Embedded System Design

Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

System Synthesis

Outline

m) System design trends

Model-based synthesis

» Transaction level model generation

Application to platform mapping
» Platform generation

» Cycle-accurate model generation

Embedded System Design g -
© 2009: Gajski, Abd¥. Gerstlauer, Schigmr E Chapter 4 SyStem SyntheSIS _

Traditional System Design

iR e

Platform HW Dev. Board SW Dev. Board App. Dev. Prototype
+ BSP

» Hardware first approach
« Platform is defined by architect or based on legacy
« Designers develop and verify RTL model of platform
* Slow error prone process
 SW development after HW is finalized
« Debugging is complicated on the board due to limited observablity
« HW errors found during SW development are difficult to rectify
* Application is ported after system SW is finalized

g@gﬂgiﬂa}’fﬁ;&gig‘gg D Chapter 4: System Synthesis 7/08/2009

Virtual Platform based System Design

Platform Virtual ‘
Platform Modeling Platform T Board App.Dev. Prototype

HW Dev. *BSP

» Virtual platform (VP) is a fast model of the HW platform
* Typically an instruction set simulator or C/C++ model of the processor
« Peripherals are modeled as remotely callable functions
« Executes several orders of magnitude faster than RTL
« SW and HW development are concurrent
* VP serves as the golden model for both SW and HW development
¢ SW development can start earlier
« HW designers can use SW for realistic test bench for RTL

Embedded System Design . i
S wysem o °sign D Chapter 4: System Synthesis 7/08/2009

Model-based System Design

TLM
Gen.

ASIC/
FPGA
Tools

Prototype

» Model based design gives control to application developers
« Application is captured as high level C/C++/UML specification
« Transaction level model (TLM) is used to verify and evaluate the design
e System synthesis
* The best platform for given application can be synthesized automatically
« For legacy platforms, application mapping can be generated automatically
¢ Cycle accurate SW/HW can be generated from TLM for implementation

Embedded System Design D Chapter 4: System Synthesis 7/08/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

5

Outline
» System design trends
=) Model-based synthesis
» Transaction level model generation
» Application to platform mapping
» Platform generation

» Cycle-accurate model generation

Embedded System Design o A
S Am}(ersiner, Scmrgner E} Chapter 4: System Synthesis 7/08/2009

Model Based Synthesis

—
omponent System Synthesis
Models

—
(ClEmaeE Cycle-accurate SW/HW Synthesis
Library

» Synthesis of cycle-accurate model (CAM) from specification
e Process may be divided into several steps
« Specification is defined as application model and design constraints
e Several intermediate models, such as TLMs, may be used
e Platform component models are needed for TLM generation

Eﬂgﬂggﬂaﬁgggﬁifﬁ'gg D Chapter 4: System Synthesis 7/08/2009 7
System Synthesis Inputs and Output
* Inputs
» Application Model
— Purely functional model
— Specified in a given model of computation (Stateflow, dataflow, CSP, MP)
« Component Models
— Data models of configurability and metrics
— Functional models of component services
— Examples: HW IP models (Processor, Peripheral, Bus), SW IP models
(RTOS, Drivers)
 Constraints
— Bounds on metrics (Performance, area, power, reliability, security)
— Optimization goal as a cost function of metrics
e Output
* TLM of application mapped to HW/SW platform
Embedded System Design E} Chapter 4: System Synthesis 7/08/2009 8

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Three Models with Respect to OSI (Ref. Chapter 3)

Cycle Accurate Model
Transaction Level Model i
| Specification Model)
7. __Application 7. __Application
| 6. Presentation 6. Presentation 4
5. Session 1. 5. Session
4. Transport -| 4. Transport
3. Network 3. Network
2b. Link+ Stream) _[.2b. Link+ Stream
2a._Media Access Ctrl | “ 2a. Media Access Ctrl
S 2a. Protocol 2a. Protocol
1 Pphysical | 1. Physical
el
' ContreHinels—
g@gﬂgiﬂa}’fﬁ;&gig‘gg D Chapter 4: System Synthesis 7/08/2009 9
Outline
» System design trends
* Model-based synthesis
=) Transaction level model generation
» Application to platform mapping
» Platform generation
» Cycle-accurate model generation
Embedded System Design D Chapter 4: System Synthesis 7/08/2009 10

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Synthesis Case 1: Fixed Platform and Mapping

—— - =

Application

Component TLM Generation Optimization
Models

G~ [eoron |-+ >

e Initial platform and mapping are given
e Optimization tools may modify spec under given constraints

E@gﬂgiﬂaﬁgﬂcu?ig‘gz D Chapter 4: System Synthesis 7/08/2009

11

Tool support for Synthesis Case 1

» GUI for application specification

» GUI for platform specification

» GUI for application to platform mapping
e TLM generation tool

* TLM-based metric estimation tools

« Constraint-based spec optimization tools

Embedded System Design . i
S wysem o °sign D Chapter 4: System Synthesis 7/08/2009

12

Input: Application Model

P3 P4

e Application model consists of
e Processes for computation (eg. P1, P2, P3, P4)
e Channels for communication (eg. C1 between P1 and P3)
e Variables for storage (eg. v1)

(c1))

Embedded System Design D Chapter 4: System Synthesis 7/08/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

13

Application Model Objects

e Processes
« Symbolic representation of computation
« Contain C/C++ code imported from reference

¢ Process ports
* Symbolic representation of communication
services required by processes
« Provide object orientation by allowing
processes to connect to different channels

« Channels

» Symbolic representation of inter-process
communication

« Implement communication services such as
blocking, non-blocking, handshake, FIFO etc.

« Encapsulation for communication functions

e Variables
« Symbolic representation of data storage

Embedded System Design . i
S wysem o °sign D Chapter 4: System Synthesis 7/08/2009

14

Input: Platform Architecture

CPU1 Mem
Os1
g
2 y > & >
< Busl Bus2
0Ss2
HW CPU2
* Platform consists of
e Hardware: PEs (eg. CPU1, HW), Buses (eg. Busl1), Memories
(eg. Mem), Interfaces (eg. Transducer)
* Software: Operating systems (eg. OS1) on SW PEs
Eﬂgﬂgiﬂaﬁggﬁu?ifﬁ'gg D Chapter 4: System Synthesis 7/08/2009 15
Platform Objects
e Processing element (PE) - .
« Symbolic representation of computation resources -
« Different types such as SW processors, HW IPs etc. os1
!

Arbiter

* Bus
« Symbolic representation of communication media
* Types include shared, point-to-point, link, crossbar etc.

HW

e Memory
« Symbolic representation of physical storage
* May contain shared variables or SW program/data

e Transducer
» For protocol conversion and store-forward routing
* Necessary for PEs with different bus protocols

» Operating system (OS)
« Software platform for individual PEs
« Needed for scheduling multiple processes on a PE

Embedded System Design o A
© 2009: Gajski, Abd)\l, Gerstlauer, Scmrgner E} Chapter 4 SyStem Synthe5|s

Busl

7/08/2009

x
ol
D Bule

0Ss2

CPU2

16

Input: Mapping

CPU1 Mem
¢ Processes 2 PEs
¢ Channels 2 Routes
@ @‘ vli ¢ Variables 2 Memories
[[os]
s L] (]
.'é —A[A » ﬁ >
< O Busl Bus2
' ‘] [[os]
P3
| @
HW IP CPU2
EﬁlﬂeﬂgigAiYsifiﬂufifJ%Q D Chapter 4: System Synthesis 7/08/2009 17

Mapping Rules

* Processes to PEs
« Each process in the application must be mapped to a PE
« Multiple processes may be mapped to SW PE with OS support
e Example: P1, P2 > CPU1

¢ Channels to Routes

¢ All channels between processes mapped to different PEs are
mapped to routes in the platform

¢ Route consists of bus segments and interfaces
¢ Channel on each bus segment is assigned a unique address

¢ Variables to Memories

» Variables accessed by processes mapped to different PEs are
mapped to shared memories

e All variables are assigned an address range depending on size

Embedded System Design . i
S wysem o °sign E} Chapter 4: System Synthesis 7/08/2009

18

Computation Timing Estimation

ooo

Processor Model
BB2 BBR3 (l]BB? BB3

8 8 u wa(i]t(IZ) wa(i]t(IS)
% Timing
— . : —
Estimation

Process CDFG

L) __ Timed Process)

« Stochastic memory delay model
* DFG scheduling to compute basic block delay [DATE 08]
 RTOS model added for PEs with multiple processes

Embedded System Design D Chapter 4: System Synthesis 7/08/2009 19

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Stochastic Memory Delay Model

e Assumption
« Cache and branch prediction hit rate available in data model

e Delay Estimation
« Operation access overhead = NOp *((1.0-HR) *(CD + L.)
 Data access overhead = N, * (1.0 -HR,) * (CD + L _..))

+ Branch prediction miss penalty = MP . * Penalty
Cach Memor
(O BrPredict
Iljcad;‘e:_ %79' 79960;" Policy: Taken

l:a=%i-1 Cac:;) Penaltyo: 2
2:tl=a+2 bl -4 G0X00%4
3:t2=%$n*$m Memory/Branch Model
4:t3=1t1-12
5:load b
6:t4=b/10 _
7:imp | Mem/Br.Delay | . Mem. Overhead= 4.1

Calcutation Branch Delay= 1.2

e J

Embedded System Design o A
S Am}(ersiner, Scmrgner D Chapter 4: System Synthesis 7/08/2009 20

Processor Timing Estimation

e Assumptions
« In-order, single issue processor
¢ Optimistic during scheduling (100% cache hit)

Operations Datapath
add Total BB delay=
Int-ALU _
e ot | | Qo T Op.+Mem.+Br. =
L 47.3 cycles
Processor Data Model Operation delay= 42
l.a=8%i-1 (@8 (D) B8 (5Ta)
2:tl=a+2
3:t2=%n*$m
4:t3=t1-1t2 —
5:load b — Pipeline
6:t4=b/10 Scheduling
7:jmp
8: wait 47*CT
o pyeeoee J
SRR Chapter 4: System Synthesis 710812009 21

Communication Timing Estimation

/ DF?\"
p1|p2|[.~ Write() {
PEL , Get_Bus(); Write() {
' Transfer(); m Get_Bus();
Release_Bus(); 2 wait (t1);
} g Transfer();
g wait (t2);
Untimed Bus1 r:n = Release_Bus();
2 3 wait (t3);
PE3 == 3| !
,:.*.'h)’_l :(x
I " W
e —
Qppllcatlon + Platform / Protocol Model L Timed Busl

* Protocol model used to estimate synchronization, arbitration
and transfer

e Timing is annotated in bus channel

Embedded System Design Chapter 4: System Synthesis 7/08/2009 22

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Output: SystemC Timed TLM

CPU1

TLM Generation Technique
* Application code > sc_thread

* Processing element > sc_module
* OS Model - sc_module
* Bus = sc_channel

* Memory > Array inside sc_module
HW IP * Interface - FIFO channel+sc_process CPU2

Embedded System Design D Chapter 4: System Synthesis 7/08/2009

© 2009: Gajski, Abdi, Gerstlauer, Schirner

23

Outline

» System design trends

Model-based synthesis

» Transaction level model generation
= Application to platform mapping

» Platform generation

» Cycle-accurate model generation

Embedded System Design . i
S wysem o °sign E} Chapter 4: System Synthesis 7/08/2009

24

Application to Platform Mapping

System Level Specification

(Application) Platform) (Constraints)

—————

Mapping Generation

omponent
Models

Mapping

TLM Generation | | Optimization |¢—

G — [} -+

e Mapping is derived from Application and Platform
< Optimization loop is driven by estimation results and constraints

Embedded System Design E} Chaptier 4: System Synihesis 7/08/2009 25

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Application Example

-
Encoder

=) =) X
[LP_AnaIysis Open Loop]

2x per frame

Update

* GSM Encoder
e Compresses raw speech data frame-by-frame
¢ Over 10K lines of C code in specification
« 5top level functions: LP, OP, CL, CB, UP
¢ Contains if-then-else and loop control flow

Embedded System Design . i
S wysem o °sign D Chapter 4: System Synthesis 7/08/2009 26

Profiling

« Given input MoC, profile application for:
e Computation
— Number of operations (size)
— Operations type per data type and frequency
of use
— Concurrency between modules and
dependency
« Communication

— Volume, frequency of communication between
modules

— Timing dependency

— Latency requirements
» Storage

— Instruction size

— Variable size

Profiling

Instr. Appl

Basic Blocl
Counters

Static Analysis

Profiled App.

g@gﬂgiﬂa}’fﬁ;&gig‘gg D Chapter 4: System Synthesis 7/08/2009 27
Profiled Statistics
rEncoder)
LP_Analysis
377.0MOp
others,
(int), 4.10%
9.10%
(*, int),
ﬁ 46.20%
(+, int),
33.50%
» Profiling helps select the appropriate components for
implementation
« All fixed point ops=» No need for processors with floating point units
« Large number of multiplications =» Processor with HW multiplier is ideal
¢ CB is most computationally intensive = Ideal for custom HW mapping
Eg&e‘gggﬂi}’sﬁsl’gugifﬁg D Chapter 4: System Synthesis 7/08/2009 28

Application Graph

p
Encoder

LP_An;Iysis 8,802 Open Luoop
377.0MOp 337.1MOp
=t 0o

272

oP

0.27

cL 320 up
- 0.16 479 44

80

Closedloop d
478.7MOp’

79,544

(Codebook
646,5M0p

315,568

69,112

Update.
43.6MOpH

» Profile information is abstracted into a simplified graphical
representation for synthesis algorithms
¢ Node tags = millions of operations
« Edge tags = kilobytes transferred
« Control dependencies are excluded for simplicity

cB
647

J

Embedded System Design D Chapter 4: System Synthesis 7/08/2009 29

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Platform Connectivity Graph

CPU Mem

I Arbiter I
- <

Interface

Busl

HW IP DSP

» Platform architecture is abstracted into a connectivity graph
showing possibility of inter-PE communication
* Node tag = PE speed (relative)
* No edge between HW and DSP due to missing DMA on Busl

Embedded System Design o A
S Am}(ersiner, Scmrgner E} Chapter 4: System Synthesis 7/08/2009 30

Load Balancing Algorithm

Select unmapped £
with max #ops

Add all FEs to
feasible (f)

Select least loaded
PE in feasible ()

Is f3FE
feasible?

Remave PE from Map f3PE;
feasitie (1) Update PE load

Is feasible (f)
ampty?

8.8
P L] op
377 337
0.27
cl 320 uP
0.16
479 44
80
cB 69
647

(a) Application graph

CL,LP @
e % @ .

(b) Platform connectivity graph w/ mapping

EsBa e Sysitam DEsEn System Synthesis 7/08/2009 31
Connectivity Graph of Updated Platform
CPU Mem
A
5 M g
= .,g
< 1 Busl é
v S y M
HW DMA
» Platform architecture is abstracted into a connectivity graph
* Node = PE, Node label = Relative PE speed
« Edge = Path between PEs, Edge label = Relative communication delay
Chapter 4: System Synthesis 7/08/2009 32

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Longest Processing Time Algorithm

8.8
Lp | OP
377 337
Map Fwith max.
cl 320 uP
0.16
Select unmapped f 479 44
with max. #ops
80
69
Map fto PE with CB
min. Cost (f, PE) 647

(a) Application graph

Update complation
times and slacks

(b) Platform connectivity graph w/ mapping

g";ge‘gggﬂa}’sf}sﬂrcugig'gg Chapter 4: System Synthesis 7/08/2009 33
LPT Cost Function Computation
System
0 End Time .
| Time
|,_Clp. PET)
T(PET) | E(PED) |
I
|Clp. PE2)
T(PE2) [Elp. PE2)]
~c(p. Pe3) |
-
T(PES]E®: PE3)]
» Costis computed as the timing overhead of selecting a PE
» System end time and PE costs are updated at each LPT step
» PE with lowest execution time may not have the lowest cost
e LPT terminates when all functions are mapped
(E";E’ge‘ggsekﬂi}’setgﬂrﬂugesf:gg D Chapter 4: System Synthesis 7/08/2009 34

Longest Processing Time Algorithm Result

8.8
Lp | OP
377 337
Map Fwith max.
cl 320 uP
0.16
Select unmapped f 479 44
with max. #ops
80
69
Map fto PE with CB
min. Cost (f, PE) 647

(a) Application graph

Update complation
times and slacks

(b) Platform connectivity graph w/ mapping

g";ge‘gggﬂa}’sf}sﬂrcugig'gg Chapter 4: System Synthesis 7/08/2009 35
Outline
» System design trends
* Model-based synthesis
» Transaction level model generation
» Application to platform mapping
=) Platform generation
» Cycle-accurate model generation
Embedded System Design D Chapter 4: System Synthesis 7/08/2009 36

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Platform Generation

|

|

- |
Constraints |
[

]
g
¢
A

g E R — —_——
- Platform Generation
Py
Component Mapping @
Models
/
TLM Generation Optimization |-
A
g@gﬂgiﬂa}’fﬁ;&gig‘gg D Chapter 4: System Synthesis 7/08/2009 37

Component Database

PE Type Cost Speed Capacity
(Speed *6 sec)
CPU 2 100 600
DSP 1 50 300
HW 5 200 1200

» Timing constraint: Application must complete in <6 seconds.

» Database of processing elements used for component selection
* Characterized by type, cost and speed
« Computation capacity is the PE speed multiplied by timing constraint
¢ Similar library for buses and memories may be used

Embedded System Design . i
S wysem o °sign D Chapter 4: System Synthesis 7/08/2009 38

Platform Generation Algorithm

8.8
Start Lp | OP
Select unmapped 377 337
1 with max
Select unmappad F + comm., to f 0.27
with max. #ops cl 320 upP
0.16
479 44
80
cB 69
647
a) Application graph
P— Map 1 to PE (a) App grap
PE with capacity
==ops in f
L Mag fio PE
CB,Cl, UP

(b) Generated Platform w/ mapping

gggeﬂgiﬂa}’sf}sﬂﬂugig'gg Chapter 4: System Synthesis 7/08/2009 39
Outline
» System design trends
* Model-based synthesis
» Transaction level model generation
» Application to platform mapping
=) Platform generation
» Cycle-accurate model generation
Embedded System Design Chapter 4: System Synthesis 7/08/2009 40

© 2009: Gajski, Abdi, Gerstlauer, Schirner

CAM Generation

SystemC TLM
W/RTO StN Int ‘f
S S nterface
Synthesis CoRTL Synthesis

Library Bus
fid

Pin/Cycle Accurate Model (PCAM) o
Generator
Prototype
o S, CiVerilog CAM FPeAT |
Tools Tools [E
Eﬂgﬂgiﬂaﬁggﬁu?ifﬁ'gg D Chapter 4: System Synthesis 7/08/2009 41

Cycle-Accurate Software Synthesis (Chapter 5)

Program

e Processes - Compiled App.
¢ OS model> Real OS
« HAL model > Real HAL

CpPU1

Compile
———

TX

~_Bust] (Bus2 D

Compile. Program
dosD '
HW IP CPU2

Embedded System Design E} Chapter 4: System Synthesis 7/08/2009 42

© 2009: Gajski, Abdi, Gerstlauer, Schirner

Cycle-Accurate Hardware Synthesis (Chapter 6)

CPU1

Process - Synthesizable RTL
High level synthesis for custom
¢ Replacement for HW IP

TX

Cycle-
QQ;O accuratg P3
Synthesis

HW IP (RTL) Processes in C

CPU2

Embedded System Design

e e o e el D Chapter 4: System Synthesis 7/08/2009 43

Cycle-Accurate Interface Synthesis (Chapter 7)

CPU1 e Sync. Model - Interrupts
e Bus channel - Arbiter + Signals
IC ¢ Interface model > RTL
- ¢ Channel access = PE interface
e
< TX
Arbiter A

¢

\
\ /

@ PP «— Interface Synthesis

CPU2

Embedded System Design . i
S wysem o °sign E} Chapter 4: System Synthesis 7/08/2009 44

Cycle-Accurate Model

-
E Program
© IC
-—
e
< Interface
Arbiter l
@
LE.§ Program
~ PCAM is downloaded g
Q,O& automatically for fast
prototyping with FPGAs or
HW IP simulated using validation tools
CPU2
Eﬂgﬂggﬂaﬁgggﬁifﬁ'gg D Chapter 4: System Synthesis 7/08/2009 45
Summary

 Emergence of model-based system design
* Virtual platforms replace prototypes for early SW development
* Increasing adoption of TLMs for SW/HW design
Challenges for synthesis of large system designs
» Manual model development is time consuming and error-prone
- Different platforms are needed for different application domains
» Mapping application to a multi-core platform is complicated
* Need for well defined model semantics is needed at TLM
and cycle-accurate levels
» Enables automatic TLM generation
» System synthesis becomes possible
e Future of system synthesis
» Based on formalized system level models such as TLM
» Automatic mapping of application to platform
» Automatic generation of application specific platforms

Embedded System Defhiwgn?r E} Chapter 4: System Synthesis 7/08/2009

© 2009: Gajski, Abdi, Gerstlaer, St

46

