAVS can effectively reduce power dissipation of high performance 
microprocessor with negligible performance degradation. SAVS is 
suitable for scaled technologies where process parameter 
fluctuations and environment factor variations are significant. SAVS 
also provides an alterative choice to simultaneously achieve the high 
throughput and low power in pipelined systems under scaled 
technologies.  
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