Boolean Algebra and Logic Design

e Boolean Algebra

e Logic Gates

e Digital Design

e Implementation Technology

+ASICs
*Gate Arrays



Basic Algebraic Properties

e A setis a collection of objects with a common property
¢ If Sis a set and x is a member of the set S, thenx € S

= 4=1{1,2, 3, 4} denotes the set A, whose elements are 1, 2, 3, 4

e A binary operator on a set S is a rule that assigns to each
pair of elements in S another element thatis in §

e Axioms are assumption that are valid without proof
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+ A binary operator e defined on a set S is associative iff for all
x,zeS

(xep)oz=xe(ye2)

e Identity Element

+ A set S has an identity element e for every x € S
eex=xee=x
x+0=0+x=x
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+ A set S has an inverse iff for every x € S , there exists an element
y € S such that

xey=e

e Distributivity

+ [f e and o are two binary operators on a set 5, e is said to be
distributive over o if, forallx, y, z € S

xe(yoz)=(xey)o(xez)
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Axiomatic Definition of Boolean Algebra

Boolean a eerrrl Is a set of elements B with two binary operators, + and -, which
satisfies the following six axioms:
e Axiom 1 (Closure Property): (a) B is closed with respect to the operator +; (b) B is also
closed with respect to the operator -

e Axiom 2 (Identity Element): (a) B has an identity element with respect to +, designated
by 0; (b) B also has an identity element with respect - , designated by 1

o Axiom 3 (Commutativity Property): (a) B is commutative with respect to +; (b) B is also
commutative with respect to -

e Axiom 4 (Distributivity Property): (a) The operator - is distributive over +; (b) similarly,
the operator + is distributive over -

o Axiom 5 (Complement Element): For every x € B, there exists an element x' € B such
that(a)x +tx'=land (b)x-x'=0

This second element x', is called the complement of x

e Axiom 6 (Lower Cardinality Bound): There are at least two elements x, y € B such that
X#Yy
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Axiomatic Definition of Boolean Algebra

Differ

(‘D

nces between Boolean algeora and ordinary algeora

¢ In ordinary algebra, + is not distributive -

e Boolean algebra does not have inverses with respect to + and - ;
therefore, there are no subtraction or division operations in Boolean
algebra

e Complements are available in Boolean algebra, but not in ordinary
algebra

e Boolean algebra applies to a finite set of elements, whereas ordinary
algebra would apply to the infinite sets of real numbers

e The definition above for Boolean algebra does not include
associativity, since it can be derived from the other axioms
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Two-=valued Boolean Algebra

e Set B has two elements: 0O and 1

e Algebra has two operators: AND and OR

y y *
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1
AND Operator OR Operator
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Two-=valued Boolean Algebra

ra

Two-valued Boolean algebra saitisiies Huntington axioms

e Axiom 1 (Closure Property): Closure is evident in the AND/OR
tables, since the result of each operation is an element of B.

e Axiom 2 (Identity Element): The identity elements in this algebra are

0 for the operator + and 1 for the operator . From the AND/OR
tables, we see that:

*0+0=0,and0+1=1+0=1
¢l-1=1,and1-0=0-1=0

e Axiom 3 (Commutativity Property): The commutativity laws follow
from the symmetry of the operator tables.
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Two-=valued Boolean Algebra

e Axiom 4 (Distributivity): The distributivity of this algebra can be
demonstrated by checking both sides of the equation.

x-(ytz)=@-y)+&x-2) x+(@-z2)=@+ylx+2)
0O 0 0 0 0 0 0 0 0O 0 0]0 0 0 0 0
0 0 1 0 0 0 0 0 0 1]0 0 0 0
0 1 0 1 0 0 0 0 0O 1 0]0 0 1 0 0
0 1 1 1 0 0 0 0 0 1 1]1 1 1 1 1
1 0 0 0 0 0 0 0 1 0 00 1 1 1 1
1 0 1| 1 1 0 1 1 1 0 1[0 1 1 1 1
1 1 0 1 1 1 0 1 1 1 0(0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 11 1 1 1 1
Proof of distributivity of - Proof of distributivity of +
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Two-=valued Boolean Algebra

e Axiom 5 (Complement): 0 and 1 are complements of each other, since
0+0'=0+1=1land 1+ 1'=1+0=1; furthermore,
0-0=0-1=0and1-1'"=1-0=0.

0 1
1 0
NOT Operator

e Axiom 6 (Cardinality): The cardinality axiom is satisfied, since this
two-valued Boolean algebra has two distinct elements, 1 and 0, and
1 #0.
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* AND
* OR +

Example: Evaluate expression (x +xy)' forx=1 and y = 0:
(1+1:0)=(1+0)=(1)=
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Example:

If

X+1=1
then l l
X - 0=0

by the duality principle
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Theorem 1
(ldempotency)

Theorem 2

Theorem 3
(Absorption)

Theorem 4

(Involution)
Theorem 5 (a)
(Associativity) (b)
Theorem 6 (a)
(De Morgan’s Law) (b)

Basic Theorems of Boolean Algebra
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e Duality
Example:

OV 10 Y =\/ 0

(x +x) (x +x") by complement (Ax. 5a)

x + xx’ by distributivity (Ax. 4b)
x+0 by complement (Ax. 5b)
X by identity (Ax. 2a)

Theorem 1(b) ldempotency: x - x = x.

Proof:
xX+x =
XX =
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X by Theorem 1(a)
X by Duality principle
14
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Theorem Proofs in Boolean Algebra

e Checking theorems for every combinations of variable value
Example:

Theorem 6(a) DeMorgan’'s Law: (x + y)' =x"y’

0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

Proof of Demorgan’s First Theorem
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ifx=0and= landz=1;
otherwise, F, = 0.

éNote 1: When we evaluate Boolean expressions, we must follow a
:specific order of operations, namely, (1) parentheses, (2) NOT, (3) AND,
(4) OR.

éNote 2: A primed or unprimed variable is usually called a literal.
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Boolean Functions

e Truth tables which list the functional value for all
combinations of variable values.

Example:

Fo=xy+xyz+xlyz

Row Variable | Function
Numbers | Values Values

X y z F,
0 0 0 O 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 1
4 1 0 0 0
S 1 0 1 1
6 1 1 0 1
7 1 1 1 1

17
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Complement of a Function

e Complement of function F'is function /', where /' can be
obtained by:
sInterchanging 0 and 1 in the truth tal

Example:

J

o
ED

Fir=xy+xyz+xyz

Row Variable | Function

Numbers | Values Values
X )y F, Fy'

— = O = O = O Y

<N & 0N A W= S
e e e e — )

e — I T — R —
e e e = — R — I —)
[ — . T — R

-
oo
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Example: F,' = (xy +xpz +x'yz)’ by definition of &
= (xp)' (xy'z)" (x'yz)’ by DeMorgan's Th.
= xX'+y)x'+y+z)x+y +2) by DeMorgan's Th.

¢ Duality Principle

Example: F, = (x-y)+t@x-y -2+ - y - 2)

VIVY VYV VY Y VvV Y
F'=@x=+y)-(x'+y+z)- - (x +y' +2
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Graphic Representation of
Bpoyleazn Functions :

S0 S0

<
J

AND-OR Expression F OR-AND Expression F
Fsize = 5 ANDs Fsize = 2 ANDs

2 ORs 5 ORs

2 NOTs 4 NOTs

Two different expressions have different sizes
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xy+xy'z+xyz = xy+xyz+xyz+xyz by absorption
= xy+x(y+y)z+x'yz by distributivity
= xy txlz +xlyz by complement
= xy txz+txlyz by identity

Xy +xyz +xz + x'yz by absorption
xy +xz+(x+x")yz by distributivity
xy +xz+ lyz by complement
= xy+xz+yz by identity

xy+xy'z+x'yz requires 5 ANDs 2 ORs 2 NOTs

Xy +xz+yz requires 3 ANDs 2 ORs

Difference: 2 ANDs and
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X
0
0
0
0
1
1
1
1

L e — L - <

<

—O = O = O = O

Minterms

Designation

Minterms for Three Binary Variables

22
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Sum-of-Minterms

e Any Boolean function can be expressed as a sum (OR) of
its |-minterms:
F(list of variables) = 2(list of 1-minterm indices)
Example:

Row Variable | Function
Numbers | Values Values

x y z| F

0 0 0 0f 0 1 Fi(x,»z) = Z(3,5,6,7)
1 0 0 11| o 1 = m,tms+ mg+m,
5 o 1 o I . = x'yz +xyz txyz' +xyz
3 0 1 110 F'(xyz) = 20,1,2,4
4 100 0 1 = m, + m, + ., + my
5 1 0 1 1 0 = xy2'+x'y'z +xyz' + xpZ'
6 1 1 0 1 0
7 1 1 1 1 0

Equation Table

Fo=xy+xyz+xlyz
F'=x"+y)x"+y +z)(x +y"+ 2
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F =

x+yz
xy + )z +z') +(x +x")yz
xyz +xy'z + xyz' + xy'z' + xyz + x'yz

After removing duplicates and rearranging the minterms in
ascending order:

F = x'yz +xp'2' + xp'z + xpz’ + xyz
m, +my +ms +mg +m,

2(3,4,5,6,7)
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x y z| F
0O 0 0of O
0O 0 1| O
0O 1 0f O
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

F=m;+m,+ms+mg+m,
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z | Maxterms Designation

Xy
0 0
0 0
01
01
10
10
11
11

—_ S e O e O e O

Maxterms for Three Binary Variables

Copyright © 2004-2005 by Daniel D. Gajski 26 Slides by Philip Pham, University of California, Irvine



Product-of-Maxterms

e Any Boolean function can be expressed as a product (AND)

of its 0O-maxterms:

F(list of variables) = II(list of 0-maxterm indices)

Example:

Row Variable | Function

Numbers | Values Values

x y z| F F/
0 0O 0 O 0 1
1 0O 0 1 0 1
2 0O 1 0 0 1
3 0O 1 1 1 0
4 1 0 0 0 1
5 1 0 1 1 0
6 1 1 0 1 0
7 1 1 1 1 0
Equation Table

Fo=xy+xyz+xlyz
F'=x"+y)x"+y +z)(x +y"+ 2
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o, 1,2, 4
M, M, M, M,
x+ty+z)x+y+z)x+y +2)x"+y" +2)

13, 5,6,7)
M, M, M, M,

9

(Y +2YE +y + )Y+ D)+ Y+ 2)

Product-of-maxterms can also be obtained by
complementing the sum-of-minterms

27

(£)

(x'yz + xp'z + xyz' + xyz)’
(x +y'+2)(x"+y +2)x"+y" +2)(x"+y'+ 2)
M, M. MM,

(x’j/Z +xy'z +x'yz' + xpz')’
(xty+z)x+y+z)x+y +2)x"+y'+2)
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Expand
x+ty
x'+z
yitz

"

Combine
F
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) | V J J z )V
(x+y)x"+2)(p" + 2)
missing missing missing
X Yi ¢
xty'tzz' = (x+y' tz)x+y +2)
'tz = @' tyto'ty' +z)
Ytztxx! = (xty' +tz)x'+y' +2)

(x+y'+z)x+y' +2)"+y +2)x" +y' +2)

28
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I

b—tOr—tOOOb—tb—kﬁj

T — I — =)
—_ e O O e m @ o B
_ O e O = o = oY

F(x,y,z) = Z(0,1,5,7)
F(x,y,z) = I1(2,3,4,6)
29
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e Conversion between canonical forms is achieved by:

* Exchanging Z and I1
+ Listing all the missing indices
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e Sum-of-products is an OR expression with product terms
that may have less literals than minterms
Example:

F = xy+x'yz +xy'z
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Standard Forms

e Product-of-sums is an AND expression with sum terms that
may have less literals than maxterms
Example:
F=x+y)x+y+z)x'+y+z)
e Standard forms have fewer operators (literals) than
canonical forms

e Standard forms can be derived from canonical forms by
combining terms that differ in one variable (this is, terms at
distance 1)

Example:

r, = xyz txyz' +xyz +xyz
= xyz +xyz' +xyz + xyz + xyz + x'yz
= xp(z+2z')+x(y +y)z + (x +x")yz
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e They are obtained by factoring variables.

Example:
xy+xyz+xy'w = x(y +yz+y'w)
x(y +y'z +w))
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Algebraic Expression

Expand into truth table

Truth table

Generate canonical form |

l @onical f@

Find functional subcubes

l @mdard fo@

| Factor sub-expressions

@on-standard forD
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Binary Logic Operations
e There are 22" Boolean functions for n binary variables

e Therefore, 16 Boolean functions for n = 2. They are

e There are two functions that
generate constants: Zero and

Operator |, Il=unc:|onal | Algebraic c . One. For every combination
Symbol AU elrany = Expression ommen of variable values, the Zero
00 | 01| 10| 11 function will return to 0,

Zero 0 0 0 O0|F= Binary constant 0 whereas the One function
AND Xy 0 0 0 1 |F =xy xandy will return to 1.
Inhibition x/y 0 0 1 0F=x x but not y e There are four functions of
Transfer 0 0 1 1 /[F=x x one variable, which indicate
Inhibition y/x 0 1 0 O0|F=xY% v but not x Complement and Transfer
Transfer 0 1 0 1 |[F=y y operations. Specifically, the
XOR x@y 0 1 1 0|F,=xy'+x'y xorybutnotboth Complement function will
OR X+ 0 1 1 1 |F=x+y xory produce the_complerpent of
NOR xly |1 0 0 0|F=@G+»" NotOR one ;f the b'frl:?‘ré’ti‘; an';al'g'es'
Equivalence © 1 0 0 1 |F,=xy+txy" xequals ransfer y
cq | . o ,y Lo 1 o F9 5 y, Y . - Y contrast will reproduce one

omplemen Y 10 =Y oty of the binary variables at the
Implication xXCy 1 0 1 1 |F,=x+) If y, then x output.
Complement o RN > = , Notx e There are ten functions that
Implication XDy 1 1 0 1 |F;=x"ty If x, then y define eight specific binary
NAND xTy 11 1 0[F,=) Not-AND operations: AND, Inhibition,
One 1 1 1 1 | Fs=1 Binary constant 1 XOR, OR, NOR, Equivalence,

Implication, and NAND.
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Digital Logic Gates

Copyright © 2004-2005 by Daniel D. Gajski

Inverter

Driver

AND

OR

NAND

NOR

XOR

XNOR

Functional | Number of
Expression | transistors
x—[>°—F F=x' 2
> | F=x 4
;::)—F F=xy 6
’;D—F F=x+y 6
j::}—p F = (xp) 4
) O | F=@+y) 4
) D |F=x®y 14
;D‘” F=x0y 12
Basic Logic Library

36

(CMOS Technology Implementations)

Delay

in ns

24

24

1.4

1.4

4.2

3.2
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Multiple-lnput Gates

Graphic Functional Number of | Delay

Expression transistors | in ns
3—input AND ’QED—F F=xyz 8 2.8
4-input AND 3 ) | F=xyzw 10 3.2
3—input OR i@—F F=x+y+z 8 2.8
4—input OR %DF F=x+ty+tz+w 10 3.2
3-inputNAND 3 r | F = (xp2) 6 1.8
4—input NAND §§:}—F F = (xyzw)' 8 P44
3-inputNOR i35 Der |F=(x+y +2) 6 1.8
4—input NOR %DF F=x+y+tz+w) 8 )44

Multiple-Input Standard Logic Gates
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Multiple-Operator (Complex) Gates

Name Graphic Functional Number of | Delay
Symbol Expression transistors | in ns

2—wide, ]
2—input ;:%DF F=(wx +yz) 8 2.0
AOQOI o
3—wide, v
2—input ] FI F=(uv+wx +yz) 12 2.4
AOI -
2—wide, =
3—input ;;%DF F = (uvw + xyz)' 12 2.2
AOQOI <
2—wide, "
2—input ;‘% F | F=((w+x)(y+2) 8 2.0
OAI ¢
3-wide, DY
2-input " R | F=(u+v)(w+x)+2) 12 2.2
OAI =
2—wide, u
3—input ;% Fr|l F=((u+tv+wx+y+z) 12 2.4
OAI :

Multiple-Operator Standard Logic Gates
38
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Logic Schematic (46 Transistors)

Input/Output | Delay

Path (ns)
c;itoc; 4.8 ns
c;tos; 4.2 ns
X,y toc; ., 9.0 ns
X,y tos; 8.4 ns

Full-adder delays
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Civ1

S.

—_ e = = O @

—_— e O D = = O @
S D e D =D

e e

_—e O e O e = O

[

Truth table

Xy, +xye’txyle txyc
(et xp, e+ 0y xp)e;
(x; ®y)e;' + (x; © y)e,

(x; ® )"+ (x; ® ),
(x;®») D¢
xpeHxyetxye +xpyl
xp{c;'+ ¢) +clxy, +xp,)
Xy, teflx; ®y)

Full-adder equation
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S.

e o S o S S S )
S D e D =D
e e

R
_—e O e O e = O

[

Truth table

i Ci+1

Logic Schematic (36 Transistors)

Oy = xy+xYy/
(Cep)' )"

Input/Output | Delay = ()" & +p)
Path (ns)

s, = (xi @ yi)c,.' + (xi Oy i)ci
c;toc; 2.8 ns = (xi © y,-) 'Ci' + (xi © yi)C,-
c;tos, 3.8 ns = (x,0)09c¢
X,y toc; ., 52 ns Coy = Xytelxty)

X, y; tos; 7.6 ns = ((x,3) (clx;+y)))
Full-adder delays Full-adder equation
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Ci+1 Si
Logic Schematic (56 Transistors)

Input/Output | Delay
Path (ns)
c;itoc; 3.2 ns
c;tos; 5.0 ns
X,y toc; ., 4.2 ns
X,y tos; 5.0 ns

Full-adder delays
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Cit1

i

j +
0O 0 010 O
0O 0 110 1
0O 1 00 1
0 1 1|11 0
1 0 00 1
1 0 1711 0
1 1 0j1 O
1 1 111 1
Truth table

xyle,txlye'txyle'txyg
(Oe9'c)' (xlvie)) xep'e)) (xye))’
xy;tex teoy,

() (ex)' (cy))'

Full-adder equation
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Ci+1 Si
Logic Schematic (46 Transistors)

Input/Output | Delay
Path (ns)
c;itoc; 3.4 ns
c;tos; 4.4 ns
X,y toc; ., 3.4 ns
X,y tos; 4.4 ns

Full-adder delays
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Ci+1

i

j +
0O 0 010 O
0O 0 110 1
0O 1 00 1
0 1 1|11 0
1 0 00 1
1 0 1711 0
1 1 0j1 O
1 1 111 1
Truth table

x.y'c, txyc'txylc' txye,
(5 y/etxlye) xp/lc' +xyc))

xy;texteoy

()" (ex)' (cp))'

(C;"+ ¥+ x) e, "+ )
(xllyl' + ci'xi' + ci'yi')'

Full-adder equation
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e Large-scale integration (LSI)
+ 100 - 1000 gates/package (controllers, datapaths, bit slices)

e Very-large-scale integration (VLSI)

+ 1000+ gates/package (systems on a chip)
» Custom designs (Standard cells)
= Gate arrays (GAs)
» Field-programmable (FPGAs)
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e Standard cells
+ Same height, different widths
* Routing in channels and over the cells
+ Two or more metal layers

Standard Cell Approach
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B » B '

AViG "yzz

Full-Adder Implementation with Standard Cells
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a

1=
=
o

Full-Adder Implementation in a Gate Array

Vi 1
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4-
variable
Boolean
function

4-
variable
Boolean
function Interconnect Point (IP)

Array Structure Programmable Logic Blocks (PLB)
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; G

Unused X 00 0@y

X0 0 110

X 01010

X 0111

X1 0 00

X1 0 11

X11 011

X X111]|1
Vi
Ci

N - )
— e OO = = D
- )

Copyright © 2004-2005 by Daniel D. Gajski 48 Slides by Philip Pham, University of California, Irvine



= Standard forms
= Non-standard forms

e Algebraic Manipulation of Boolean Expressions
e Logic Gates

¢ Simple gates

¢ Multiple-input gates

¢ Complex gates
e Implementation Technology

+ SSI (Small-scale integration)

+ MSI (Medium-scale integration)

+ LSl (Large-scale integration)

+ VLSI (Very-large-scale integration)
= Custom designs
= Semi-custom designs
= Field-programmable
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