
Embedded System DesignEmbedded System Design
Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

7/08/2009

System Synthesis

7/08/2009 2Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

2

7/08/2009 3Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Traditional System Design

Platform HW Dev. SW Dev. App. Dev. PrototypeBoard
+ BSP

Board

3

• Hardware first approach
• Platform is defined by architect or based on legacy

• Designers develop and verify RTL model of platform

• Slow error prone process

• SW development after HW is finalized
• Debugging is complicated on the board due to limited observablity

• HW errors found during SW development are difficult to rectify

• Application is ported after system SW is finalized

7/08/2009 4Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Virtual Platform based System Design

HW Dev.

Platform Platform
Modeling

Virtual
Platform Board

+ BSP

SW Dev.

App. Dev.

VP

Prototype

4

• Virtual platform (VP) is a fast model of the HW platform
• Typically an instruction set simulator or C/C++ model of the processor

• Peripherals are modeled as remotely callable functions

• Executes several orders of magnitude faster than RTL

• SW and HW development are concurrent
• VP serves as the golden model for both SW and HW development

• SW development can start earlier

• HW designers can use SW for realistic test bench for RTL

7/08/2009 5Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Model-based System Design

TLM
Gen.

TLM
ASIC/
FPGA
Tools

Board
+ BSP
+ App

SW Gen.

HW Gen.
Prototype

Platform

C/MoC

Application
Developer

SW Decisions

HW Decisions

5

• Model based design gives control to application developers
• Application is captured as high level C/C++/UML specification

• Transaction level model (TLM) is used to verify and evaluate the design

• System synthesis
• The best platform for given application can be synthesized automatically

• For legacy platforms, application mapping can be generated automatically

• Cycle accurate SW/HW can be generated from TLM for implementation

7/08/2009 6Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

6

7/08/2009 7Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Model Based Synthesis

System Synthesis

Cycle-accurate SW/HW Synthesis

TLM

CAM

Specification

TLMTLMs

Component
Models

Component
Library

• Synthesis of cycle-accurate model (CAM) from specification
• Process may be divided into several steps

• Specification is defined as application model and design constraints

• Several intermediate models, such as TLMs, may be used

• Platform component models are needed for TLM generation

7/08/2009 8Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

System Synthesis Inputs and Output

• Inputs
• Application Model

– Purely functional model

– Specified in a given model of computation (Stateflow, dataflow, CSP, MP)

• Component Models
– Data models of configurability and metrics

– Functional models of component services

– Examples: HW IP models (Processor, Peripheral, Bus), SW IP models
(RTOS, Drivers)

• Constraints
– Bounds on metrics (Performance, area, power, reliability, security)

– Optimization goal as a cost function of metrics

• Output
• TLM of application mapped to HW/SW platform

7/08/2009 9Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Three Models with Respect to OSI (Ref. Chapter 3)

Cycle Accurate Model

Transaction Level Model

Specification Model

7. Application
6. Presentation
5. Session
4. Transport
3. Network
2b. Link + Stream
2a. Media Access Ctrl
2a. Protocol
1. Physical

7. Application
6. Presentation
5. Session
4. Transport
3. Network
2b. Link + Stream
2a. Media Access Ctrl
2a. Protocol
1. Physical

Address lines
Data lines

Control lines

TLMs

Spec

7/08/2009 10Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

10

7/08/2009 11Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Synthesis Case 1: Fixed Platform and Mapping

• Initial platform and mapping are given

• Optimization tools may modify spec under given constraints

7/08/2009 12Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Tool support for Synthesis Case 1

• GUI for application specification

• GUI for platform specification

• GUI for application to platform mapping

• TLM generation tool

• TLM-based metric estimation tools

• Constraint-based spec optimization tools

7/08/2009 13Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Input: Application Model

v1

C
1

P1 P2

P3 P4

C2

13

• Application model consists of
• Processes for computation (eg. P1, P2, P3, P4)
• Channels for communication (eg. C1 between P1 and P3)
• Variables for storage (eg. v1)

7/08/2009 14Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Application Model Objects

• Processes
• Symbolic representation of computation
• Contain C/C++ code imported from reference

• Process ports
• Symbolic representation of communication

services required by processes
• Provide object orientation by allowing

processes to connect to different channels

• Channels
• Symbolic representation of inter-process

communication
• Implement communication services such as

blocking, non-blocking, handshake, FIFO etc.
• Encapsulation for communication functions

• Variables
• Symbolic representation of data storage

14

v1

C
1

P1 P2

P3 P4

C2

7/08/2009 15Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Input: Platform Architecture

T
X

CPU1 Mem

HW CPU2

A
rb

it
er

Bus1 Bus2

OS2

OS1

15

• Platform consists of
• Hardware: PEs (eg. CPU1, HW), Buses (eg. Bus1), Memories

(eg. Mem), Interfaces (eg. Transducer)
• Software: Operating systems (eg. OS1) on SW PEs

7/08/2009 16Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Platform Objects

• Processing element (PE)
• Symbolic representation of computation resources
• Different types such as SW processors, HW IPs etc.

• Bus
• Symbolic representation of communication media
• Types include shared, point-to-point, link, crossbar etc.

• Memory
• Symbolic representation of physical storage
• May contain shared variables or SW program/data

• Transducer
• For protocol conversion and store-forward routing
• Necessary for PEs with different bus protocols

• Operating system (OS)
• Software platform for individual PEs
• Needed for scheduling multiple processes on a PE

16

T
X

CPU1 Mem

HW CPU2

A
rb

it
er

Bus1 Bus2

OS2

OS1

7/08/2009 17Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Input: Mapping

T
X

v1

C
1

P1 P2

CPU1 Mem

HW IP

P3

CPU2

P4

C2

A
rb

it
e

r

Bus1 Bus2

OS

OS

17

• Processes  PEs
• Channels  Routes
• Variables  Memories

7/08/2009 18Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Mapping Rules

• Processes to PEs
• Each process in the application must be mapped to a PE
• Multiple processes may be mapped to SW PE with OS support
• Example: P1, P2  CPU1

• Channels to Routes
• All channels between processes mapped to different PEs are

mapped to routes in the platform
• Route consists of bus segments and interfaces
• Channel on each bus segment is assigned a unique address

• Variables to Memories
• Variables accessed by processes mapped to different PEs are

mapped to shared memories
• All variables are assigned an address range depending on size

18

7/08/2009 19Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Computation Timing Estimation

• Stochastic memory delay model
• DFG scheduling to compute basic block delay [DATE 08]
• RTOS model added for PEs with multiple processes

Timing
Estimation

Timed Process

Processor Model

wait(t1)

BB1

If

If YN

YN

BB2 BB3

wait(t2) wait(t3)

Process CDFG

BB1

If

If YN

YN

BB2 BB3

7/08/2009 20Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Stochastic Memory Delay Model

Mem. Overhead= 4.1
Branch Delay= 1.2

• Assumption
• Cache and branch prediction hit rate available in data model

• Delay Estimation
• Operation access overhead = Nop * ((1.0 – HRi) * (CD + Lmem))
• Data access overhead = Nld * ((1.0 – HRd) * (CD + Lmem))
• Branch prediction miss penalty = MPrate * Penalty

Cache
D-Mapped

16K
Icache: 97.79%
Dcache: 69.96%

Delay : 1

Memory
Delay: 8

BrPredict
Policy: Taken

Penalty : 2
60.00%

Memory/Branch Model

Mem./Br. Delay
Calcutation

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp

LLVM Bytecode

7/08/2009 21Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Pipeline
Scheduling

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp
8: wait 47*CT

• Assumptions
• In-order, single issue processor
• Optimistic during scheduling (100% cache hit)

Operations Datapath

Processor Data Model

Add
IF
ID

EX: int-ALU IntAdd

Sub
IF
ID

EX: int-ALU IntSub

Int-ALU
Qty: 1
IntAdd IntSub
Lat: 1 Lat: 1

Processor Timing Estimation

LLVM Bytecode

Operation delay= 42

Total BB delay=
Op.+Mem.+Br. =
47.3 cycles

7/08/2009 22Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Communication Timing Estimation

PE1 p1 p2

Tx1

PE3
Tx3

PE4

Application + Platform

Untimed Bus1

Protocol Model

E
stim

ation E
ng

ine

Timed Bus1

Bus1

PE2

Bus2

Tx2

B
us

3

• Protocol model used to estimate synchronization, arbitration
and transfer

• Timing is annotated in bus channel

Write() {
Get_Bus();
Transfer();
Release_Bus();

}

Write() {
Get_Bus();
wait (t1);
Transfer();
wait (t2);
Release_Bus();
wait (t3);

}

7/08/2009 23Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Output: SystemC Timed TLM

Bus1

P1 P2

OS
C

P
U

1

Mem

CPU2

P3

HW IP

Bus2

TX

TLM Generation Technique
• Application code  sc_thread
• Processing element  sc_module
• OS Model  sc_module
• Bus  sc_channel
• Memory  Array inside sc_module
• Interface  FIFO channel+sc_process

P4

OS

23

7/08/2009 24Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

24

7/08/2009 25Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Application to Platform Mapping

25

• Mapping is derived from Application and Platform

• Optimization loop is driven by estimation results and constraints

Chapter 4 System Synthesis

7/08/2009 26Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Application Example

• GSM Encoder
• Compresses raw speech data frame-by-frame

• Over 10K lines of C code in specification

• 5 top level functions: LP, OP, CL, CB, UP

• Contains if-then-else and loop control flow

7/08/2009 27Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Profiling

• Given input MoC, profile application for:

• Computation
– Number of operations (size)

– Operations type per data type and frequency
of use

– Concurrency between modules and
dependency

• Communication
– Volume, frequency of communication between

modules

– Timing dependency

– Latency requirements

• Storage
– Instruction size

– Variable size

7/08/2009 28Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Profiled Statistics

• Profiling helps select the appropriate components for
implementation
• All fixed point ops No need for processors with floating point units

• Large number of multiplications  Processor with HW multiplier is ideal

• CB is most computationally intensive  Ideal for custom HW mapping

7/08/2009 29Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Application Graph

LP

377

OP

337

CL

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

• Profile information is abstracted into a simplified graphical
representation for synthesis algorithms
• Node tags = millions of operations

• Edge tags = kilobytes transferred

• Control dependencies are excluded for simplicity

7/08/2009 30Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Platform Connectivity Graph

In
te

rf
ac

e

CPU Mem

HW IP DSP

A
rb

it
e

r

Bus1 Bus2

M

M

S

S S

CPU
150

HW
200

DSP
100

• Platform architecture is abstracted into a connectivity graph
showing possibility of inter-PE communication
• Node tag = PE speed (relative)

• No edge between HW and DSP due to missing DMA on Bus1

7/08/2009 31Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Load Balancing Algorithm

LP

377

OP

337

Cl

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Platform connectivity graph w/ mapping

CPU
100

HW
200

DSP
50

CB,UP

CL, LP

OP

7/08/2009 32Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Connectivity Graph of Updated Platform

• Platform architecture is abstracted into a connectivity graph
• Node = PE, Node label = Relative PE speed

• Edge = Path between PEs, Edge label = Relative communication delay

In
te

rf
ac

e

CPU Mem

HW DSP

A
rb

it
e

r

Bus1 Bus2

M

M

S

S S

CPU
150

HW
200

DSP
100

300 200

100

DMA

M

7/08/2009 33Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Longest Processing Time Algorithm

LP

377

OP

337

Cl

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Platform connectivity graph w/ mapping

CPU
100

HW
200

DSP
50

1 2

4

7/08/2009 34Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

LPT Cost Function Computation

• Cost is computed as the timing overhead of selecting a PE

• System end time and PE costs are updated at each LPT step

• PE with lowest execution time may not have the lowest cost

• LPT terminates when all functions are mapped

7/08/2009 35Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Longest Processing Time Algorithm Result

LP

377

OP

337

Cl

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Platform connectivity graph w/ mapping

CPU
100

HW
200

DSP
50

CB,OP

CI, UP

LP

1 2

4

7/08/2009 36Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

36

7/08/2009 37Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Platform Generation

7/08/2009 38Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Component Database

PE Type Cost Speed Capacity
(Speed *6 sec)

CPU 2 100 600

DSP 1 50 300

HW 5 200 1200

• Timing constraint: Application must complete in <6 seconds.

• Database of processing elements used for component selection
• Characterized by type, cost and speed

• Computation capacity is the PE speed multiplied by timing constraint

• Similar library for buses and memories may be used

7/08/2009 39Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Platform Generation Algorithm

LP

377

OP

337

Cl

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Generated Platform w/ mapping

CPU0
100

HW
200

CPU1
50

CB,CI, UP

LP

OP

1 2

1

7/08/2009 40Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

40

7/08/2009 41Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

CAM Generation

SystemC TLM

CRTLSW/RTOS
Library

Interface
Synthesis

SW
Synthesis

RTL IP
Library

Binary HW RTL IF RTL

OR
Bus

Library

Pin/Cycle Accurate Model (PCAM)
Generator

C/Verilog CAM
FPGA
Tools

Prototype

CA Sim.
Tools

41

7/08/2009 42Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

P4

OS
RTOS/
Driver

Synthesis

Compile

Cycle-Accurate Software Synthesis (Chapter 5)

Bus1

C
P

U
1

HW IP CPU2

Bus2

Compile

RTOS/
Driver

Synthesis
HAL

RTOS

EXE
P2

OS

HAL TX

Program

P1

HAL
RTOS

EXE

Program

42

• Processes  Compiled App.
• OS model Real OS
• HAL model  Real HAL

7/08/2009 43Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Cycle-Accurate Hardware Synthesis (Chapter 6)

Bus1

C
P

U
1

Mem

Processes in CHW IP (RTL)

Cycle-
accurate

Synthesis

Bus2

CPU2

P3

TX

43

• Process  Synthesizable RTL
• High level synthesis for custom
• Replacement for HW IP

7/08/2009 44Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Cycle-Accurate Interface Synthesis (Chapter 7)

CPU1 Mem

TX

HW IP

Interface Synthesis

CPU2

Arbiter

IC

44

• Sync. Model  Interrupts
• Bus channel  Arbiter + Signals
• Interface model  RTL
• Channel access  PE interface

7/08/2009 45Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Cycle-Accurate Model

C
P

U
1

Mem

Interface

HW IP

Arbiter

HAL
RTOS

EXE

PCAM is downloaded
automatically for fast

prototyping with FPGAs or
simulated using validation tools

IC

Program

HAL
RTOS

EXE

Program

CPU2

45

7/08/2009 46Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Summary

• Emergence of model-based system design
• Virtual platforms replace prototypes for early SW development
• Increasing adoption of TLMs for SW/HW design

• Challenges for synthesis of large system designs
• Manual model development is time consuming and error-prone
• Different platforms are needed for different application domains
• Mapping application to a multi-core platform is complicated

• Need for well defined model semantics is needed at TLM
and cycle-accurate levels
• Enables automatic TLM generation
• System synthesis becomes possible

• Future of system synthesis
• Based on formalized system level models such as TLM
• Automatic mapping of application to platform
• Automatic generation of application specific platforms

46

