Embedded System Design

Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

Chapter 8: Embedded Design Practice

Embedded Design Practice

* Introduction

» System Level Design Tools

» Embedded Software Design Tools
» Hardware Design Tools

e Case Study

* Summary

Embedded System Design o : :
& @ Abdi)" St Schige' E Chapter 8: Embedded Design Practice _

Introduction

« System-level tools are available in three different
forms:
» System-level design
« Software design
e Hardware design
e Some academic tools demonstrate complete
process: MoC-to-RTL including custom SW and HW
components
* Automation of system-level tasks shows large gains
as demonstrated on examples of JPEG and MP3
* Results also demonstrate potentially large impact on
embedded systems technology

Embedded System Design . i ;
D G, Abd}"eers“auer' esign D Chapter 8: Embedded Design Practice 7/8/2009

Embedded Design Practice

» System Level Design Tools
e Overview
e Academic Tools
e Commercial Tools
 Outlook

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Overview

» Electronic System-Level (ESL) design tools
< Many that provide single hardware unit only (see HW design tools)
» True system-level design across hardware and software boundaries

» System-level design flow

* Frontend
— Application & architecture mapping
— Design space exploration (DSE)
» System models (TLMs) for virtual prototyping

» Backend
— Hardware and software synthesis
— Commercial or proprietary (see SW & HW design tools)
» Physical system prototype or implementation

» Commercial tools for modeling and simulation
» Academic tools for synthesis and verification

Embedded System Design . i ;
D G, Abd}"eers“auer' esign D Chapter 8: Embedded Design Practice 7/8/2009

Academic Tools

Metropolis

» Platform-based design (PBD)
SystemCoDesigner

* Dynamic dataflow MoC

« Automated design space exploration

Daedalus
« KPN MoC for streaming, multi-media applications
« |P-based MPSoC assembly
PeaCE
* “Ptolemy extension as a Codesign Environment”
* Recent extensions for software development (HOPES)
 SCE
* SpecC-based “System-on-Chip Environment”
* Successive, stepwise Specify-Explore-Refine methodology

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Academic Tools: Metropolis

Platform-based

« Pre-defined target
architecture

» Reuse
Meet-in-the-middle
« Platform mapping and

Function
Specification

configuration

Point Tools:
Synthesis/Refinement

Design
constraints

Metropolis Infrastructure

= Design methodology
= Metamodel
= Simulator

Architecture
Specification

Point Tools:
Analysis/Verification

» General, proprietary meta-modeling language

< Capture function, architecture and mapping

Modeling framework
* Built-in parsing and simulation
» Back-end point tool integration

Embedded System Design '
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

7/8/2009 7

Academic Tools: SystemCoDesigner

* SysteMoC input model

« Dynamic dataflow MoC (actors + FSMDs) in SystemC
« Fully automatic, multi-objective design space exploration
« Genetic algorithms to obtain Pareto-optimal design solutions

Forte Cynthesizer

0
[Model SystemC
Model
Select CPUs, buses,
sw accelerators, Exploration
etc. from the Model
component library

Specify I Design Space

mapping Exploration

Select Optimized

implementation l @lUtIONS

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

behavioral synthesis

Rapid
prototyping

Chapter 8: Embedded Design Practice

Component Library
includes
CPUs, buses,
hardware accelerators, etc.

7/8/2009 8

Academic Tools: Daedalus

* KPN input model

» System assembly and simulation (Sequential

Explore, modify, select instances M

A
High-level —,I System-level design space exploration | AU
Models I I Parallelization
|
""""" ¥ ' i
Library of | : common XML Platform ’ Mapping Parallel application |
IPcores | : Intefface [specification specification specification (KPN))
RTL-level .
Models System-level synthesis
~ N
» XML-based open D
infrastructure Multl-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)
g';“og’geggifjAb%}’ﬁzgme?fjlgg D Chapter 8: Embedded Design Practice 7/8/2009 9

Academic Tools: PeaCE

rchitecture
ecification
« Ptolemy-based ! i :
O emy- ase | Simulation Graph Analysis |<—| Profiling |

¢ Heterogeneous SDF+FSM
application MoC

HW/SW Mapping
& Partitioning

Algorithm Al
Specification Sp
| :

» Stepwise flow
< Application partitioning
+ Communication architecture
exploration

» Code and interface generation

>
Block
Library

Code Generation
VHDL Code Y

Communication
Exploration

« Software extensions: HOPES
« Parallel programming API
« Multi-processor code generation

| Coverification & Prototyping |

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 10

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Academic Tools: SCE

+ SpecC based
e PSM input MoC

« Specify-Explore-Refine
« Interactive, successive, Design it Desih PE/CEIbUS
StepWise refinement Decisions & Refinement Models

» Frontend ﬂl System

« Compile specification onto models

user-defined MPSoC arch.
» Automatically generate TLM - PR Software -

RTL
« Backend DB Synthesis Synthesis

« Hardware/software synthesis !!_
¢ RTL + ISS implementation HW & lcpu, o]
Implementatlon Model

» Commercial derivative: SER (JAXA)

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009 11

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Commercial Tools (1)

» CoFluent
» SystemC-based modeling and simulation
— Networks of timed processes
— Communication through queues, events, variables
» Early, high-level interactive design space exploration
— Graphical application, architecture and mapping capture
— Fast TLM simulation with estimated timing

* Space Codesign
» Graphical application, architecture and mapping capture (Eclipse)
— Process network with message-passing or shared-memory channels
e SystemC TLM simulation
— Annotated, host-compiled or cycle-accurate ISS models
* FPGA-based prototyping
— Cross-compilation and third-party hardware synthesis (Forte/Catapult)

Embedded System Design . . N
S o) Stem Design D Chapter 8: Embedded Design Practice 7/8/2009 12

Commercial Tools (2)

» CoWare
» Virtual system platforms
— SystemC TLM capture, modeling and simulation
— Extensive library of IP, processor and bus models
— Application-specific processor ISS models (LISAtek acquisition)
» Proprietary SystemC simulation framework
— Optimized SystemC kernel
— Graphical debugging, visualization and analysis capabilities

* Soc Designer
e Proprietary, C++ based modeling and simulation
— Fast, statically scheduled cycle-accurate simulation
— Special cycle-callable component models
* VaST and Virtutech

» Proprietary SW-centric virtual platform modeling and simulation
— Fast, cycle-approximate binary translated or compiled ISS + peripherals

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009 13

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Outlook

» State of the art
» Commercial focus still only on modeling and simulation
« Academic approaches towards true system-level design
< Emerging commercial solutions for backend HW/SW design

e Future complete, automated system design flows

« Further research and development of system-level synthesis and
design space exploration solutions

« Continuing technology transfer from academia into commercial
settings and startups

» Productivity gains
» Closing gap between application and implementation

Embedded System Design . . N
3005, aaiet, Abdl),,GerstIauer, esian E} Chapter 8: Embedded Design Practice 7/8/2009 14

Embedded Design Practice

 Embedded Software Design Tools
¢ Overview
¢ Academic Tools
« Commercial Tools
 Outlook

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

15

Overview

» Tight connection to underlying HW
— Processor, custom hardware, physical process integration

« Requires:
— Processor-specific code generation
» e.g. DSP v.s. general purpose processor
Processor-specific compiler (cross compiler)

Processor-specific simulator
» Virtual platform
» Instruction Set Simulator (ISS)

Non-intrusive analysis/tracing
Real-time analysis

» Specialized point solutions
— Processor vendor: e.g. ARM RealView Development Suite
— FPGA Vendor: e.g. Xilinx EDK
— OS Vendor: WindRiver WorkBench

Embedded System Design . . N
3005, aaiet, Abdl),,GerstIauer, esian E} Chapter 8: Embedded Design Practice 7/8/2009

16

Academic Tools (1)

« POLIS
* HW/SW co-design environment
 Input: Esterel or graphical FSM notation

* Centered around Codesign Finite State Machine (CFSM)
— Locally synchronous, globally asynchronous
» Formalism for verification, co-simulation, partitioning and synthesis

« METROPOLIS
« Platform based design
e Meta-model; supports many MoCs
» Separate function, architecture and MoC into separate inputs
» Co-simulation heterogeneous PEs with different MoCs

Embedded System Design . i ;
D G, Abd}"eers“auer' esign D Chapter 8: Embedded Design Practice 7/8/2009

17

Academic Tools (2)

» DESCARTES

 Targets real-time signal processing systems
* Input:
— Asynchronous Data Flow (ADF), and
— extension of Synchronous Data Flow (SDF)
« Computation node scheduling observing
— Latency
— Throughput
— Memory consumption
» C code generation of each computation node

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

18

Academic Tools (3)

» Software generation from SystemC models
» Herrara et al.
— Single source solution
» Same C++ code on SystemC and on target
— Simplifies debugging / maintenance
— Overload SystemC primitives for target implementation
— Subset of SystemC
* PROTOS (Krause et al.)
— Input
» SystemC threads communicating though point-to-point channels
— Parses SystemC, generates RTOS targeted code for selected RTOS

» Replaces SystemC calls (comm., threads) with RTOS equivalent calls
» Attempts to recreate SystemC events

— Captures RTOS characteristics in XML
» API call signatures, thread fork join, static / dynamic

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

19

Academic Tools (4)

» Eclipse
» Multi-language development platform
— IDE: Compiler, debugger, source code browser
— Extensible with well defined plug-in system
» Free, open source; managed by Eclipse Foundation
« Main focus JAVA, but supports many other languages
» Very popular framework for custom (also embedded) extensions in
academic and commercial projects, e.g.

— Tensilica Xtnesa Xplorer IDE

» Custom processor generation, cross compilation and debugging
— Greensys AUTOSAR Builder

» Develop AUTOSAR (automotive) software components

» Capture system and application level description aiding integration

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

20

Commercial Tools (1)

* MathWorks: Real-Time Workshop
» Simulink
— Model-based design tool

— Block diagram capturing of system functionality
» Compose of predefined blocks (e.g. filters, control functions)

— Hierarchical composition
— Discrete time and continues time models
» Real-Time Workshop generates target code based on Simulink model
— ANSI C/C++
— Stand alone / RTOS based

e dSpace Cooperation: TargetLink
* Integrates into Matlab/Simulink
» Automotive focus
— Supports OSEK/VDX compliant OS
— Target code for Electronic Control Units (ECU)
— Extensions to support AUTOSAR

Embedded System Design . ; :
© 2009: Gaski, Abdiyeerstlauer, Schiger D Chapter 8: Embedded Design Practice 7/8/2009 21

Commercial Tools (2)

» Esterel Technologies:
Software Critical Application Development Environment
(SCADE)
» Targets safety critical applications
 Graphical notation of hierarchical data flow and safe state machines

— Rich set of predefined blocks (operators, linear functions, filters, state
machines, model composition)

Internally based on Lustre, synchronous data flow language
KCG: C code generator certified for airborne systems

— Generates code for each block
» Worst Case Execution Time (WCET) analysis integration
Extensible through gateway (e.g. Matlab/Simulink, UML/SysML)

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 22

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Commercial Tools (3)

* UML/SysML Products

» Universal Modeling Language (UML)

— Specification of software systems, early in process
» Construction, documentation

— Modeling language, not programming language
— Defines 13 diagram types
» System structure, System behavior, Interaction of system elements
— Use std. programming language to capture algorithms
» Systems Modeling Language (SysML)
— Extension and subset of UML (extending SW focus to System)
» E.g. adds: requirement diagram (perf. analysis), MoC for continues systems
« Many commercial tools for capture, analysis, validation and
framework code generation:
— IBM Telelogic Rhapsody
— Spark Systems’ Enterprise Architect
— Gentleware’s Poseidon
— Artisan Software’s Artisan Studio

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

23

Outlook

» Status
* Vendor specific solutions / domain specific solutions
— E.g. processor, FPGA fabric or OS vendors
— Automotive, signal processing
* More attention to reusable and scalable implementations
e Component-based approaches (e.g. AUTOSAR)
» Integrated documentation / design (e.g. UML, SysML)
e Platform complexities increase
* Many-core platforms, heterogeneity
« Manual implementation increasingly inefficient
* Increasing focus on generation / synthesis
« Develop systems as composition of algorithms
* Automatic generation of embedded software
» Focus on essential function aspects instead of implementation detail

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

24

Embedded Design Practice

» Hardware Design Tools
» Overview
» Academic Tools
e Commercial Tools
» Outlook

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009 25

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Overview (1)

» Historical Perspective: Four Phases

» Concept Phase (1970s)
— Basic definition for languages, methods, tools
— Instruction-Set Processor Specification/ CMU RT-CAD System (1976)
— MIMOLA at U of Kiel (1978)

 Algorithms Phase (1980s)
— Allocation, binding, scheduling algorithms
— Design flow for controllers, datapaths, custom processors

— Early tools: Yorktown Silicon Compiler (IBM), Cathedral (IMEC), System
Architects’ Workbench (CMU), Design Environment (U of Karlsruhe)

Embedded System Design o i ;
ey oren Desian E} Chapter 8: Embedded Design Practice 7/8/2009 26

Overview (2)

» Consolidation Phase (1990s)
— HLS books: System Architect’'s Workbench (1990), and others

— Commercial tools: Behavioral Compiler (Synopsys), Monet (Mentor),
Cyber Synthesis Tool (NEC)

— Obstacles: Tool-dependent language subsets, simple controller and
datapath architecture, non-programmable, fixed, FSM controller,
interfacing components not defined, consumer market not prepared

» Acceptance phase (2000s)
— HLS tools acceptance forced by system complexities
— Standard programming or system languages as input (C/C++, SystemC)
— More sophisticated algorithms
— Complex IPs and custom architectures with programmable controllers

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009 27

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Academic Tools

GAUT

» Custom processors for digital signal processing application

* Bit-accurate specification in C/C++

* Pipelined architecture of processor, memory and interface unit
No-Instruction Set Computer (NISC)

» Custom processor with control memory vs. program memory
SPARK High-Level Synthesis

» C-to-VHDL HLS framework with pre-synthesis optimizations
xPilot Synthesis System

 Platform-based behavioral synthesis with multiple metric
optimization

Embedded System Design o i ;
ey oren Desian E} Chapter 8: Embedded Design Practice 7/8/2009 28

Academic Tools: NISC

NISC features programmability
Parametrizable architecture

¢ Programmable controller with control-

word memory
— Large codes accommodated
NISC features metric closure
« Separation of allocation from binding
& scheduling

« Datapath completely defined before
binding and scheduling by compiler

« Architecture-cell concept
NISC tools
Datapath generator generates
datapath from source

— Manual override possible
Retagertable cycle-accurate compiler
RTL generator for FPGA prototyping

Optimization by manual code or
datapath refinement

(<

Embedded System Design

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8:

Component/

IDE GUI
Template
Library
Application Datapath Generator Datapath
NISC Compiler
RTL Generator
Code Datapath
Refinement Refinement

Synthesis Backend

Embedded Design Practice 7/8/2009

29

Academic Tools: SPARK

SPARK is HLS framework

¢ For multimedia and image
applications

* For control intensive functional
blocks
Input: ANSI-C, resource
library, constraints and user
directives
Output: Synthesizable RTL
VHDL code
Tasks:
« Pre-synthesis optimizations
¢ Scheduling and allocation
< Binding and control synthesis
¢ RTL generation

&

Embedded System Design

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8:

Constraints &
Resource
Library

I Parser Front End

b

PreSynthesis Optimizations

Loop Unrolling, Loop Fusion, Loop Invariant Code Motion CSE,
IVA, Copy Propagation, Inlining, Dead Code Elimination

!

SPARK IR

Scheduling and Allocation

Heuristics |—>| Transformation Toolbox

|

Resource Binding & Control Synthesis

| Operation/Variable Binding |—>| FSM Generation/Optimiz.

y

Code Generation Back End

5
R

RTL VHDL,

< sm

Embedded Design Practice 7/8/2009

| Task

Graphs
(HTGs) +
Data Flow

Graphs

30

Academic Tools: xPilot

SystemC/C Behavior Spec.

Compilation Front End

* Platform-based behavioral
synthesis

e Input: C or SystemC
* Output: RTL and constraints

files <y
Platform and
¢ SSDM models process SSDM (System-Level - Constraints
Synthesis Data Model)
network
» Tasks: SSDMICDFG

Scheduling
RTL Generation

RTL VHDL and
Design Constraints

Embedded System Design . ; :
© 2009: Gaski, Abdiyeerstlauer, Schiger D Chapter 8: Embedded Design Practice 7/8/2009 31

« Pre-synthesis optimization by
LLVM compiler

« Physically-aware optimizations
during scheduling and binding

* RTL generation with physical
location constraints

SSDMISTG

Commercial Tools (1)

» Catapult Synthesis
e C++-t0-RTL
* Block architecture for different C functions with communication
channels between
» User directives for interface and memory mappings, loop unrolling
and pipelining, HW hierarchy, block communication, resource
allocation, latency and cycle constraints
* Cynthesizer
» Pin- and protocol-accurate SystemC as input

» Hybrid scheduling approach for protocol and computation
sections

» Gate-level library generated for estimation

» Custom datapath components are created from user indicated
C++ code

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 32

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Commercial Tools (2)

* PICO

« C-to-RTL mapping under performance constraints (throughput, cycle-
time) for data streaming applications

« Complex application engines for system platforms

« Compile-time configurable architecture template based on Khan-process-
network model

« Advanced parallelizing compiler
* CyberWorkBench (CWB)
¢ C-based HLS and verification tool (“All-in-C” approach)
* Legacy RTL blocks as black boxes
« Cycle-accurate simulation model generated for validation
« Input C code verified through assertions
» Bluespec
¢ An alternative to loop-and-array paradigm

« Bluespec System Verilog (BSV) language specifies concurrent system
behavior as a collection of rewrite rules

« BSV is translated into Verilog or SystemC RTL by Bluespec Compiler

Embedded System Design . ; :
© 2009: Gaski, Abdiyeerstlauer, Schiger D Chapter 8: Embedded Design Practice 7/8/2009 33

Outlook

e Status
» Designers acceptance of C-to-RTL concepts
* Increasing supply of HLS tools
e C/C++ is favored as input description
» Pre-synthesis optimization for better results

* Open Issues

» Synthesized architecture needs additional features
— Control and datapath pipelining
— Programmable controllers
— Architecture cells or custom-processor templates
— Retargetable compilers
« Platform generation and synthesis
— Merging components into platform and mapping application
— Interfacing synthesized components (Interface cells)

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 34

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Embedd

ed Design Practice

» Case Study

Embedded System Environment

* Design Driver: MP3 Decoder
* Results

Embedded System Design . ; :
© 2009: Gaski, Abdiyeerstlauer, Schiger D Chapter 8: Embedded Design Practice 7/8/2009 35

Embedded System Environment (ESE)

System Definition 1

cic++ ! GpplicationY @:4.- Graphical capture
oo Jomeeens T
m ESE Front End <+ Automatic model generation
«===== SystemC executable
m ESE Back End <= Automatic SW/HW synthesis

«s=enas CHRTL, FPGA bitstream

Embedded System Design o i ;
ey oren Desian E} Chapter 8: Embedded Design Practice 7/8/2009 36

ESE Front End Design Flow

Fmmmm e —m = m == — ==y Modify Application,
: System Definition 1 Platform, Mapping
 CApplication @ ol -
|

1
mapping 1 1
|

——] - === - ———

!,

. . \Q
PE/RTOS Timing L g
Models Estimation Design
Optimization
Timed Application
]
IBUS/'F/MemI_. TLM Generation !
Models !
|
Simulation

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Input: Application Model

P4
* Application model consists of
* Processes for computation (eg. P1, P2, P3, P4)

¢ Channels for communication (eg. C1 between P1 and P3)
* Variables for storage (eg. v1)

Embedded System Design . . N
3005, aaiet, Abdl),,GerstIauer, esian E} Chapter 8: Embedded Design Practice 7/8/2009

Application Model Objects

Processes
¢ Symbolic representation of computation
¢ Contain C/C++ code imported from reference

Process ports
» Symbolic representation of communication
services required by processes

» Provide object orientation by allowing
processes to connect to different channels

Channels

» Symbolic representation of inter-process
communication

« Implement communication services such as
blocking, non-blocking, handshake, FIFO etc.

« Encapsulation for communication functions

e Variables
« Symbolic representation of data storage

g';"og’geggsekﬂb%}’ggme?agg D Chapter 8: Embedded Design Practice 7/8/2009 39
Input: Platform Architecture
CPU1 Mem
0OSs1
I3
5 ‘ > = >
< Busl Bus2
0Ss2
HW CPU2
e Platform consists of
e Hardware: PEs (eg. CPU1, HW), Buses (eg. Busl), Memories
(eg. Mem), Interfaces (eg. Transducer)
e Software: Operating systems (eg. OS1) on SW PEs
Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 40

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Platform Objects

Processing element (PE)
« Symbolic representation of computation resources
« Different types such as SW processors, HW IPs etc.

CPUL Mem

Arbiter

Bus
* Symbolic representation of communication media

« Types include shared, point-to-point, link, crossbar etc.

Memory
« Symbolic representation of physical storage
« May contain shared variables or SW program/data

Transducer
« For protocol conversion and store-forward routing
« Necessary for PEs with different bus protocols

Operating system (OS)
« Software platform for individual PEs
* Needed for scheduling multiple processes on a PE

HW

i x
fad
Busl Bus?l

0Ss2

CPU2

Embedded System Desi ; i i
Sttt et BT | Chapter 8: Embeclded Design Practice e @
Input: Mapping
CPU1 Mem
e Processes > PEs
e Channels ©> Routes
P1| | P2 . i i
vl * Variables > Memories
[[os] |
r
5 —(c2]
é A » E >
z 3] Busl Bus2
i v
[Jos]
P3 |
— @
HW IP CcpU2
Embedded System Desi g i i
©r2)09(:eaaj i‘,m.’,'ﬁeiﬂer, esign E} Chapter 8: Embedded Design Practice 7/8/2009 42

Mapping rules

e Processes to PEs
« Each process in the application must be mapped to a PE
« Multiple processes may be mapped to SW PE with OS support
« Example: P1, P2 > CPU1

* Channels to Routes

« All channels between processes mapped to different PEs are
mapped to routes in the platform

* Route consists of bus segments and interfaces
* Channel on each bus segment is assigned a unique address

* Variables to Memories

* Variables accessed by processes mapped to different PEs are
mapped to shared memories

« All variables are assigned an address range depending on size

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Output: SystemC TLM

CPU1

(Bus2 D

TLM Generation Technique
* Application code - sc_thread
* Processing element - sc_module
* OS Model = sc_module
¢ Bus = sc_channel

* Memory > Array inside sc_module
HW IP « Interface > FIFO channel+sc_process CPU2

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Model Accuracy vs. Execution Time

TLM: Transaction Level Model
Accuracy ISM: Instruction Set Model

CAM: Cycle-Accurate Model
oard
100% - T "CAM
~92% Fimed TLM
~80% 9
ISM
gunc. TLm
0 2sec 3~4 hrs 15~18hrs

Exec. Time (MP3)

* Board implementation: Reference for model accuracy

e CAM: Accurate but simulates extremely slow

e ISM: Faster than CAM, but inaccurate

e Functional TLM: No timing, fast simulation (Ideal for SW development)
« Timed TLM: Very fast and accurate (Ideal for early estimation)

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009 45

© 2009: Gajski, Abdi, Gerstlauer, Schirner

ESE Back End Prototyping Flow

SystemC TLM

W/RTO StN Int ‘f
S 9 nterface
Synthesis CoRTL Synthesis ||

| Library I R Bus
Library
@ CrwRT (CFRIL

Pin/Cycle Accurate Model (PCAM)
Generator

C/Verilog CAM

|

CA Sim.
Tools

FPGA
Tools

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 46

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Cycle-Accurate Software Synthesis

Program

CPU1

Compile
—

¢ OS model> Real OS

X

((Bus2 P

« HAL model > Real HAL

Compile Program

HW IP CPU2

Embedded System Design . i ;
D G, Abd}"eersﬂauer' esign D Chapter 8: Embedded Design Practice 7/8/2009

* Processes > Compiled App.

47

SW Synthesis Issues

« Compiler selection
« The designer specifies which compiler is used for the SW

e Library selection

« Libraries are selected for SW support such as file systems, string
manipulation etc.

« Prototype debugging requires selection of additional libraries

e OS selection and targeting
« Designer selects an OS for the processor
¢ OS model is replaced by real RTOS and SW is re-targeted

« C code for drivers is generated from Hardware Abstraction Layer
(HAL) model

e Program and data memory
e Address range for SW program memory is assigned
* Address range for data memory used by program is assigned
« For large programs or data, off-chip memory may be allocated

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

48

Cycle-Accurate Hardware Synthesis

—
oY
O * Process = Synthesizable RTL
« High level synthesis for custom
¢ Replacement for HW IP
—_— TX
Cycle-
QQQ accurate
SyntheS|s
HW IP (RTL) Processesin C CPU2
E Desi . . ;
©';1E’§ggiﬂ3}"gﬁmgﬁ esign D Chapter 8: Embedded Design Practice 7/8/2009 49

HW Synthesis Issues

* [IPinsertion
« C model of HW is replaced with pre-designed RTL IP, if available

RTL synthesis tool selection
* RTL synthesis tool must be selected for custom HW design

» Ccode generation
e C code for input to RTL synthesis tool is generated

e Synthesis directives
« RTL architecture and clock cycle time is selected

e UBC calls are treated as single cycle operations, to be later
expanded during interface synthesis

HDL generation
* RTL synthesis result in cycle accurate synthesizable Verilog
code

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 50

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Cycle-Accurate Interface Synthesis

CPU1 e Sync. Model - Interrupts
e Bus channel - Arbiter + Signals
IC * Interface model > RTL
- e Channel access > PE interface
e
9 TX
Arbiter J A
o i
* \
W@ | «— Interface Synthesis
CPU2
g';“og’geggifjAb%}’ﬁzgme?fjlgg D Chapter 8: Embedded Design Practice 7/8/2009 51

Interface Synthesis Issues

e Synchronization

e UBC has unique flag for each pair of communicating processes
« Flag access is implemented as polling or CPU interrupt

e Arbitration
« Selected from library or synthesized to RTL based on policy

» Bridge
» Selected from library or synthesized using bridge generator

» Addressing
« All channels are assigned unique bus addresses

* SW communication synthesis
« Bus channel function calls are replaced by C drivers

« HW communication synthesis
« DMA controller in RTL is created for each custom HW component
* Send/Recv operations are replaced by DMA transfer states

Embedded System Design . . N
3005, aaiet, Abdl),,GerstIauer, esian E} Chapter 8: Embedded Design Practice 7/8/2009 52

Cycle-Accurate Model

-
E Program ¢ Channel sync. - Interrupts
O — Ic e Transducer model
EXE ¢ Replacement for HW IP
_RTOS —
A o0
< Interface
Arbiter l
@
LE.§ Program
~ PCAM is downloaded g
Q,O& automatically for fast
prototyping with FPGAs or
HW IP simulated using validation tools
CPU2
g';"og’geggifjAa}’ﬁzimue?fi:gg D Chapter 8: Embedded Design Practice 7/8/2009 53
Example: MP3 Decoder Application
e Functional block diagram (major blocks only)
2 granules
/ AliasRed 4’|IMDCT36 —> DCT32
— | huffpec Left channel PcM
mp3 \ pcm
AliasRed —>{IMDCT36[—> DCT32
Right channel
e Characteristics
« Over 12K lines of C code in Spec
« IMDCT36 and DCT32 compute intensive functions
« Constraint: Frame processing delay < 26.12ms
« Design objective
¢ Select platform and mapping to meet constraint
grﬂ)?gegﬂifj@."iﬁﬂe??i'.gg E} Chapter 8: Embedded Design Practice 7/8/2009 54

MP3 Platform SW+0

2 granules

. SW+0
AliasR d|—>|IMDCT36|—>| DCT32 MB Mem
.| HuffDec Left channel PCM |>
" pen OPB
AI\asRed|—P|IMDCT36|—D| DCT32 : :
Right channel
» MP3 mapped to Microblaze on Xilinx board
e Pure software solution
< Easy to implement, debug and upgrade
< Frame decoding delay estimated by TLM at 35.66 ms
¢ Does not meet the frame delay constraint of 26.12 ms
g'gg’fggjﬂa}’gﬁmfggg Chapter 8: Embedded Design Practice 7/8/2009 55
MP3 Platform SW+1
SW+1
MB Mem
2 granules
<& I I oPB
_’| HuffDec Left channel
o3 DHB

a

pem
AliasRed |—P|IMDCT36|—D| DCT32

Right channel

« MP3 mapped to Microblaze (MB) SW and 1 HW component

DCT32 from left channel moved to custom HW for acceleration
Everything else in SW on Microblaze

A 4

Transducer (Tx) added to connect HW module’s DHB interface to OPB

Frame decoding delay estimated by TLM at 32.89 ms

Faster than SW+0 but does not meet frame delay constraint of 26.12 ms

Embedded System Design | «° o i ;
ey oren Desian Chapter 8: Embedded Design Practice 7/8/2009

56

MP3 Platform SW+2

MB Mem SW+2

2 granules
I | ors_

a
\

DHB _

a
\

Right channel

< MP3 Decoder mapped to Microblaze SW and 2 HW components
» DCT32 from both left and right channels moved to HW
» DCT32 functions for the two channels execute concurrently in HW
» Bridge added to connect HW module’s DHB interface to OPB
» Frame decoding delay estimated by TLM at 29.99 ms
» Faster than SW+1 but does not meet frame delay constraint of 26.12 ms

Embedded System Design Chapter 8: Embedded Design Practice 7/8/2009 57

2009: Gajski, Abdi, Gerstlauer, Schirner

MP3 Platform SW+4

MB Mem SW+4

2 granules
I | oes,

P DHB
Right channel ‘ ‘ ‘

« MP3 Decoder mapped to Microblaze SW and 4 HW components
» Both DCT32 and IMDCT36 from both channels moved to HW
» Everything else in SW on Microblaze
» Bridge added to connect HW module’s DHB interface to OPB
» Frame decoding delay estimated by TLM at 15.96 ms
» Significantly faster than SW+2 and meets frame delay constraint!

a

Embedded System Design Chapter 8: Embedded Design Practice 7/8/2009 58

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Design Quality: ESE —=— %Slices

—— %BRAMs

Delay(ms)
%Utilization Delay %Ultilization Delay
100 35 100 35
90 / 1 30 90 » 1 20
80 80
70 Wal - 25 70 //- 4 25
60 = 60 1
/-/ 20 _/ 20
50 50 4
40 __+ 15 40 4 15
30 Y e—— | W 30 + 10
20 20 /
/ T 5 10 + 5
10—« ¢
0 1 : : 0 0 w \ : 0
SW+0 SW+1 SW+2 SW+4 SW+0 SW+1 SW+2 SW+4
Manual Designs ESE Designs
* Area

e ESE designs use fewer FPGA slices and more BRAMs than manual
HW: Controller implemented with memory vs. gates

+ Performance
« ESE designs execute at similar speed as manual designs

E Desi . ; ;
©';1E’§ggiﬂ3}"g‘fsmen esign D Chapter 8: Embedded Design Practice 7/8/2009 59
Development Time: ESE vs. Manual
70
60 N\
Manual [\
g 50
@
'g 40 'S — -
? 30
g 20 o
ESE
10 7[\ -
o ez — U
Spec. LM RTL Board
models
» ESE drastically cuts RTL and Board development time
e Manual development includes months of RTL coding
« Models can be developed at Spec level with ESE
« TLM, RTL and Board models are generated automatically by ESE
Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009 60

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Validation Time: ESE vs. Traditional

wn 18.06 hrs ~~~"""""TTTTTomooooo A ==
o L
3 L7TANS —ommmmem oo -Traditional
o 1756 hrS - -cccccccccaaaaan = -
< 15.93hrS -cccccceccaaaaaao - -

10

9

8
2] 7 7 “
2 & \ —— SW+0
c 6 7 -
O 5 Vid ~ " —=— SW+1
D . o () kY Sw+2
LI ;«’//;\’\’,R & SW+4

2 CcQE -

cEoE =,
1
0T T T T T 1
Spec. TLM RTL Board
models

« ESE cuts validation time from hours to seconds

No need to verify RTL models for every design change
Designers can perform high speed validation with TLM and board

Embedded System Design D Chapter 8: Embedded Design Practice 7/8/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

61

ESE Technology Summary

e C based application input

Supports model based design and legacy reuse

* Automatic functional and timed TLM generation

Enables early design validation and reliable estimation

e Automatic SW synthesis

Provides modular, verifiable, platform specific SW code

e Automatic interface synthesis

Allows rapid implementation of heterogeneous networks

e FPGA and C/HDL export

Generates standard input for commercial prototyping and CA validation
tools

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Embedded System Design E} Chapter 8: Embedded Design Practice 7/8/2009

62

