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Introduction

« System-level tools are available in three different
forms:
» System-level design
« Software design
e Hardware design
e Some academic tools demonstrate complete
process: MoC-to-RTL including custom SW and HW
components
* Automation of system-level tasks shows large gains
as demonstrated on examples of JPEG and MP3
* Results also demonstrate potentially large impact on
embedded systems technology
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Overview

» Electronic System-Level (ESL) design tools
< Many that provide single hardware unit only (see HW design tools)
» True system-level design across hardware and software boundaries

» System-level design flow

* Frontend
— Application & architecture mapping
— Design space exploration (DSE)
» System models (TLMs) for virtual prototyping

» Backend
— Hardware and software synthesis
— Commercial or proprietary (see SW & HW design tools)
» Physical system prototype or implementation

» Commercial tools for modeling and simulation
» Academic tools for synthesis and verification
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Academic Tools

Metropolis

» Platform-based design (PBD)
SystemCoDesigner

* Dynamic dataflow MoC

« Automated design space exploration

Daedalus
« KPN MoC for streaming, multi-media applications
« |P-based MPSoC assembly
PeaCE
* “Ptolemy extension as a Codesign Environment”
* Recent extensions for software development (HOPES)
 SCE
* SpecC-based “System-on-Chip Environment”
* Successive, stepwise Specify-Explore-Refine methodology
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Academic Tools: Metropolis

Platform-based

« Pre-defined target
architecture

» Reuse
Meet-in-the-middle
« Platform mapping and

Function
Specification

configuration

Point Tools:
Synthesis/Refinement

Design
constraints

Metropolis Infrastructure

= Design methodology
= Metamodel
= Simulator

Architecture
Specification

Point Tools:
Analysis/Verification

» General, proprietary meta-modeling language

< Capture function, architecture and mapping

Modeling framework
* Built-in parsing and simulation
» Back-end point tool integration
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Academic Tools: SystemCoDesigner

* SysteMoC input model

« Dynamic dataflow MoC (actors + FSMDs) in SystemC
« Fully automatic, multi-objective design space exploration
« Genetic algorithms to obtain Pareto-optimal design solutions

Forte Cynthesizer

0
[ Model SystemC
Model
Select CPUs, buses,
sw accelerators, Exploration
etc. from the Model
component library

Specify I Design Space

mapping Exploration

Select Optimized

implementation l @lUtIONS
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Rapid
prototyping
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Academic Tools: Daedalus

* KPN input model

» System assembly and simulation (Sequential

Explore, modify, select instances M

A
High-level —,I System-level design space exploration | AU
Models I I Parallelization
|
""""" ¥ ' i
Library of | : common XML Platform ’ Mapping Parallel application |
IPcores | : Intefface [ specification specification specification (KPN) )
RTL-level .
Models System-level synthesis
~ N
» XML-based open D
infrastructure Multl-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)
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Academic Tools: PeaCE

rchitecture
ecification
« Ptolemy-based ! i :
O emy- ase | Simulation Graph Analysis |<—| Profiling |

¢ Heterogeneous SDF+FSM
application MoC

HW/SW Mapping
& Partitioning

Algorithm Al
Specification Sp
| :

» Stepwise flow
< Application partitioning
+ Communication architecture
exploration

» Code and interface generation

>
Block
Library

Code Generation
VHDL Code Y

Communication
Exploration

« Software extensions: HOPES
« Parallel programming API
« Multi-processor code generation

| Coverification & Prototyping |
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Academic Tools: SCE

+ SpecC based
e PSM input MoC

« Specify-Explore-Refine
« Interactive, successive, Design it Desih PE/CEIbUS
StepWise refinement Decisions & Refinement Models

» Frontend ﬂl System

« Compile specification onto models

user-defined MPSoC arch.
» Automatically generate TLM - PR Software -

RTL
« Backend DB Synthesis Synthesis

« Hardware/software synthesis !!_
¢ RTL + ISS implementation HW & lcpu, o]
Implementatlon Model

» Commercial derivative: SER (JAXA)
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Commercial Tools (1)

» CoFluent
» SystemC-based modeling and simulation
— Networks of timed processes
— Communication through queues, events, variables
» Early, high-level interactive design space exploration
— Graphical application, architecture and mapping capture
— Fast TLM simulation with estimated timing

* Space Codesign
» Graphical application, architecture and mapping capture (Eclipse)
— Process network with message-passing or shared-memory channels
e SystemC TLM simulation
— Annotated, host-compiled or cycle-accurate ISS models
* FPGA-based prototyping
— Cross-compilation and third-party hardware synthesis (Forte/Catapult)
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Commercial Tools (2)

» CoWare
» Virtual system platforms
— SystemC TLM capture, modeling and simulation
— Extensive library of IP, processor and bus models
— Application-specific processor ISS models (LISAtek acquisition)
» Proprietary SystemC simulation framework
— Optimized SystemC kernel
— Graphical debugging, visualization and analysis capabilities

* Soc Designer
e Proprietary, C++ based modeling and simulation
— Fast, statically scheduled cycle-accurate simulation
— Special cycle-callable component models
* VaST and Virtutech

» Proprietary SW-centric virtual platform modeling and simulation
— Fast, cycle-approximate binary translated or compiled ISS + peripherals
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Outlook

» State of the art
» Commercial focus still only on modeling and simulation
« Academic approaches towards true system-level design
< Emerging commercial solutions for backend HW/SW design

e Future complete, automated system design flows

« Further research and development of system-level synthesis and
design space exploration solutions

« Continuing technology transfer from academia into commercial
settings and startups

» Productivity gains
» Closing gap between application and implementation
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Embedded Design Practice

 Embedded Software Design Tools
¢ Overview
¢ Academic Tools
« Commercial Tools
 Outlook
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Overview

» Tight connection to underlying HW
— Processor, custom hardware, physical process integration

« Requires:
— Processor-specific code generation
» e.g. DSP v.s. general purpose processor
Processor-specific compiler (cross compiler)

Processor-specific simulator
» Virtual platform
» Instruction Set Simulator (ISS)

Non-intrusive analysis/tracing
Real-time analysis

» Specialized point solutions
— Processor vendor: e.g. ARM RealView Development Suite
— FPGA Vendor: e.g. Xilinx EDK
— OS Vendor: WindRiver WorkBench
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Academic Tools (1)

« POLIS
* HW/SW co-design environment
 Input: Esterel or graphical FSM notation

* Centered around Codesign Finite State Machine (CFSM)
— Locally synchronous, globally asynchronous
» Formalism for verification, co-simulation, partitioning and synthesis

« METROPOLIS
« Platform based design
e Meta-model; supports many MoCs
» Separate function, architecture and MoC into separate inputs
» Co-simulation heterogeneous PEs with different MoCs
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Academic Tools (2)

» DESCARTES

 Targets real-time signal processing systems
* Input:
— Asynchronous Data Flow (ADF), and
— extension of Synchronous Data Flow (SDF)
« Computation node scheduling observing
— Latency
— Throughput
— Memory consumption
» C code generation of each computation node
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Academic Tools (3)

» Software generation from SystemC models
» Herrara et al.
— Single source solution
» Same C++ code on SystemC and on target
— Simplifies debugging / maintenance
— Overload SystemC primitives for target implementation
— Subset of SystemC
* PROTOS (Krause et al.)
— Input
» SystemC threads communicating though point-to-point channels
— Parses SystemC, generates RTOS targeted code for selected RTOS

» Replaces SystemC calls (comm., threads) with RTOS equivalent calls
» Attempts to recreate SystemC events

— Captures RTOS characteristics in XML
» API call signatures, thread fork join, static / dynamic
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Academic Tools (4)

» Eclipse
» Multi-language development platform
— IDE: Compiler, debugger, source code browser
— Extensible with well defined plug-in system
» Free, open source; managed by Eclipse Foundation
« Main focus JAVA, but supports many other languages
» Very popular framework for custom (also embedded) extensions in
academic and commercial projects, e.g.

— Tensilica Xtnesa Xplorer IDE

» Custom processor generation, cross compilation and debugging
— Greensys AUTOSAR Builder

» Develop AUTOSAR (automotive) software components

» Capture system and application level description aiding integration
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Commercial Tools (1)

* MathWorks: Real-Time Workshop
» Simulink
— Model-based design tool

— Block diagram capturing of system functionality
» Compose of predefined blocks (e.g. filters, control functions)

— Hierarchical composition
— Discrete time and continues time models
» Real-Time Workshop generates target code based on Simulink model
— ANSI C/C++
— Stand alone / RTOS based

e dSpace Cooperation: TargetLink
* Integrates into Matlab/Simulink
» Automotive focus
— Supports OSEK/VDX compliant OS
— Target code for Electronic Control Units (ECU)
— Extensions to support AUTOSAR

Embedded System Design . ; :
© 2009: Gaski, Abdiyeerstlauer, Schiger D Chapter 8: Embedded Design Practice 7/8/2009 21

Commercial Tools (2)

» Esterel Technologies:
Software Critical Application Development Environment
(SCADE)
» Targets safety critical applications
 Graphical notation of hierarchical data flow and safe state machines

— Rich set of predefined blocks (operators, linear functions, filters, state
machines, model composition)

Internally based on Lustre, synchronous data flow language
KCG: C code generator certified for airborne systems

— Generates code for each block
» Worst Case Execution Time (WCET) analysis integration
Extensible through gateway (e.g. Matlab/Simulink, UML/SysML)
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Commercial Tools (3)

* UML/SysML Products

» Universal Modeling Language (UML)

— Specification of software systems, early in process
» Construction, documentation

— Modeling language, not programming language
— Defines 13 diagram types
» System structure, System behavior, Interaction of system elements
— Use std. programming language to capture algorithms
» Systems Modeling Language (SysML)
— Extension and subset of UML (extending SW focus to System)
» E.g. adds: requirement diagram (perf. analysis), MoC for continues systems
« Many commercial tools for capture, analysis, validation and
framework code generation:
— IBM Telelogic Rhapsody
— Spark Systems’ Enterprise Architect
— Gentleware’s Poseidon
— Artisan Software’s Artisan Studio
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Outlook

» Status
* Vendor specific solutions / domain specific solutions
— E.g. processor, FPGA fabric or OS vendors
— Automotive, signal processing
* More attention to reusable and scalable implementations
e Component-based approaches (e.g. AUTOSAR)
» Integrated documentation / design (e.g. UML, SysML)
e Platform complexities increase
* Many-core platforms, heterogeneity
« Manual implementation increasingly inefficient
* Increasing focus on generation / synthesis
« Develop systems as composition of algorithms
* Automatic generation of embedded software
» Focus on essential function aspects instead of implementation detail

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

24




Embedded Design Practice

» Hardware Design Tools
» Overview
» Academic Tools
e Commercial Tools
» Outlook
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Overview (1)

» Historical Perspective: Four Phases

» Concept Phase (1970s)
— Basic definition for languages, methods, tools
— Instruction-Set Processor Specification/ CMU RT-CAD System (1976)
— MIMOLA at U of Kiel (1978)

 Algorithms Phase (1980s)
— Allocation, binding, scheduling algorithms
— Design flow for controllers, datapaths, custom processors

— Early tools: Yorktown Silicon Compiler (IBM), Cathedral (IMEC), System
Architects’ Workbench (CMU), Design Environment (U of Karlsruhe)
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Overview (2)

» Consolidation Phase (1990s)
— HLS books: System Architect’'s Workbench (1990), and others

— Commercial tools: Behavioral Compiler (Synopsys), Monet (Mentor),
Cyber Synthesis Tool (NEC)

— Obstacles: Tool-dependent language subsets, simple controller and
datapath architecture, non-programmable, fixed, FSM controller,
interfacing components not defined, consumer market not prepared

» Acceptance phase (2000s)
— HLS tools acceptance forced by system complexities
— Standard programming or system languages as input (C/C++, SystemC)
— More sophisticated algorithms
— Complex IPs and custom architectures with programmable controllers
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Academic Tools

GAUT

» Custom processors for digital signal processing application

* Bit-accurate specification in C/C++

* Pipelined architecture of processor, memory and interface unit
No-Instruction Set Computer (NISC)

» Custom processor with control memory vs. program memory
SPARK High-Level Synthesis

» C-to-VHDL HLS framework with pre-synthesis optimizations
xPilot Synthesis System

 Platform-based behavioral synthesis with multiple metric
optimization
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Academic Tools: NISC

NISC features programmability
Parametrizable architecture

¢ Programmable controller with control-

word memory
— Large codes accommodated
NISC features metric closure
« Separation of allocation from binding
& scheduling

« Datapath completely defined before
binding and scheduling by compiler

« Architecture-cell concept
NISC tools
Datapath generator generates
datapath from source

— Manual override possible
Retagertable cycle-accurate compiler
RTL generator for FPGA prototyping

Optimization by manual code or
datapath refinement

(<
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Component/

IDE GUI
Template
Library
Application Datapath Generator Datapath
NISC Compiler
RTL Generator
Code Datapath
Refinement Refinement

Synthesis Backend
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Academic Tools: SPARK

SPARK is HLS framework

¢ For multimedia and image
applications

* For control intensive functional
blocks
Input: ANSI-C, resource
library, constraints and user
directives
Output: Synthesizable RTL
VHDL code
Tasks:
« Pre-synthesis optimizations
¢ Scheduling and allocation
< Binding and control synthesis
¢ RTL generation

&

Embedded System Design
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Constraints &
Resource
Library

I Parser Front End

b

PreSynthesis Optimizations

Loop Unrolling, Loop Fusion, Loop Invariant Code Motion CSE,
IVA, Copy Propagation, Inlining, Dead Code Elimination

!

SPARK IR

Scheduling and Allocation

Heuristics |—>| Transformation Toolbox

|

Resource Binding & Control Synthesis

| Operation/Variable Binding |—>| FSM Generation/Optimiz.

y

Code Generation Back End

5
R

RTL VHDL,

< sm
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Academic Tools: xPilot

SystemC/C Behavior Spec.

Compilation Front End

* Platform-based behavioral
synthesis

e Input: C or SystemC
* Output: RTL and constraints

files <y
Platform and
¢ SSDM models process SSDM (System-Level - Constraints
Synthesis Data Model)
network
» Tasks: SSDMICDFG

Scheduling
RTL Generation

RTL VHDL and
Design Constraints
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« Pre-synthesis optimization by
LLVM compiler

« Physically-aware optimizations
during scheduling and binding

* RTL generation with physical
location constraints

SSDMISTG

Commercial Tools (1)

» Catapult Synthesis
e C++-t0-RTL
* Block architecture for different C functions with communication
channels between
» User directives for interface and memory mappings, loop unrolling
and pipelining, HW hierarchy, block communication, resource
allocation, latency and cycle constraints
* Cynthesizer
» Pin- and protocol-accurate SystemC as input

» Hybrid scheduling approach for protocol and computation
sections

» Gate-level library generated for estimation

» Custom datapath components are created from user indicated
C++ code
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Commercial Tools (2)

* PICO

« C-to-RTL mapping under performance constraints (throughput, cycle-
time) for data streaming applications

« Complex application engines for system platforms

« Compile-time configurable architecture template based on Khan-process-
network model

« Advanced parallelizing compiler
* CyberWorkBench (CWB)
¢ C-based HLS and verification tool (“All-in-C” approach)
* Legacy RTL blocks as black boxes
« Cycle-accurate simulation model generated for validation
« Input C code verified through assertions
» Bluespec
¢ An alternative to loop-and-array paradigm

« Bluespec System Verilog (BSV) language specifies concurrent system
behavior as a collection of rewrite rules

« BSV is translated into Verilog or SystemC RTL by Bluespec Compiler
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Outlook

e Status
» Designers acceptance of C-to-RTL concepts
* Increasing supply of HLS tools
e C/C++ is favored as input description
» Pre-synthesis optimization for better results

* Open Issues

» Synthesized architecture needs additional features
— Control and datapath pipelining
— Programmable controllers
— Architecture cells or custom-processor templates
— Retargetable compilers
« Platform generation and synthesis
— Merging components into platform and mapping application
— Interfacing synthesized components (Interface cells)
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Embedd

ed Design Practice

» Case Study

Embedded System Environment

* Design Driver: MP3 Decoder
* Results
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Embedded System Environment (ESE)

System Definition 1

cic++ ! GpplicationY @:4.- Graphical capture
oo Jomeeens T
m ESE Front End <+ Automatic model generation
«===== SystemC executable
m ESE Back End <= Automatic SW/HW synthesis

«s=enas CHRTL, FPGA bitstream
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ESE Front End Design Flow

Fmmmm e —m = m == — ==y Modify Application,
: System Definition 1 Platform, Mapping
 CApplication @ ol -
|

1
mapping 1 1
|

—— ] - === - ———

!,

. . \Q
PE/RTOS Timing L g
Models Estimation Design
Optimization
Timed Application
]
IBUS/'F/MemI_. TLM Generation !
Models !
|
Simulation
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Input: Application Model

P4
* Application model consists of
* Processes for computation (eg. P1, P2, P3, P4)

¢ Channels for communication (eg. C1 between P1 and P3)
* Variables for storage (eg. v1)
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Application Model Objects

Processes
¢ Symbolic representation of computation
¢ Contain C/C++ code imported from reference

Process ports
» Symbolic representation of communication
services required by processes

» Provide object orientation by allowing
processes to connect to different channels

Channels

» Symbolic representation of inter-process
communication

« Implement communication services such as
blocking, non-blocking, handshake, FIFO etc.

« Encapsulation for communication functions

e Variables
« Symbolic representation of data storage
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Input: Platform Architecture
CPU1 Mem
0OSs1
I3
5 ‘ > = >
< Busl Bus2
0Ss2
HW CPU2
e Platform consists of
e Hardware: PEs (eg. CPU1, HW), Buses (eg. Busl), Memories
(eg. Mem), Interfaces (eg. Transducer)
e Software: Operating systems (eg. OS1) on SW PEs
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Platform Objects

Processing element (PE)
« Symbolic representation of computation resources
« Different types such as SW processors, HW IPs etc.

CPUL Mem

Arbiter

Bus
* Symbolic representation of communication media

« Types include shared, point-to-point, link, crossbar etc.

Memory
« Symbolic representation of physical storage
« May contain shared variables or SW program/data

Transducer
« For protocol conversion and store-forward routing
« Necessary for PEs with different bus protocols

Operating system (OS)
« Software platform for individual PEs
* Needed for scheduling multiple processes on a PE

HW

i x
fad
Busl Bus?l

0Ss2

CPU2
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Input: Mapping
CPU1 Mem
e Processes > PEs
e Channels ©> Routes
P1| | P2 . i i
vl * Variables > Memories
[[os] |
r
5 —(c2]
é A » E >
z 3] Busl Bus2
i v
[Jos ]
P3 |
— @
HW IP CcpU2
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Mapping rules

e Processes to PEs
« Each process in the application must be mapped to a PE
« Multiple processes may be mapped to SW PE with OS support
« Example: P1, P2 > CPU1

* Channels to Routes

« All channels between processes mapped to different PEs are
mapped to routes in the platform

* Route consists of bus segments and interfaces
* Channel on each bus segment is assigned a unique address

* Variables to Memories

* Variables accessed by processes mapped to different PEs are
mapped to shared memories

« All variables are assigned an address range depending on size
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Output: SystemC TLM

CPU1

(Bus2 D

TLM Generation Technique
* Application code - sc_thread
* Processing element - sc_module
* OS Model = sc_module
¢ Bus = sc_channel

* Memory > Array inside sc_module
HW IP « Interface > FIFO channel+sc_process CPU2
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Model Accuracy vs. Execution Time

TLM: Transaction Level Model
Accuracy ISM: Instruction Set Model

CAM: Cycle-Accurate Model
oard
100% - T "CAM
~92% Fimed TLM
~80% 9
ISM
gunc. TLm
0 2sec 3~4 hrs 15~18hrs

Exec. Time (MP3)

* Board implementation: Reference for model accuracy

e CAM: Accurate but simulates extremely slow

e ISM: Faster than CAM, but inaccurate

e Functional TLM: No timing, fast simulation (Ideal for SW development)
« Timed TLM: Very fast and accurate (Ideal for early estimation)
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ESE Back End Prototyping Flow

SystemC TLM

W/RTO StN Int ‘f
S 9 nterface
Synthesis CoRTL Synthesis ||

| Library I R Bus
Library
@ CrwRT (CFRIL

Pin/Cycle Accurate Model (PCAM)
Generator

C/Verilog CAM

|

CA Sim.
Tools

FPGA
Tools
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Cycle-Accurate Software Synthesis

Program

CPU1

Compile
—

¢ OS model> Real OS

X

((Bus2 P

« HAL model > Real HAL

Compile Program

HW IP CPU2
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SW Synthesis Issues

« Compiler selection
« The designer specifies which compiler is used for the SW

e Library selection

« Libraries are selected for SW support such as file systems, string
manipulation etc.

« Prototype debugging requires selection of additional libraries

e OS selection and targeting
« Designer selects an OS for the processor
¢ OS model is replaced by real RTOS and SW is re-targeted

« C code for drivers is generated from Hardware Abstraction Layer
(HAL) model

e Program and data memory
e Address range for SW program memory is assigned
* Address range for data memory used by program is assigned
« For large programs or data, off-chip memory may be allocated
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Cycle-Accurate Hardware Synthesis

—
oY
O * Process = Synthesizable RTL
« High level synthesis for custom
¢ Replacement for HW IP
—_— TX
Cycle-
QQQ accurate
SyntheS|s
HW IP (RTL) Processesin C CPU2
E Desi . . ;
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HW Synthesis Issues

* [IPinsertion
« C model of HW is replaced with pre-designed RTL IP, if available

RTL synthesis tool selection
* RTL synthesis tool must be selected for custom HW design

» Ccode generation
e C code for input to RTL synthesis tool is generated

e Synthesis directives
« RTL architecture and clock cycle time is selected

e UBC calls are treated as single cycle operations, to be later
expanded during interface synthesis

HDL generation
* RTL synthesis result in cycle accurate synthesizable Verilog
code
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Cycle-Accurate Interface Synthesis

CPU1 e Sync. Model - Interrupts
e Bus channel - Arbiter + Signals
IC * Interface model > RTL
- e Channel access > PE interface
e
9 TX
Arbiter J A
o i
* \
W@ | «— Interface Synthesis
CPU2
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Interface Synthesis Issues

e Synchronization

e UBC has unique flag for each pair of communicating processes
« Flag access is implemented as polling or CPU interrupt

e Arbitration
« Selected from library or synthesized to RTL based on policy

» Bridge
» Selected from library or synthesized using bridge generator

» Addressing
« All channels are assigned unique bus addresses

*  SW communication synthesis
« Bus channel function calls are replaced by C drivers

« HW communication synthesis
« DMA controller in RTL is created for each custom HW component
* Send/Recv operations are replaced by DMA transfer states
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Cycle-Accurate Model

-
E Program ¢ Channel sync. - Interrupts
O — Ic e Transducer model
EXE ¢ Replacement for HW IP
_RTOS —
A o0
< Interface
Arbiter l
@
LE.§ Program
~ PCAM is downloaded g
Q,O& automatically for fast
prototyping with FPGAs or
HW IP simulated using validation tools
CPU2
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Example: MP3 Decoder Application
e Functional block diagram (major blocks only)
2 granules
/ AliasRed 4’|IMDCT36 —> DCT32
— | huffpec Left channel PcM
mp3 \ pcm
AliasRed —>{IMDCT36[—> DCT32
Right channel
e Characteristics
« Over 12K lines of C code in Spec
« IMDCT36 and DCT32 compute intensive functions
« Constraint: Frame processing delay < 26.12ms
« Design objective
¢ Select platform and mapping to meet constraint
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MP3 Platform SW+0

2 granules

. SW+0
AliasR d|—>|IMDCT36|—>| DCT32 MB Mem
_.| HuffDec Left channel PCM |_>
" pen OPB
AI\asRed|—P|IMDCT36|—D| DCT32 : :
Right channel
» MP3 mapped to Microblaze on Xilinx board
e Pure software solution
< Easy to implement, debug and upgrade
< Frame decoding delay estimated by TLM at 35.66 ms
¢ Does not meet the frame delay constraint of 26.12 ms
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MP3 Platform SW+1
SW+1
MB Mem
2 granules
<& I I oPB
_’| HuffDec Left channel
o3 DHB

a

pem
AliasRed |—P|IMDCT36|—D| DCT32

Right channel

« MP3 mapped to Microblaze (MB) SW and 1 HW component

DCT32 from left channel moved to custom HW for acceleration
Everything else in SW on Microblaze

A 4

Transducer (Tx) added to connect HW module’s DHB interface to OPB

Frame decoding delay estimated by TLM at 32.89 ms

Faster than SW+0 but does not meet frame delay constraint of 26.12 ms
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MP3 Platform SW+2

MB Mem SW+2

2 granules
I | ors_

a
\

DHB _

a
\

Right channel

< MP3 Decoder mapped to Microblaze SW and 2 HW components
» DCT32 from both left and right channels moved to HW
» DCT32 functions for the two channels execute concurrently in HW
» Bridge added to connect HW module’s DHB interface to OPB
» Frame decoding delay estimated by TLM at 29.99 ms
» Faster than SW+1 but does not meet frame delay constraint of 26.12 ms
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MP3 Platform SW+4

MB Mem SW+4

2 granules
I | oes,

P DHB
Right channel ‘ ‘ ‘

« MP3 Decoder mapped to Microblaze SW and 4 HW components
» Both DCT32 and IMDCT36 from both channels moved to HW
» Everything else in SW on Microblaze
» Bridge added to connect HW module’s DHB interface to OPB
» Frame decoding delay estimated by TLM at 15.96 ms
» Significantly faster than SW+2 and meets frame delay constraint!

a
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Design Quality: ESE —=— %Slices

—— %BRAMs

Delay(ms)
%Utilization Delay %Ultilization Delay
100 35 100 35
90 / 1 30 90 » 1 20
80 80
70 Wal - 25 70 //- 4 25
60 = 60 1
/-/ 20 _/ 20
50 50 4
40 __+ 15 40 4 15
30 Y e—— | W 30 + 10
20 20 /
/ T 5 10 + 5
10—« ¢
0 1 : : 0 0 w \ : 0
SW+0 SW+1 SW+2 SW+4 SW+0  SW+1 SW+2  SW+4
Manual Designs ESE Designs
* Area

e ESE designs use fewer FPGA slices and more BRAMs than manual
HW: Controller implemented with memory vs. gates

+ Performance
« ESE designs execute at similar speed as manual designs

E Desi . ; ;
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Development Time: ESE vs. Manual
70
60 N\
Manual [ \
g 50
@
'g 40 'S — -
? 30
g 20 o
ESE
10 7[\ -
o ez — U
Spec. LM RTL Board
models
» ESE drastically cuts RTL and Board development time
e Manual development includes months of RTL coding
« Models can be developed at Spec level with ESE
« TLM, RTL and Board models are generated automatically by ESE
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Validation Time: ESE vs. Traditional

wn 18.06 hrs ~~~"""""TTTTTomooooo A ==
o L
3 L7TANS —ommmmem oo -Traditional
o 1756 hrS - -cccccccccaaaaan = -
< 15.93hrS -cccccceccaaaaaao - -

10

9

8
2] 7 7 “
2 & \ —— SW+0
c 6 7 -
O 5 Vid ~ " —=— SW+1
D . o () kY Sw+2
LI ;«’//;\’\’,R & SW+4

2 CcQE -

cEoE =,
1
0T T T T T 1
Spec. TLM RTL Board
models

« ESE cuts validation time from hours to seconds

No need to verify RTL models for every design change
Designers can perform high speed validation with TLM and board
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ESE Technology Summary

e C based application input

Supports model based design and legacy reuse

* Automatic functional and timed TLM generation

Enables early design validation and reliable estimation

e Automatic SW synthesis

Provides modular, verifiable, platform specific SW code

e Automatic interface synthesis

Allows rapid implementation of heterogeneous networks

e FPGA and C/HDL export

Generates standard input for commercial prototyping and CA validation
tools
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