
1

Embedded System DesignEmbedded System DesignEmbedded System DesignEmbedded System Design
Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

Chapter 6: Hardware Synthesis

5/25/2010

Chapter 6: Hardware Synthesis

Hardware Synthesis

• Design flow

• RTL architecture

• Input specification

• Specification profiling

• High-level synthesis

• Chaining and multi-cycling

• Data and control pipelining

• Scheduling

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 2Chapter 6: Hardware Synthesis

• Component interfacing

• Conclusions

2

HW Synthesis Design Flow

Tool Model

Specification

Compilation

• Compilation

RTL
Component

Library

RTL Model

Model Generation

RTL T l

Estimation

HLS

Allocation Binding Scheduling

• Estimation

• HLS

• Model generation

• Logic synthesis

• Layout

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 3Chapter 6: Hardware Synthesis

RTL Tools

...

y

Hardware Synthesis

 Design flow

• RTL architecture

• Input specification

• Specification profiling

• High-level synthesis

• Chaining and multi-cycling

• Data and control pipelining

• Scheduling

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 4Chapter 6: Hardware Synthesis

• Component interfacing

• Conclusions

3

RTL Architecture

•Controller
•FSM controller
•Programmable controller

•Datapath components
•Storage components
•Functional units
•Connection components

•Pipelining
•Functional unit
•Datapath
•Control

•Structure
•Chaining
M lti li

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 5Chapter 6: Hardware Synthesis

•Multicycling
•Forwarding
•Branch prediction
•Caching

RTL Architecture with FSM Controller

•Simple architecture

•Small number of states

Output
Logic

B1
B2

RF

Control
Inputs

Control
Signals

St t

Data
Inputs

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 6Chapter 6: Hardware Synthesis

ALU Memory
MUL

B3FSM Controller

Input
Logic

Datapath

Control
Outputs

Status
Signals

Data
Outputs

4

RTL Architecture with Programmable Controller

•Complex architecture
•Control and datapath pipelining
•Advanced structural features

•Large number of states (CW or IS)

IR
 or C

W
R

Cmem
or

PMem

P
C

B1
B2

RF

Offset

Control
Inputs

Control
Signals

Data
Inputs

Large number of states (CW or IS)

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 7Chapter 6: Hardware Synthesis

Status

Address

AG

S
R

ALU Memory
MUL

B3Programmable Controller
Datapath

Control
Outputs

Data
Inputs

Hardware Synthesis

 Design flow

 RTL architecture

• Input specification

• Specification profiling

• High-level synthesis

• Chaining and multi-cycling

• Data and control pipelining

• Scheduling

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 8Chapter 6: Hardware Synthesis

• Component interfacing

• Conclusions

5

Input Specification

• Programming language (C/C++, …)
• Programming semantics requires pre-synthesis optimization

• System description language (SystemC, …)System description language (SystemC, …)
• Simulation semantics requires pre-synthesis optimization

• Control/Data flow graph (CDFG)
• CDFG generation requires dependence analysis

• Finite state machine with data (FSMD)
• State interpretation requires some kind of scheduling

• RTL netlist

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 9Chapter 6: Hardware Synthesis

• RTL design that requires only input and output logic synthesis

• Hardware description language (Verilog / VHDL)
• HDL description requires RTL library and logic synthesis

C Code for Ones Counter

•Programming language semantics

• Sequential execution,

• Coding style to minimize coding

01: int OnesCounter(int Data){
02: int Ocount = 0;
03: int Temp, Mask = 1;
04: while (Data > 0) {
05: Temp = Data & Mask;

01: while(1) {
02: while (Start == 0);
03: Done = 0;
04: Data = Input;
05: Ocount = 0;
06: Mask = 1;
07: while (Data>0) {
08: Temp = Data & Mask;
09 O O

•HW design

• Parallel execution,

• Communication through signals

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 10Chapter 6: Hardware Synthesis

Function-based C code RTL-based C code

p ;
06 Ocount = Ocount + Temp;
07: Data >>= 1;
08: }
09: return Ocount;
10: }

09: Ocount = Ocount + Temp;
10: Data >>= 1;
11: }
12: Output = Ocount;
13: Done = 1;
14: }

6

CDFG for Ones Counter

0

1Input

DO tM kD t

Start

•Control/Data flow graph

•Resembles programming language

>0

0

Done

0

Ocount

1

MaskData

&

>>1 +

DoneData

DoneOcountData

Data

Mask Ocount

p g g g g

•Loops, ifs, basic blocks (BBs)

•Explicit dependencies

•Control dependences between BBs

•Data dependences inside BBs

•Missing dependencies between BBs

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 11Chapter 6: Hardware Synthesis

0

DoneOutput

1

FSMD for Ones Counter

•FSMD more detailed then CDFG

•States may represent clock cycles

•Conditionals and statements executed
concurrently

• All statement in each state executed
concurrently

•Control signal and variable assignments
executed concurrently

FSMD i l d h d li

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 12Chapter 6: Hardware Synthesis

•FSMD includes scheduling

•FSMD doesn't specify binding or
connectivity

7

CDFG and FSMD for Ones Counter

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 13Chapter 6: Hardware Synthesis

RTL Specification for Ones Counter

Present Inputs: Next Output:
State Start Data = 0 State Done

S0 0 X S0 X

S0 1 X S1 X

S1 X X S2 0

S2 X X S3 0

S3 X X S4 0

Input logic table

•RTL Specification

•Controller and datapath netlist

•Input and output tables for logic
synthesis S4 X X S5 0

S5 X X S6 0

S6 X 0 S4 0

S6 X 1 S7 0

S7 X X S0 1

State
RF Read
Port A

RF Read
Port B

ALU Shifter RF selector RF Write Outport

S0 X X X X X X Z

S1 X X X X Inport RF[0] Z

Output logic table (RF[0] = Data, RF[1] = Mask, RF[2] = Ocount, RF[3] = Temp)

Output
Logic

Start

Selector

Control
Signals

Inport

RF

synthesis

•RTL library needed for netlist

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 14Chapter 6: Hardware Synthesis

p []

S2 RF[2] RF[2] subtract pass B3 RF[2] Z

S3 RF[2] X increment pass B3 RF[1] Z

S4 RF[0] RF[1] AND pass B3 RF[3] Z

S5 RF[2] RF[3] add pass B3 RF[2] Z

S6 RF[0] X pass shift right B3 RF[0] Z

S7 RF[2] X X X X disable enable

status

B1

ALU

Shifter

B3
FSM Controller

Input
Logic

Datapath

Done

B2

Outport

8

HDL description of Ones Counter

01: // …
02: always@(posedge clk)
03: begin : output_logic
04: case (state)
05: // …
06: S4: begin

•HDL description

•Same as RTL description
06: S4: begin
07: B1 = RF[0];
08: B2 = RF[1];
09: B3 = alu(B1, B2, l_and);
10: RF[3] = B3;
11: next_state = S5;
12: end
13: // …
14: S7: begin
15: B1 = RF[2];
16: Outport <= B1;

•Several levels of abstraction

•Variable binding to storage

•Operation binding to FUs

•Transfer binding to connections

•Partial HLS may be needed

•Controller and datapath

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 15Chapter 6: Hardware Synthesis

17: done <= 1;
18: next_state = S0;
19: end
20: endcase
21: end
22: endmodule

netlists must be generated

Hardware Synthesis

 Design flow

 RTL architecture

 Input specification

• Specification profiling

• High-level synthesis

• Chaining and multi-cycling

• Data and control pipelining

• Scheduling

• Component interfacing

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 16Chapter 6: Hardware Synthesis

p g

• Conclusions

9

Profiling and Estimation

• Pre-synthesis optimization

• Preliminary scheduling
• Simple scheduling algorithm

• Profiling
• Operation usage

• Variable life-times

• Connection usage

• Estimation
• Performance

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 17Chapter 6: Hardware Synthesis

e o a ce

• Cost

• Power

Square-Root Algorithm (SRA)

S0

a = In1
b = In2

0
Start• SQR = max ((0.875x + 0.5y), x)

(| | |b|) 1S1

S2

S3

S4

S5

t1 = |a|
t2 = |b|

t5 = x – t3

x = max(t1 , t2)
y = min (t1 , t2)

t3 = x >> 3
t4 = y >>1

• x = max (|a|, |b|)

• y = min (|a|, |b|)

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 18Chapter 6: Hardware Synthesis

S5

S6

S7

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

10

Variable and Operation Usage

S0

a = In1
b = In2

0
Start

S1 S2 S3 S4 S5 S6 S7

a X

b X

t1 X
t2 X

x X X X X
1S1

S2

S3

S4

S5

t1 = |a|
t2 = |b|

t5 = x – t3

x = max(t1 , t2)
y = min (t1 , t2)

t3 = x >> 3
t4 = y >>1

Variable usage

x X X X X

y X

t3 X

t4 X X

t5 X

t6 X

t7 X

No. of live
variables

2 2 2 3 3 2 1

S1 S2 S3 S4 S5 S6 S7
Max. no. of

units

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 19Chapter 6: Hardware Synthesis

S5

S6

S7

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

abs 2 2

min 1 1

max 1 1 1

>> 2 2

- 1 1

+ 1 1

No. of
operations

2 1 2 1 1 1

Operation usage

Connectivity usage

S1 S2 S3 S4 S5 S6 S7
Max. no.
of units

abs 2 2

min 1 1

max 1 1 1

>> 2 2
Operation usage

S0

a = In1
b = In2

0
Start

a b t1 t2 x y t3 t4 t5 t6 t7

abs1 I O

abs2 I O

>> 2 2

- 1 1

+ 1 1

No. of
operations

2 1 2 1 1 1

1S1

S2

S3

S4

S5

t1 = |a|
t2 = |b|

t5 = x – t3

x = max(t1 , t2)
y = min (t1 , t2)

t3 = x >> 3
t4 = y >>1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 20Chapter 6: Hardware Synthesis

abs2 I O

min I I O

max I I I O I O

>>3 I O

>>1 I O

- I I O

+ I I O

Connectivity usage S6

S7

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

11

Hardware Synthesis

 Design flow

 RTL architecture

 Input specification

 Specification profiling

• High-level synthesis

• Chaining and multi-cycling

• Data and control pipelining

• Scheduling

• Component interfacing

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 21Chapter 6: Hardware Synthesis

p g

• Conclusions

Datapath Synthesis

• Variable Merging (Storage Sharing)

• Operation Merging (FU Sharing)

• Connection Merging (Bus Sharing)

• Register merging (RF sharing)

• Chaining and Multi-Cycling

• Data and Control Pipelining

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 22Chapter 6: Hardware Synthesis

12

Gain in register sharing

•Register sharing

•Grouping variables with non-overlapping lifetimes

a

Selector Selector

c b d

+

Selector Selector

a , c b , d

p g pp g

•Sharing reduces connectivity cost

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 23Chapter 6: Hardware Synthesis

Selector Selector

x y

+

x , y

+

Selector

Partial FSMD Datapath without register sharing Datapath with register sharing

General partitioning algorithm

Create compatibility

Start
•Compatibility graph

•Compatibility:
Create compatibility

graph

Merge highest priority
nodes

Upgrade compatibility
graph

•Non-overlapping in time

•Not using the same resource

•Non-compatible:

•Overlapping in time

•Using the same resource

• Priority

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 24Chapter 6: Hardware Synthesis

Stop

no yesAll nodes
incompatible

y

•Critical path

•Same source, same destination

13

Variable Merging for SRA

1/0 0/1

1/0

S0

a = In1
b = In2

0
Start

0/1

(a) Initial compatibility graph

(b) Compatibility graph after merging t3, t5, and t6

1S1

S2

S3

S4

S5

t1 = |a|
t2 = |b|

t5 = x – t3

x = max(t1 , t2)
y = min (t1 , t2)

t3 = x >> 3
t4 = y >>1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 25Chapter 6: Hardware Synthesis

(c) Compatibility graph after merging t1, x, and t7

S5

S6

S7

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

Variable Merging for SRA

a

b t1

t2 y

x

t4

t3 t5 t6

t7

1/0 0/1

1/0

0/1

(a) Initial compatibility graph

(b) Compatibility graph after merging t3, t5, and t6

(d) Compatibility graph after merging t2 and y

(e) Final compatibility graph

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 26Chapter 6: Hardware Synthesis

(c) Compatibility graph after merging t1, x, and t7

R1 = [a, t1, x, t7]
R2 = [b, t2, y, t3, t5, t6]
R3 = [t4]

(f) Final register assignments

14

Variable Merging for SRA

1/0 0/1

1/0

0/1

(a) Initial compatibility graph (b) Compatibility graph after merging t3, t5, and t6

(c) Compatibility graph after merging t1 x and t7 (d) Compatibility graph after merging t2 and y

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 27Chapter 6: Hardware Synthesis

R1 = [a, t1, x, t7]
R2 = [b, t2, y, t3, t5, t6]
R3 = [t4]

(c) Compatibility graph after merging t1, x, and t7

(e) Final compatibility graph (f) Final register assignments

Datapath with Shared Registers

•Variables combined into registers

•One functional unit for each operation

Selector Selector

R1 R2 R3

•One functional unit for each operation

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 28Chapter 6: Hardware Synthesis

| a | | b | min max + - >>1 >>3

15

Gain in Functional Unit Sharing

•Functional unit sharing

•Smaller number of FUs

Si

a

Selector Selector

c b d

•Larger connectivity cost

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 29Chapter 6: Hardware Synthesis

x = a + b

y = c - d

Sj

Selector Selector

x y

+/-

Partial FSMD Non-shared design Shared design

Operation Merging for SRA

1/0

|a| |b|

min max

1/0

1/0
1/0

1/1 1/1

0/0 1/1

1/1
2/1

+ -
1/1

1/1 2/0

|a| |b|

min max

1/0

1/1 1/1

1/0

Initial compatibility graph

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 30Chapter 6: Hardware Synthesis

a

+ -

1/1

2/1 2/0

1/1

Compatibility graph after merging of + and -

16

Operation Merging for SRA

1/0

|a| |b|

min max

1/0

1/0
1/0

1/1 1/1

0/0 1/1

1/1
2/1

+ -
1/1

1/1 2/0

|a| |b|

min max

1/0

1/1 1/1

1/0

Initial compatibility graph Compatibility graph after merging of min, + and -

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 31Chapter 6: Hardware Synthesis

a

+ -

1/1

2/1 2/0

1/1

Compatibility graph after merging of + and - Final graph partitions

Datapath with Shared Registers and FUs

•Variables combined into registers

•Operations combined into functional units

Selector Selector

R1 R2 R3

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 32Chapter 6: Hardware Synthesis

abs/max
>>1Selector

abs/min/+/-

>>3

17

Connection usage for SRA

S0

a = In1
b = In2

0
Start

S0 S1 S2 S3 S4 S5 S6 S7

A X

B X X

C X X X

D X X

E X

F X X X X

1S1

S2

S3

S4

S5

t1 = |a|
t2 = |b|

t5 = x – t3

x = max(t1 , t2)
y = min (t1 , t2)

t3 = x >> 3
t4 = y >>1

•Merge connections
i t b

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 33Chapter 6: Hardware Synthesis

F X X X X

G X

H X

I X X X

J X X X X

K X

L X

M X

N X

S6

S7

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

Connection usage table

into buses

Connection Merging for SRA

•Combine connection not used at the same time

•Priority to same source, same destination

•Priority to maximum groups

I

J

K

L

M

N

S0 S1 S2 S3 S4 S5 S6 S7

A X

B X X

C X X X

D X X

E X

F X X X X

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 34Chapter 6: Hardware Synthesis

Compatibility graph for input buses Compatibility graph for output buses

Bus assignment

G X

H X

I X X X

J X X X X

K X

L X

M X

N X

Connection usage table

18

Datapath with Shared Registers, FUs and Buses

•Minimal SRA architecture

•3 registers

•4 (2) functional units

4 b• 4 buses

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 35Chapter 6: Hardware Synthesis

Register Merging into RFs

S0

a = In1
b = In2

0
Start

•Register merging: Port sharing

•Merge registers with non-overlapping access times

S0 S1 S2 S3 S4 S5 S6 S7

R1

R2

R3

Register assignment

1S1

S2

S3

S4

S5

t1 = |a|
t2 = |b|

t5 = x – t3

x = max(t1 , t2)
y = min (t1 , t2)

t3 = x >> 3
t4 = y >>1

•No of ports is equal to simultaneous read/write
accesses

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 36Chapter 6: Hardware Synthesis

R1 R2

R3

Register access table

Compatibility graph

S6

S7

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

19

Datapath with Shared RF

In1 In2

•RF minimize connectivity cost by sharing ports

H

In1 In2

R1

R2

Bus1

abs/max abs/min/+/-

Bus2

R3

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 37Chapter 6: Hardware Synthesis

Out

>>3 >>1

Bus3

Bus4

Hardware Synthesis

 Design flow

 RTL architecture

 Input specification

 Specification profiling

 High-level synthesis

• Chaining and multi-cycling

• Data and control pipelining

• Scheduling

• Component interfacing

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 38Chapter 6: Hardware Synthesis

p g

• Conclusions

20

Datapath with Chaining
S0

a = In1
b = In2

0

1

Start = 1

S1

•Chaining connects two or more FUs

•Allows execution of two or more operation
in a single clock cycle

1S1

S2

S3

S4

t1 = |a|
t2 = |b|

t5 = x – t3

x = max(t1 , t2)
t3 = max(t1 , t2)>>3
t4 = min (t1 , t2)>>1

•Improves performance at no cost

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 39Chapter 6: Hardware Synthesis

In 2

S5

S6

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

S0

a = In1
b = In2

0

1

Start

S1
t1 | |

Datapath with Chained and Multi-Cycled FUs

•Multi-cycling allows use of slower FUs

•Multi-cycling allows faster clock-cycle

In 1

R1 R2 R3

Bus 1

Bus 2

In 2
S2

S3

S4

t1 = |a|
t2 = |b|

t4 = [min (t1, t2) >>1]

x = max(t1 , t2)
t3 = max(t1 , t2)>>3
[t4]= min (t1 , t2)>>1

t5 = x – t3

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 40Chapter 6: Hardware Synthesis

abs/+/-

Bus 3

Bus 4

Out

abs/max min

>>3 >>1

In 2

S5

S6

t6 = t4 + t5

t7 = max (t6 , x)

Done = 1
Out = t7

S7

21

Hardware Synthesis

 Design flow

 RTL architecture

 Input specification

 Specification profiling

 High-level synthesis

 Chaining and multi-cycling

• Data and control pipelining

• Scheduling

• Component interfacing

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 41Chapter 6: Hardware Synthesis

p g

• Conclusions

Pipelining

• Functional Unit pipelining
• Two or more operation executing at the same time• Two or more operation executing at the same time

• Datapath pipelining
• Two or more register transfers executing at the same time

• Control Pipelining
• Two or more instructions generated at the same time

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 42Chapter 6: Hardware Synthesis

22

Functional Unit Pipelining (1)

•Operation delay cut in ”half”

•Shorter clock cycle

•Dependencies may delay some states•Dependencies may delay some states

•Extra NO states reduce performance gain

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 43Chapter 6: Hardware Synthesis

Functional Unit Pipelining (2)

S0 S1 S2 NO S3 S4 S5 NO S6 NO S7 NO S8

Read R1 a t1 t1 X X t7

Read R2 b t2 t2 t3 t5 t6

Read R3 t4

Timing diagram with 4 additional NO states

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 44Chapter 6: Hardware Synthesis

Read R3 t4

ALU stage 1 |a| |b| max min - + max

ALU stage 2 |a| |b| max min - + max

Shifters >>3 >>1

Write R1 a t1 x t7

Write R2 b t2 t3 t5 t6

Write R3 t4

Write Out t7

23

Datapath Pipelining (1)

•Register-to-register delay cut in “equal” parts
•Much shorter clock cycle
•Dependencies may delay some states
•Extra NO states reduce performance gain

In1

R1 R2 R3

Bus1

Bus2

In2

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 45Chapter 6: Hardware Synthesis

>>1

Bus3

Bus4

>>3

Out

ALU

Datapath pipelining (2)

Start

a = In1
b = In2

S0

0

1S1

In1

R1 R2 R3

Bus1

Bus2

In2

ALU

t1 = |a|

x = max(t1 , t2)
t3 = max(t1 , t2)>>3

t4 = min(t1 , t2)>>1

S2

S4

t5 = x – t3

S5

t2 = |b|

S3

Timing diagram with additional NO clock cycles

>>1

Bus3

Bus4

>>3

Out

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Read R1 a t1 t1 x x t7

Read R2 b t2 t2 t3 t5 t6

Read R3 t4

ALUIn(L) a t1 t1 x t4 x

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 46Chapter 6: Hardware Synthesis

In 2
Done = 1
Out = t7

t6 = t4 + t5

t7 = max (t6 , x)

S6

S7

S8

ALUIn(L) a t1 t1 x t4 x

ALUIn(R) b t2 t2 t3 t5 t6

ALUOut |a| |b| max min - + max

Shifters >>3 >>1

Write R1 a t1 x t7

Write R2 b t2 t3 t5 t6

Write R3 t4

Write Out t7

24

Datapath and Control Pipelining (1)

•Fetch delay cut into several parts
•Shorter clock cycle
•Conditionals may delay some states
•Extra NO states reduce performance gain

S1

1 0
a>b

S2

Register

Selector

RF Mem

Bus2

Bus1

Status

Control
signals

Data
Inputs

C
W

R

P
C CMem

Offset

Control
Inputs

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 47Chapter 6: Hardware Synthesis

x = c + d

y = x - 1

S2

S3

ALU

Status
Signals

/ 

Register
Datapath

Data
Outputs

AG

S
R

Controller

Control
Outputs

Bus3

Data and Control Pipelining (2)

ALU

Register

Selector

RF Mem

Bus2

Bus1

Status
Signals

Control
signals

/

Data
Inputs

C
W

R

P
C CMem

Offset

Control
Inputs

•3 NO cycles for the branch

•2 NO cycles for data dependence

S1

1 0
a>b

S2

ALU
g

/ 

Register
Datapath

Data
Outputs

AG

S
R

Controller

Control
Outputs

Bus3

0 1 2 3 4 5 6 7 8 9 10

Read PC 10 11 12 13 14 15 16 17 18 19 20

Read CWR S1 NO NO NO S2 NO NO S3

Read RF(L) a c x

Cycle
Operation

Timing diagram with additional NO clock cycles

y p

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 48Chapter 6: Hardware Synthesis

x = c + d

y = x - 1

S2

S3

Read RF(R) b d 1

Write ALUIn(L) a c x

Write ALUIn(R) b d 1

Write ALUOut c+d x-1

Write RF x y

Write SR a>b

Write PC 11 12 13 14/17 15 16 17 18 19 20

25

Hardware Synthesis

 Design flow

 RTL architecture

 Input specification

 Specification profiling

 High-level synthesis

 Chaining and multi-cycling

 Data and control pipelining

• Scheduling

• Component interfacing

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 49Chapter 6: Hardware Synthesis

p g

• Conclusions

Scheduling

• Scheduling assigns clock cycles to register transfers

• Non-constrained scheduling
• ASAP scheduling

• ALAP scheduling

• Constrained scheduling
• Resource constrained (RC) scheduling

– Given resources , minimize metrics (time, power, …)

• Time constrained (TC) scheduling

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 50Chapter 6: Hardware Synthesis

() g
– Given time, minimize resources (FUs, storage, connections)

26

C and CDFG for SRA Algorithm

0
Start

a=In1
b=In2

0

In1 In 2

a b

t1=|a|
t2=|b|

x=max(t1,t2)
y=min(t1,t2)

t3=x>>3
t4=y>>1
t5=x-t3

t6=t4+t5

1
1

Start

a b

min

|a| |b|

max

>>1 >>3

-

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 51Chapter 6: Hardware Synthesis

C flowchart

t6 t4 t5
t7=max(t6,x)

Done=1
Out=t7

+

max

Out Done

1

CDFG

ASAP and ALAP Scheduling

min

|a| |b|

max

|a| |b|

max
S2

S1

a b a b

0

In1 In 2

a b

>>1 >>3

-

+

max

min

>>1

>>3

-

+

max

S5

S6

S7

S2

S3

S4

1

Start

a b

min

|a| |b|

max

>>1 >>3

-

+

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 52Chapter 6: Hardware Synthesis

ASAP
schedule

ALAP
schedule

Out Out

S7

S8

+

max

Out Done

1

27

RC Scheduling

0

In1 In 2

a b

min

|a| |b|

max

|a| |b|

max
S2

S1

a b a b

Perfrom ASAP

Perfrom ALAP

Determine mobilities

1

Start

a b

min

|a| |b|

max

>>1 >>3

-

+

>>1 >>3

-

+

max

min

>>1

>>3

-

+

max

S5

S6

S7

S2

S3

S4

Create ready list

Sort ready list by
mobilities

Schedule ops from
ready list

Delete scheduled
ops from ready list

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 53Chapter 6: Hardware Synthesis

+

max

Out Done

1

ASAP
schedule

ALAP
schedule

Out Out

S7

S8

no

Add new ops to
ready list

Increment state
index

All ops
scheduled?

yes

RC Scheduling

min

|a| |b|

max

|a| |b|

max
S2

|a| |b|

0
|a|

|b|
|b|

0
S1

a b a b a b

Perfrom ASAP

Perfrom ALAP

Determine mobilities

>>1 >>3

-

+

max

min

>>1

>>3

-

+

max

S5

S6

S7

S2

S3

S4

max

>>3

min

+

max

0

1

1

0

min

max

>>1

>>3

-

+

max

0

0

min

- >>1

1

0

Create ready list

Sort ready list by
mobilities

Schedule ops from
ready list

Delete scheduled
ops from ready list

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 54Chapter 6: Hardware Synthesis

ASAP
schedule

Ready list with mobilities
(ALAP – ASAP)

ALAP
schedule

RC schedule
(for single FU
and 2 shifters)

Out Out

S7
0

Out

S8

no

Add new ops to
ready list

Increment state
index

All ops
scheduled?

yes

28

TC Scheduling

Perform ASAP

Perform ALAP
|a| |b|S1

a b a b

S1
1.0

AU
 units

Probability
sum/state

Shift
 units

no

Determine mobilities
ranges

Create probability
distribution graphs

All ops
scheduled?

yes

Any gain?
yesno

min max

>>1 >>3

-

+

max

min

|a| |b|

max

>>1

>>3

+

S5

S6

S3

S4

S2

-

1.83

S5

S6

S2

S3

S4

.83

.83

1.0

1.0

.83

.83

.33

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 55Chapter 6: Hardware Synthesis

Schedule op with
maximum gain

Schedule op with
minimum loss

ASAP ALAP

Out

Out

maxS7

S8

S6

S7 .5

Initial probability distribution graph

Distribution Graphs for TC scheduling

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 56Chapter 6: Hardware Synthesis

Initial probability distribution graph Graph after max, +, and – were scheduled

29

Distribution Graphs for TC scheduling

S1
|a| |b|

AU
 units

Probability
sum/state

Shift
 units

1.0

m
in

>
>

1

+

1.0

S5

S6

S2

S3

S4

max

min

- >>1

>>3

1.0

1.0

1.0

1.0

1.0

1.0

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 57Chapter 6: Hardware Synthesis

Graph after max, +, and – were scheduled

S6

S7
max

1.0

1.0

Graph after max, +, -, min, >>3, and >>1
were scheduled

S1
|a| |b|

AU
 units

Probability
sum/state

Shift
 units

1.0
S1

|a|

AU
 units

Probability
sum/state

Shift
 units

1.0

Distribution Graphs for TC scheduling

1.0

S5

S2

S3

S4

|a| |b|

max

min

- >>1

>>3

1.0

1.0

1.0

1 0

1.0

1.0

1.0

S5

S2

S3

S4

|b|

max

min

- >>1

>>3

1.0

1.0

1.0

1 0

1.0

1.0

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 58Chapter 6: Hardware Synthesis

S6

S7
max

1.0

1.0

S6

S7
max

1.0

1.0

Graph after max, +, -, min, >>3, and >>1
were scheduled

Distribution graph for final schedule

30

TC Scheduling

min

|a| |b|

max |a| |b|

|a|

|b|

S1

S2

a b a b a b

0

In1 In 2

a b

>>1 >>3

-

+

max

min

max

>>1

>>3

+

min

max

>>1

>>3

-

+

S5

S6

S3

S4

-

1

Start

a b

min

|a| |b|

max

>>1 >>3

-

+

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 59Chapter 6: Hardware Synthesis

ASAP ALAP TC schedule

Out

Out

max maxS7

S8

Out

+

max

Out Done

1

Hardware Synthesis

 Design flow

 RTL architecture

 Input specification

 Specification profiling

 High-level synthesis

 Chaining and multi-cycling

 Data and control pipelining

 Scheduling

• Component interfacing

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 60Chapter 6: Hardware Synthesis

p g

• Conclusions

31

Interface Synthesis

•Combine process and channel codes

•HW and protocol clock cycles may differ

•Insert a bus-interface component

•Communication in three parts:

•Freely schedulable code

•Scheduled with process code

•Schedule constrained code

•MAC driver from library for selected bus interface

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 61Chapter 6: Hardware Synthesis

•MAC driver from library for selected bus interface

•Bus interface

•Implemented by bus interface component from library

Bus Interface Controller (1)

Reg RF Mem

Bus 1

Control
signals

CMem

Controller Datapath

Selector

ALU

Bus 2

Status
signals

/ 
AG

offset

Control

ack

Address

Write
Queue

Read
Queue

Output logic

Input
logic

Bus 3 Bus 4

Selector

Control
signals

ready OutCntrl OutAddr OutData InData

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 62Chapter 6: Hardware Synthesis

g

DATA

ADDRESS

CONTROL

GRANT

REQUEST

INC

MAC driver

32

Bus Interface Controller (2)

Reg RF Mem

Bus 2

Bus 1

Status
signals

Control
signals

CMem

AG

offset

Controller Datapath

Selector

ALU
signals

/ 

Control

ack

Address

Write
Queue

Read
Queue

Output logic

Input
logic

Bus 3 Bus 4

Selector

DATA

ADDRESS

CONTROL

GRANT

REQUEST

Control
signals

INC

ready OutCntrl OutAddr OutData InData

MAC driver

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 63Chapter 6: Hardware Synthesis

DATA

Bus protocol

Transducer/ Bridge

•Translates one protocol into another

•Controller1 receives data with protocol1 and writes into queue

•Controller2 reads from queue and sends data with protocol2

Processor1
<clk1>

Processor2
<clk2>

Controller1
<clk1>

Controller2
<clk2>

Transducer

Ready1
Ack1

Ready2
Ack2

PE1 PE2
Bus 1 Bus 2

Interrupt2Interrupt1

Data1 Data2

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 64Chapter 6: Hardware Synthesis

Memory1 Memory2Queue
<clk3>

33

Conclusion

• Synthesis techniques
• Variable Merging (Storage Sharing)

• Operation Merging (FU Sharing)

• Connection Merging (Bus Sharing)• Connection Merging (Bus Sharing)

• Architecture techniques
• Chaining and Multi-Cycling

• Data and Control Pipelining

• Forwarding and Caching

• Scheduling
• Metric constrained scheduling

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

5/25/2010 65Chapter 6: Hardware Synthesis

• Interfacing
• Part of HW component

• Bus interface unit

• If too complex, use partial order

