
SAVS: A Self-Adaptive Variable Supply-Voltage Technique for Process- Tolerant and
Power-Efficient Multi-issue Superscalar Processor Design

Abstract - Technology scaling and sub-wavelength optical
lithography is associated with significant process variations. We
propose a self-adaptive variable supply-voltage scaling (SAVS)
technique for multi-issue out-of-order pipeline to improve parametric
yield with minimal power dissipation. Our error-correction circuitry
and recovery mechanism allow the proposed fault-tolerant pipeline to
work at a dynamically tuned supply voltage with a very low error rate.
Experiments on an 8-issue, out-of-order superscalar processor show
that SAVS can achieve 93.3% yield with 8.66% total power reduction
under a scaled VDD, compared to the same yield achieved by
conventional microarchitecture. The increased execution time is
negligible (0.014%).

1. Introduction

With technology scaling, power dissipation has become a limiting
factor in high-performance microprocessor design. Among
existing power management techniques, supply voltage (VDD)
scaling has been proven to be effective for both dynamic and
leakage power reduction: with VDD scaling, dynamic power
decreases quadratically [1] and leakage power decreases
exponentially [2], associated with the increase of circuit delay.

The latency increases of different circuit styles due to VDD scaling
are different [3]. Fig. 1 shows the simulation results of the relative
latency increases of a gate-dominant circuit and an
interconnect-dominant circuit when VDD is scaled, under BPTM
70nm technology. Compared to interconnect-dominant circuit (e.g.,
result bus), the latency of gate-dominant circuit (or logic circuit, e.g.,
ALU), is less sensitive to VDD scaling. Obviously, the circuit whose
latency increases slower with VDD scaling may get a larger benefit
from VDD scaling.

1.0

1.2

1.4

1.6

1.8

0.70 0.75 0.80 0.85 0.90 0.95 1.00
VDD (V)

R
el

at
iv

e
D

el
ay

gate-dominant
interconnect-dominant

Fig. 1. VDD scaling and relative delay

To ensure correct timing and consequently, acceptable chip yield
at scaled VDD, most of VDD scaling techniques have to increase the
clock period. The prolonged clock period leads to a longer
execution time and consequently, the degradation of system
performance. Hence, VDD scaling is usually adopted in embedded
systems that have relatively less stringent performance requirements
[3][4]. For performance-oriented systems, VDD scaling is applied
only when the system has a low throughput. For example,
processor can work at a scaled VDD with a low clock frequency when
pipeline idles during L2 cache misses [1]. The conflict between
VDD scaling and circuit delay (and consequently, the chip yield),
severely limits the application of VDD scaling technique in
high-performance microprocessors.

In reality, due to the variability of device parameters (e.g. random
doping, transistor dimension and threshold voltage variation) and

the fluctuation of environment factors (e.g. temperature shifting and
power supply voltage noise), a margin has to be added to the supply
voltage adopted in the design time. This ensures a certain chip
yield, which is defined as the ratio of the number of chips that work
properly over the total number of chips, under a certain VDD.
However, the traditional corner-based VDD selection, which assumes
that all worst-case conditions occur simultaneously, may heavily
overestimate the actual needed VDD.

Several studies show that for logic circuits, the worst-case VDD
requirement may seldom occur. For example, [5] shows that for
random input vectors, the average carry propagation length of a
carry look-ahead adder (CLA) is much less than 1/3 of the longest
one. Therefore, power management techniques that scale VDD
below the worst-case VDD requirement, have been recently
investigated: In [6] and [7], ALU works under a scaled VDD and
timing-errors due to incomplete operation of ALU are detected and
corrected by/from a result checker or a shadow latch.

We note that timing-error correction techniques can be also
adopted to tolerate circuit delay variation due to the process
parameter fluctuations and environment factor variations. By
detecting and correcting the incomplete operations of circuit at the
scaled VDD, timing-error correction mechanism can improve chip
yield as well as reduce the power dissipation. This is especially
important to the application of VDD scaling in high-performance
processors and is the motivation of our work.

In this paper, we propose a self-adaptive variable supply-voltage
scaling (SAVS) technique that targets the process-tolerance and the
power-efficiency in multi-issue high-performance microprocessors.
Timing-error correction mechanism is applied to selected pipeline
stages for chip yield enhancement by correcting the errant timing
due to the delay variation. The selected stages can work at a scaled
VDD with a tolerable timing error rate while the chip yield is still
maintained.

Simulations on 23 SPEC2000 benchmarks show that on average,
SAVS can reduce up to 8.66% of microprocessor power with
negligible instruction per cycle-based (IPC-based) performance
degradation (0.014%) while maintaining a required chip yield of
93.3% and same clock frequency.

2. Self-Adaptive Variable Supply-Voltage Scaling (SAVS)

2.1. SAVS Mechanism

Shadow latch has been proven to be effective and economic for
data retention and checking. For example, in [8], data is stored in
shadow latch when circuit switches to power-saving mode. When
circuit switches back to active mode, system status is restored from
the data stored in shadow latch. In [7], a shadow flip-flop-based
technique (called Razor latch) is proposed for timing-error detection
and recovery. The mechanism of shadow flip-flop can be
summarized as follows:

At the end of each clock cycle, the output of pipeline stage L1 is
latched by the main flip-flop (FF) (Fig. 2(a)). When an errant output
occurs, i.e., when operation latency Lop exceeds the original clock
period Tclk, the incomplete output is latched by main FF at the end
of clock cycle i+1. After time Lop-Tclk, operation in L1 completes
and the output of L1 switches to the correct data. Time T after the
end of cycle i+1, detection signal SHW triggers shadow latch to
capture the correct data. If the data captured by shadow latch is
different from the data stored in main FF, an ‘ERROR’ signal is

Hai Li

Qualcomm Inc.
5775 Morehouse Dr.
San Diego, CA, USA

Tel : +1-858-845-7393
e-mail: hail@qualcomm.com

Yiran Chen

Synopsys Inc.
700 East Middlefield Road
Mountain View, CA, USA

Tel : +1-650-584-4885
e-mail: yiran.chen@synopsys.com

Kaushik Roy

Purdue University
ECE Department

West Lafayette, IN, USA
Tel : +1-765-494-2361

e-mail: kaushik@ecn.purdue.edu

Cheng-Kok Koh

Purdue University
ECE Department

West Lafayette, IN, USA
Tel : +1-765-496-3683

e-mail: chengkok@ecn.purdue.edu

The work is sponsored in part by Marco Gigascale Systems Research Center (GSRC)
and Semiconductor Research Corp.

generated in the subsequent cycle i+2 and the correct data is
restored to main FF. Obviously, any operation with the latency
longer than Tclk+ T cannot be captured by shadow latch. In such a
case, system may not recover from the timing-error. The
corresponding timing diagram, which is extracted from HSPICE
simulation, is shown in Fig. 2(b). After a timing-error has occurred
at the end of cycle i+1, the errant output data of stage L1 is sent to
the subsequent stage L2. Hence, the instruction executed in the
subsequent stage L2 in cycle i+2 must be re-executed after getting
the correct input from L1 at the beginning of cycle i+3. One cycle
penalty is introduced in the procedure above since the execution of
Instr 1 in stage L1 actually takes two clock cycles.

D

CLK

CLK_b

1

0

Error_L

Shadow latch

Q

CLK_b

CLK

CLK

CLK_b

SHW_b

SHW

SHW_b

SHW

CLK_b

CLK

CLK_del_b

CLK_del

33

CLK_del

CLK_del_b

CLK_del

CLK_del_b

CLK_del_b

CLK_del

Error_L

CLK CLK_b

CLK_del CLK_del_b

Error_L
CLK_del_bSHW

SHW SHW_b

Error_L’

Error_L hold logic
Shadow latch control

(a)
CLK

CLK_b CLK

CLK_b

1

0

CLK_del_b
(SHW_b)

CLK_del (SHW)

Error_L Error_L

Shadow latch

Meta-stability detector
D Q

CLK CLK_b CLK_del
(SHW)

CLK_del_b
SHW_b

(b)
Fig. 3. Shadow flip-flop Design (a) Proposed Design (b) Original
Design

In our SAVS technique, a modified robust shadow FF is
developed for high-performance application and shown in Fig. 3(a).
Compared to the shadow flip-flop design in [7] (shown in Fig. 3(b)),
our shadow FF design has the following advantages:

1. Additional control transmission gate in the inverter loop of
each latch and careful sizing up of inverters and transmission gates
provide [9] more robust design to prevent the “drive fight” of two
inverters and consequently, occurrence of meta-stability.

2. In the Error_L hold logic in Fig. 3(a), signal Error_L is
triggered by a delayed clock signal CLK_del, based on the result of
comparison of the values stored in the main slave latch and the
shadow latch. This design avoids the false switching of Error_L due
to any glitch at the circuit output D in shadow latch evaluation time
1 (see Fig. 2(b)).

3. When an errant output is detected, the FF structure of Error_L
control logic keeps Error_L at logic ZERO until the next shadow
latch evaluation time 2 (see Fig. 2(b)) completes. This mechanism
masks the evaluation signal SHW of shadow latch in shadow latch
evaluation time 2 and prevents the complete result of Instr 1 at Q
from being corrupted by the result of Instr 2 (if Instr 2 is a
long-latency instruction and switches in the shadow latch evaluation

time 2).
We note that only one such a flip-flop-based Error_L control

logic is required by the whole pipeline stage L1 in Fig. 2(a): The
Error_L signal in Fig. 3(a) is the Error_L signal in Fig. 2(a), which
indicates any Error in any output bits of stage L1. The incurred
area/power overhead is negligible.

For the non-critical pipeline stages whose latency is always short
enough (less than one clock cycle at scaled VDD), no error correction
circuitry is required. Moreover, the output bits that are not located in
the critical data paths also do not require error correction circuit.
Here the critical data paths are defined as the data paths that may not
complete execution within one clock cycle at the scaled VDD, due to
process variations or other environmental factors.

As pointed out in [7], in Fig. 2(b), if the execution time (TS) of
Instr 2 in the cycle i+2 is shorter than T, the complete output of
Instr 1 may be corrupted by the result of Instr 2. Hence, buffers need
to be added at some inputs of stage L1 to ensure TS > T for the
output bits with shadow latch. Such input buffers do not increase the
critical path of stage L1.

The simulation of a 32-bit CLA under BPTM 70nm process [10]
considering Vt variations shows that that only 7 output bits may
generate errors when scaling the VDD from 1.0V to 0.725V for a chip
yield of 93.3%. More details of experiment setup are given in
Section 4.1. Because the scaled VDD applied to the stages with SAVS
technique (SAVS stages) is different from the normal VDD of other
stages, FFs with level-conversion function (FFLC) [11] may be
required at the output of SAVS stages. Our simulation shows the
modification of the execution/bypass stage in SAVS technique
results in about 6% area overhead, with respect to the conventional
execution/bypass stage design in an 8-issue out-of-order superscalar
microarchitecture [12][13].

2.2. Principle of SAVS

0.00

0.10

0.20

0.30

0.00 0.20 0.40 0.60 0.80 1.00
Normalized Execution Delay

Po
ss

ib
ili

ty
 D

is
tri

bu
tio

n

Fig. 4. Delay distribution of 32-bit CLA

Fig. 4 shows the delay distribution of the 32-bit CLA over 8192
random inputs. We can observe that at most of time, the delay of
CLA is far shorter than the longest possible delay (normalized to 1 in
Fig. 4). Very few operations really go through the longest data path
of CLA. If we lower the VDD and are able to correct all possible
timing errors due to process variations or environmental factor
fluctuations, power dissipation can be lowered without any
degradation of chip yield while maintaining the same working
frequency.

For some interconnect-dominant circuits, the delay also varies
from case to case. Fig. 5 shows the layout of an 8-way bypass
mechanism in execution/bypass stage of pipeline. Result bus
bypasses the data between 8 different ALUs. To reduce the bypass
delay, Register File (REG) is located at one end [12][13].

(a)

1

0 Main
Flip-Flip

Shadow
Latch

Stage
L2

Stage
L1

CLK

SHW
comparator

D
Q

Error
Error_L

CLK_del 21

CLK

SHW

D

Q

Error_L

Shadow latch evaluation time

Instr 1
Instr 2

Incomplete result of Instr 1 Complete result of Instr 1

Complete result of Instr 2

Cycle i Cycle i +3Cycle i +2Cycle i +1

(b)

∆ T

T CLK

Fig. 2. Shadow flip-flop mechanism for timing failure correction (a) Schematic (b) Timing diagram (From HSPICE)

REGALU
1

ALU
8

ALU
7

ALU
6

ALU
5

ALU
4

ALU
3

ALU
2

Fig. 5. Layouts for 8-way bypassing

Bypass delay includes bypass logic delay and interconnect delay.
The bypass delays between different ALU pairs in Fig. 5 are shown
in Fig. 6 (delays are normalized over the longest bypass delay
occurring between ALU8 and ALU1). We use the dimensions of
ALUs given in [12] and carefully scale them to 70nm technology.
Repeaters are inserted in some result bypass buses to reduce the long
RC delay of long metal interconnect.

It is known that for superscalar pipeline, the usage of ALUs is
limited by the ILP (instruction level parallelism). Most of time,
bypassing is constrained among first several ALUs that are in
physical proximity in layout. The corresponding bypass delays are
much shorter than the longest one (from ALU8 to ALU1).

Fig. 6. Bypass delay between different ALU pairs

We note that the latency of circuit does not rely on the input
vector when: 1) in gate-dominant circuit, every operation has to go
through the longest data path; 2) in interconnect-dominant circuit,
the data transmission is point-to-point, i.e., transmitter- receiver pair.
In such cases, VDD scaling may result in a high error rate with a fixed
clock frequency. SAVS may not be applicable.

2.3. Overview of SAVS in High-Performance Microprocessors

Fig. 7 depicts the general pipeline model for a superscalar
processor [13]. The delays of each stage in the 8-issue baseline
superscalar pipeline are carefully analyzed in [7], [13] and [14]. The
delays of every stage in terms of FO4 delay, which measures the
delay of an inverter driving a-fanout-of-four, are shown in Table I
for 70nm technology. It has been shown that in 0.18µm technology
and beyond, for the superscalar microprocessor whose issue width is
equal to or more than 6, execution/bypass stage becomes the critical
stage (e.g., execution/bypass stage with a delay of 18+18=36 FO4 in
Table I in an 8-issue pipeline) [13][14]. The corresponding
simulation parameters of baseline pipeline will be shown in Section
4.3.1.

Fe
tc

h

D
ec

od
e

R
en

am
e

Is
su

e
Q

ue
ue

W
ak

eu
p/

Se
le

ct
io

n

R
eg

is
te

r R
ea

d

Ex
ec

ut
io

n/
B

yp
as

s

M
em

or
y

W
rit

eb
ac

k

Fig. 7. Baseline superscalar model

Instruction cache (I-cache), data cache (D-cache) and register
files involve RAM (random access memory) structure [14]. As the
analysis in Section 2.2, due to different interconnect lengths from
the active cell to sense amplifier, cache core access delay (along
wordline and bitline) relies on the physical position of data cell in
RAM array. However, the cache core access time usually occupies
limited percentage (less than 35%) of total cache access time [15].
The delays of other peripheral circuitries, including decoder, sense
amplifier and data bus, are insensitive to the data address in RAM.

Therefore, SAVS may not be applicable to fetch, register read,
D-cache and writeback stages since the delays of those RAM-based
stages (30 FO4 for Fetch (I-Cache) and D-Cache, 24 FO4 for
register read and writeback) are close to the clock period (36 FO4).

The register rename logic is used to translate logical register
designators into physical register designators. Its two functions –
mapping and check-pointing – are also usually implemented by
RAM structure [13][14]. However, the delay of rename stage (18
FO4) is only around half of the clock period (36 FO4). Therefore,
SAVS can be applied to rename stage with error-free operations (at
scaled VDD of SAVS: 0.725V in our simulation, Section 4.1).

Table I
Stage Delays of 8-issue Superscalar Pipeline

 Delay (FO4) Delay (FO4)
Fetch 30 Decode 18

Rename 18 Register Read 24
Issue Queue 12 Execution 18

Selection 12 Bypass 18
Load/Store. Queue 12 Writeback 24

I-Cache 30 D-Cache 30

The complexity and the latency of decode stage greatly depends
on ISA (instruction set architecture) and circuit design. In many
practical microprocessor design, decode stage latency is shorter than
the execution time of ALU [7][16]. In the execution/bypass stage of
multi-issue out-of-order pipelines, bypass logic delay is equal to or
greater than ALU delay [12][13][14]. In such a case, the decode
delay is around half of clock cycle. Consequently, SAVS may be
applied to decode stage with error free operations. However, to be
conservative, we did not apply SAVS to decode stage in our design.

The issue queue is a CAM (content addressable memory)
structure [13][14]. In every entry of issue queue, the content is the
decoded instruction and the tag is the sources of instruction’s
operands. Wakeup logic works as follows: The tags associated with
the executed results of ALU are broadcasted to all entries in issue
queue. If each tag in an entry matches one tag associated with the
execution results, the corresponding instruction is ready to be issued
in the next cycle. Wakeup logic latency is mostly determined by the
length of issue queue and the physical position of stored instruction
in issue queue.

Selection logic is composed of stacked arbiters to select
instructions to be issued from the pool of ready instructions in issue
queue. The number of instructions to be issued in the next cycle
determines the latency of selection logic: more arbiters are required
when more instructions are to be issued [17]. Although the latency
of wakeup/selection stage is input vector (address) dependent, the
extremely high-cost recovery mechanism makes the application of
SAVS difficult: after an instruction is issued, it is popped out from
the issue queue right away. Recovery from such errors may need to
restore the issued instructions back to issue queue, and, introduce
large power/area overhead and design complexity. To be
conservative, we did not apply SAVS to wakeup/selection stage.

The load/store queue in memory stage is also a CAM structure.
The delay of writing into or reading from memory queue (12 FO4) is
around 1/3 of the delay of critical stage (36 FO4). Hence, SAVS can
be applied to memory stage (not cache).

Because of the increasing gap between the delays of
execution/bypass stage and other stages with technology scaling, the
yield of pipeline is mainly determined by the timing error in
execution/bypass stage. In execution/bypass stage, each of the ALU
execution and data bypass takes about half of clock period
[12][13][14]. Correcting the timing error in execution/bypass stage
at the scaled VDD can improve the yield of execution/bypass stage
and consequently, the yield of whole pipeline, with minimal power
dissipation. Carefully choosing the range of VDD scaling ensures that
the error rate of execution/bypass stage and the incurred
performance penalty are low while other pipeline stages still work
with error free.

We note that the discussion above may not be applicable to some
deeper pipelines since the design objective of deep pipeline is to

uniform the delay of each stage of pipeline [14]. However, deep
pipeline has been proven unsuitable to scaled technology because of
the extremely high power dissipation and a large number of critical
paths [18].

In summary, for a multi-issue out-of-order pipeline, SAVS can be
easily applied to rename, execution/bypass stages and load/store
queue. VDD scaling causes the timing-errors only in
execution/bypass stage. Hence a timing-error correction circuitry is
required in execution/bypass stage. Although other stages keep
working at the conservatively high VDD (it is important if cache is
another critical stage), our experimental results in Section 4 show a
significant power reduction with negligible performance penalty and
energy overhead, when SAVS is applied.

3. Implementation of SAVS

3.1. Pipeline recovery mechanism

In Fig. 2(b), the errant outputs of execution/bypass stage at the
end of cycle i+1 may be bypassed back to the inputs of the
execution/bypass stage and also sent to the memory stage in the
subsequent cycle i+2. In such a case, the operations committed in
execution/bypass stage and memory stage in the current cycle i+2
must be re-executed (or re-sent) in the following cycle i+3. The
error recovery mechanism of the pipeline needs to ensure that: (1) no
new instructions are issued out from the issue queue until the
re-executions complete; (2) the incorrect execution results in the
previous cycle is flushed out from the pipeline; and (3) no errant
register or cache writing is committed.

OR Priority
Encoder

G
R

A
N

T0

G
R

A
N

T3
G

R
A

N
T2

G
R

A
N

T1

R
EQ

0

R
EQ

3
R

EQ
2

R
EQ

1

To requesting
instructions

ENABLE
ANYREQ ERROR_L

Additional AND gate

Fig. 8. Diagram of modified FU arbiter

Fig. 8 shows the modified FU arbiter for SAVS scheme. The
ready instructions in issue queue can be issued out only when the
ENABLE signal of the corresponding FU is raised to logic ONE
[13][14][17]. In Fig. 2(b), the ERROR_L is pulled down to logic
ZERO once an error in execution/bypass stage is detected in cycle
i+2. We piggyback on this ERROR_L signal to block the ENABLE
signal and prevent instructions from issuing out in cycle i+3. No
extra performance penalty is introduced.

FFFFFF

W
ak

eu
p/

S
el

ec
tio

n

Is
su

e
Q

ue
ue

R
eg

is
te

r R
ea

d

E
xe

cu
tio

n/
By

pa
ss

M
em

or
y

W
rit

eb
ac

k

M
od

ifi
ed

 F
F

Lo
ad

/S
to

re
 Q

ue
ue

Recover

ERROR_L

Write Write

Clock

Fig. 9. Clock-gating-based stalling scheme

During the re-execution of instructions, the output latches of
wakeup/selection stage and register read stage must be stalled at the
end of cycle i+2. The data stored in the latches of register file stage
and the correct data bypassed from execution/bypass stage are resent
into execution/bypass stage for re-execution in cycle i+3. In modern
high-performance microprocessors, the output of execution/bypass
stage is sent to a load/store queue before it is written into the
memory. Hence, the errant entry of load/store queue can easily
recover by using the modified FFs of execution/bypass stage (see
Section 2.1). A clock-gating-based stalling scheme is shown in Fig.
9. Compared to the modified in-order pipeline in [7], the additional
pipeline stage between execution/bypass stage and memory stage (to
prevent writing the errant data to the memory) is removed.

The whole pipeline is separated by issue queue into the front-end
and the back-end. The stages in the front-end – fetch, decode and
rename – are not stalled when the re-execution is committed. New
instructions can still be fetched and sent to issue queue as long as
issue queue is not full. Unlike the global clock-gating scheme
implemented in an in-order pipeline [7], in our design, clock-gating
is applied to the latches of only two back-end stages:
wakeup/selection and register read. These two circuit blocks are
located in physical proximity in the floorplan. The clock-gating
control signal, which is the ERROR_L signal generated by
timing-error correction circuit, can easily reach those latches by the
end of current cycle.

Pipeline writes the results to register file at writeback stage. Since
the information of date correctness has been available at the end of
memory stage, errant writing to register file is avoided.

For pipelined multi-cycle ALU, e.g., multiplier and floating point
ALU, the timing-error correction circuit is implemented on the
output of each stage. Moreover, similar clock-gating scheme can be
applied to every slice of multi-cycle ALU for the recovery from any
possible timing error in the slice of multi-cycle ALU.

3.2. Supply-Voltage Scaling Control

3.2.1. Supply-voltage control scheme

Due to bypass mechanism, even if only one ALU operation is
incorrect in the previous cycle, all the instructions being executed in
the present cycle need to be re-executed. Hence, the error-induced
performance and energy overheads are determined only by the error
rate of program (ERp). We also refer the error rate of an ALU as ERa.
If each ALU’s error rate is independent of others’, ERp
approximately equals ERa·IPC when ERa is small.

Because of the process variations and the time-varying
environmental factors, ERp changes from program to program or
even from portion to portion within the same program. Hence, VDD
must be automatically adjusted to achieve an acceptable chip yield
with acceptable performance and energy overheads.

In our design, we select two switching thresholds, ERhigh and
ERlow, and monitor the ERp of the running program. VDD does not
change when ERp is between ERhigh and ERlow. Otherwise, we
decrease VDD to reduce power consumption if ERp is lower than
ERlow, or increase VDD to avoid unacceptable performance/energy
overhead if ERp is higher than ERhigh.

However, our VDD adjustment mechanism never reduces VDD
under a critical voltage level VDD-min, and hence, guarantees a desired
chip yield. This constraint is very crucial when the chip yield is
considered. More details will be given in Section 4.2.

3.2.2. Limitations of the VDD scaling

VDD ramping is limited by two factors: the response time of
voltage regulator and the power supply noise tolerance. [7]
described a typical commercial voltage regulator that takes 10’s of
microseconds to adjust VDD by 100mV. Moreover, VDD shifting
results in the charging/discharging of the intrinsic capacitance of
circuits and consequently, current surge in power supply network.
VDD ramping must be slow enough so that the induced power supply
noise is below the allowed threshold. In our experiments, we
conservatively set VDD ramping rate to 5mV/µs.

4. Experimental results

4.1. Yield Analysis with Timing-Error Correction Mechanism

Our Monte-Carlo simulation on chip yield is conducted by
HSPICE with BPTM 70nm Technology. Without loss of generality,
only the variations of Vt and interconnect width are considered in
our experiments. The STDs of both inter-die and intra-die Vt
variations are set to 30mV [19]. The lumped RC model of
interconnect [20] is used while the STD of interconnect width for
each segment of lumped RC model is set to 10% of the nominal
width. The spatial correlation coefficient between the intra-die Vt
variations of any two transistors and the one between the widths of

any two interconnect segments are both set to 0.4. Execution/bypass
(E/B) stage is implemented with 32-bit CLA and the corresponding
bypass logic. Fig. 10 shows the yield of E/B stage under different
VDD’s. Clock period is selected to ensure that when E/B stage
operates at the normal VDD (1.0V), chip yield is 93.3% ((1.5),
where is the cumulative distribution function of a standard normal
distribution).

0%

20%

40%

60%

80%

100%

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

VDD (V)

Yield of Orig. E/B Stage Effective Yield of SAVS E/B Stage
Yield of SAVS E/B Stage

Fig. 10. Yield of ALU under different VDD’s.

To take account of the area overheads of timing-error correction
circuit, we introduce the effective yield, defined as:

origeff
chip chip

orig ovhd

A
Y Y

A A
=

+
 (1)

Here Aorig and Aovhd are the area of E/B stage and the area
overhead incurred by timing-error correction circuit, respectively.
Ychip is the yield of whole E/B stage and eff

chipY is the effective yield.
The effective yields of the E/B stage with SAVS under different
VDD’s are also shown in Fig. 10. Here the switching time of the
error-detection signal ∆T is set at half clock cycle (see Fig. 2(b)).
The whole pipeline’s yield is largely determined by the yield of E/B
stage, which is the critical stage for sub-0.18µm technology and
beyond [13][14]. Hence, the yield of whole chip can be improved
significantly by SAVS with the negligible area overhead (compared
to the whole chip area of pipeline). It should be noted that yield
considered in this paper is only due to SAVS. In reality, the exact
yield calculation for a system depends on multitude of factors and is
a lot more involved.

Increasing VDD can also enhance the chip yield, albeit with
significant power penalty. Although the highest possible effective
yield of modified E/B stage is limited by the area overhead of
timing-error correction circuit, when VDD is low (less than the actual
needed VDD, say, 1.0V), the effective yield of modified E/B stage is
much higher than the yield of non-modified ones. For an acceptable
yield, 93.3% (say), the modified E/B stage requires only
VDD=0.725V while the non-modified one requires VDD=1.0V. We
select the minimal VDD that ensure the desired chip yield in SAVS
technique as the critical VDD of SAVS (VDD-min).

4.2. Error Rate with Aggressively Scaled VDD

In our error rate simulation, if the latency of an operation at the
scaled VDD exceeds original clock cycle (considering flip-flop set up
time and hold time), it is counted as an error. Obviously, the actual
error rate of a circuit greatly depends on the process parameter and
environmental factor variations. Fig. 11 shows the error rates of a
CLA-based ALU with 8192 random input vectors at different VDD’s:
when the Vt’s of all transistors in the 32-bit CLA: 1) equal the
designed value (-designed). Here, the designed value is the Vt
adopted in design time; 2) +42.4mV deviation from the designed
value toward 0V (-slow); 3) -42.4mV deviation from the designed
value toward 0V (-fast). We note that the error rate of ALU actually
relies on the particular benchmark.

The error rate of bypass logic is different for various benchmarks.
Based on the simulation results in Fig. 6, we use Wattch [21] to
simulate the data bypass in an 8-way, out-of-order pipeline for 23
SPEC2000 benchmarks [22]. Results show that benchmark art has
the highest error rate of bypass logic.

Fig. 11 also shows the error rate of E/B stage (including both
ALUs and bypass logic): when the interconnect width of bypass

logic: 1) equals the designed value (-designed); 2) -10% deviation
from the designed value toward 0 (-slow); 3) +10% deviation from
the designed value toward 0 (-fast). Here, we assume that the longest
latencies of ALU and data bypass take half clock period at VDD=1.0V,
respectively [12][13][14]. The behaviors of ALU and bypass logic
are based on 8192 random input vectors for benchmark art.

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
VDD (V)

E
rr

or
 R

at
e

CLA-designed CLA-slow CLA-fast
Exec/bypass-designed Exec/bypass-slow Exec/bypass-fast

Desired Yield
is NOT achieved

Desired Yield
is achieved

Fig. 11. Error rate of CLA and execution/bypass stage

We point out that, when VDD is scaled under 0.725V, the error rate
may still be at a low level: when VDD is 0.7V, the corresponding error
rate of E/B stage is only 0.05%. The incurred performance and
power overheads is still small. However, the over scaled VDD, i.e.,
0.7V, cannot guarantee a desired chip yield (say, 93.3%): Some
errors cannot be detected and recovered by the error correction
circuitry (Section 2.1). Thus, when chip yield is considered, a pure
error-rate-based (or performance/energy penalty-oriented) dynamic
VDD adjustment mechanism [7] is not sufficient: to maintain the
desired chip yield, VDD should not be scaled under the critical VDD of
SAVS (0.725V in our simulation).

In our simulations in Section 4.3, we assume all Vt's of transistor
and the bypass interconnect width in microprocessors equal the
designed (nominal) value, The corresponding error rates of E/B
stage are shown as curve “Exec/bypass-designed” in Fig. 11. [7]
shows that the random input-based simulation overestimates the
error rate of an ALU in reality. Since we also adopted the error rate
of bypass logic in benchmark art to come up with the curve
“Exec/bypass-designed”, in our simulation, the performance penalty
and energy overheads due to the errant operations are actually
overestimated. Consequently, for the error-rate-driven VDD scaling,
power reduction is underestimated.

[7] also shows that complex logic structures, such as multipliers,
generally have lower error rate than adder-based ALU’s. In our
simulation, we assume that integer multiplier and floating-point
ALU have the same error rate as that of CLA at the same VDD. This
assumption does not underestimate the error rate or overestimate the
effectiveness of our methodology.

4.3. System-Level Simulations

4.3.1. Simulation environment

Table II
Baseline Processor Configuration

Processor
8-way issue, 128 RUU, 64 LSQ, 8 integer ALUs, 2
integer mul/div units, 4 FP ALUs, 4 FP mul/div units,
uses clock gating (DCG) and s/w prefetching

Branch
prediction

8K/8K/8K hybrid predictor; 32-entry RAS, 8192-entry
4-way BTB, 8 cycle misprediction penalty

Caches 64KB 2-way 2-cycle I/D L1, 2MB 8-way 12-cycle L2,
both LRU

MSHR IL1 - 32, DL1 – 32, L2 – 64
Memory Infinite capacity, 400 cycle latency
Memory

bus
32-byte wide, pipelined, split transaction, 4-cycle
occupancy

We used a modified version of Wattch to simulate an 8-way,
out-of-order SAVS processor, which is summarized in Table II,
under BPTM 70nm process. A deterministic clock gating (DCG)
technique [23] is involved in all simulations. The extra power
dissipation of the timing-error correction circuitry and the additional
energy overhead due to the re-execution of errant operation have
been included in our power saving and overhead estimation.

Alpha-SPEC2000 binaries that are pre-compiled with SPEC peak
setting are accepted in our simulation. We used ref inputs,
fast-forwarded 2 billion instructions, and simulated 500 million
instructions.

In our simulation, ERhigh and ERlow are set to 0.1% and 0.05%,
respectively. VDD ramping rate is set to 5mV/µs. Under the
assumption of the 2GHz clock frequency, it takes 2000 cycles to
ramp the VDD up/down by 5mV.

4.3.2. Effectiveness of SAVS

Fig. 12 depicts the simulation results of SAVS pipeline on 23
SPEC2000 benchmarks. The gray bar (with Y-axis on the left)
represents the total microprocessor power savings ratio (including
the cache power), with respect to the 8-issue baseline processor
under VDD=1.0V. The line (with Y-axis on the right) shows the
percentage of the execution time increase of SAVS pipeline, with
respect to the 8-issue baseline pipeline under VDD=1.0V. The X-axis
shows benchmarks.

0%

3%

6%

9%

12%

15%

gz
ip vp
r

gc
c

m
cf

cr
af

ty
pa

rs
er

eo
n

pe
rlb

m
vo

rte
x

bz
ip

2
tw

ol
f

w
up

w
i

sw
im

m
ig

ird
ap

pl
u

m
es

a
ga

lg
el ar
t

eq
ua

ke
am

m
p

lu
ca

s
si

xt
ra

c
ap

si

C
P

U
 P

ow
er

 S
av

in
g

0.00%

0.01%

0.02%

0.03%

0.04%

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Power Saving Performance Overhead

Fig. 12. Power savings and performance overhead of SAVS

The simulation results show that SAVS effectively reduces the
power consumption of processor with negligible performance
penalty while maintaining the same chip yield: on average, SAVS
improves 8.66% of processor power consumption by paying only
0.014% performance penalty (the maximum performance overhead
is within 0.032%). The average energy reduction is 8.64% while the
chip yield is maintained at 93.3%.

The benchmarks with high ILP achieve higher power savings. For
example wupwise, whose IPC is 4.10, achieves 12.1% reduction of
processor power dissipation. The power savings for the benchmarks
with low ILP, such as ammp, are insignificant. It can be explained as
following: under clock gating scheme, for the program with higher
ILP, ALUs are used more frequently and consume more power.
Hence, more power saving can be achieved when SAVS is applied.

We point out that the application of SAVS in the critical stage of
pipeline decreases the critical VDD for whole system. Hence, the VDD
applied to other non-SAVS stages can be reduced to lower level that
is determined by the new critical stage(s) of pipeline (for example,
0.85V in our simulation), without incurring additional performance,
power and yield penalties. This fact provides an new methodology
to design a high performance, power efficient, pipelined system
under scaled technology.

5. Conclusion

In this paper, we proposed an error-tolerant self-adaptive variable
supply-voltage scheme (SAVS) for multi-issue out-of-order
superscalar microprocessors. Besides maintaining the chip yield,
SAVS can effectively reduce power dissipation of high performance
microprocessor with negligible performance degradation. SAVS is
suitable for scaled technologies where process parameter
fluctuations and environment factor variations are significant. SAVS
also provides an alterative choice to simultaneously achieve the high
throughput and low power in pipelined systems under scaled
technologies.

Reference

[1] H. Li, et. al., VSV: L2-Miss-Driven Variable Supply-Voltage
Scaling for Low Power, 36th IEEE/ACM Int’l Symp. on Microarch.,
pp. 19-28, Dec. 2003.

[2] S. Mukhopadhyay, et. al., Gate Leakage Reduction for Scaled
Devices using Transistor Stacking, IEEE Trans. on Very Large Integ.
(VLSI) Sys., Vol. 11-4, pp. 716-730, Aug. 2003.
[3] T. D. Burd, et. al., A dynamic Voltage Scaled Microprocessor
System, IEEE Jour. of Solid State Ckts., Vol. 35-11, pp. 1571-1580,
Nov. 2000.
[4] J. Pouwelse, et al., Dynamic Voltage Scaling on a Low-power
Microprocessor, Mobile Comp. Conf, pp. 251-259, Jul. 2001.
[5] R. Ramachandran, et al., Carry Logic, Wiley Encyclopedia of
Electr. and Electron. Engineering, Edited by Joh G. Webster, 1999.
[6] T. Liu and S.-L. Lu, Performance Improvement with
Circuit-level Speculation, 33rd IEEE/ACM Int’l Symp. on
Microarch., pp. 348-355, Dec. 2000.
[7] D. Ernst, et. al., Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation, 36th IEEE/ACM Int’l Symp. on
Microarch., pp. 7-18, Dec. 2003.
[8] D. Lammers, TI Moves Ahead with 65-nm Chips by Next Year,
EE Times, Mar. 22, 2004.
[9] L. Kim and R. W. Dutton, Metastability of CMOS
Latch/Flip-Flop, IEEE Jour. of Solid State Ckts., Vol. 25-4, pp.
942-951, Aug. 1990.
[10] BPTM, http://www-device.eecs.berkeley.edu/~ptm
[11] K.Usami, et al., Design Methodology of Ultra Low-power
MPEG4 Codec Core Exploiting Voltage Scaling Techniques, 35th
Des. Auto. Conf., pp. 483-488, June, 1998.
[12] Eric S. Fetzer, et. al., A Fully Bypassed Six-Issue Integer
Datapath and Register File on the Itanium-2 Microprocessor, IEEE
Journal of Solid State Circuits, Vol. 37-11, pp. 1433-1440, Nov.
2002.
[13] S. Palacharla, et al., Quantifying the Complexity of
Superscalar Processors. Technical report CS-TR-96-1038, Dept. of
CS., Univ. of Wisconsin, 1996.
[14] Z. Chishti, and T. N. Vijaykumar, Wire Delay Is Not a Problem
for SMT (in the near future), 31st Annual Int’l Symp. on Comp.
Arch., pp. 40-51, Jun. 2004.
[15] A. Agarwal, et al., A Single-Vt Low-Leakage Gated-Ground
Cache for Deep Submicron, IEEE Jour. of Solid State Ckts., Vol.38-2,
pp. 319-328, Feb. 2003.
[16] S. Virtanen and J. Lilius, The TACO Protocol Processor
Simulation Environment, 9th Int’l. Symp. on Hardware/Software
Codesign, pp. 201–206, Apr. 2001.
[17] Y. Chen, et al., Integrated Architectural/Physical Planning
Approach for Minimization of Current Surge in High Performance
Clock-gated Microprocessors, Int’l Symp. on Low Power Electr. Des.
2003, pp. 229-234, Aug. 2003.
[18] T. Karnik, Probabilistic and Variation-Tolerant Design: Key to
Continued Moore's Law Scaling, Invited talk in ACM/IEEE Int’l
TAU Workshop on Timing Issues, Feb. 2004.
[19] A. Bhavnagarwala, et. al., The impact of Intrinsic Device
Fluctuations on CMOS SRAM Cell Stability, IEEE Jour. of Solid
State Ckts., Vol. 36, No. 4, pp. 658-665, Apr. 2001.
[20] Y. Chen, et. al., Model Reduction in the Time-domain Using
Laguerre Polynomials and Krylov Methods, 2002 Des. Auto. and
Test in Euro. Conf. and Exhi., pp. 931-935, Mar. 2002.
[21] D. Brooks, et. al., Wattch: A Framework for
Architectural-level Power Analysis and Optimizations, 27th Int’l
Symp. on Comp. Arch., pp. 83-94, June 2000.
[22] http://www.eecs.umich.edu/~chriswea/benchmarks/spec2000.
html
[23] H. Li, et. al., Deterministic Clock Gating for Microprocessor
Power Reduction, 9th Int’l Symp. on High-Perf. Comp. Arch., pp.
113-122, Feb. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

