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Traditional  System Design
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• Hardware first approach
• Platform is defined by architect or based on legacy

• Designers develop and verify RTL model of platform

• Slow error prone process

• SW development after HW is finalized
• Debugging is complicated on the board due to limited observablity

• HW errors found during SW development are difficult to rectify

• Application is ported after system SW is finalized
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Virtual Platform based System Design
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• Virtual platform (VP) is a fast model of the HW platform
• Typically an instruction set simulator or C/C++ model of the processor

• Peripherals are modeled as remotely callable functions

• Executes several orders of magnitude faster than RTL

• SW and HW development are concurrent
• VP serves as the golden model for both SW and HW development

• SW development can start earlier

• HW designers can use SW for realistic test bench for RTL
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Model-based System Design
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• Model based design gives control to application developers
• Application is captured as high level C/C++/UML specification

• Transaction level model (TLM) is used to verify and evaluate the design

• System synthesis
• The best platform for given application can be synthesized automatically

• For legacy platforms, application mapping can be generated automatically

• Cycle accurate SW/HW can be generated from TLM for implementation
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Model Based Synthesis

System Synthesis

Cycle-accurate SW/HW Synthesis

TLM

CAM

Specification

TLMTLMs

Component 
Models

Component
Library

• Synthesis of cycle-accurate model (CAM) from specification
• Process may be divided into several steps

• Specification is defined as application model and design constraints

• Several intermediate models, such as TLMs, may be used

• Platform component models are needed for TLM generation
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System Synthesis Inputs and Output

• Inputs
• Application Model

– Purely functional model

– Specified in a given model of computation (Stateflow, dataflow, CSP, MP)

• Component Models
– Data models of configurability and metrics

– Functional models of component services 

– Examples: HW IP models (Processor, Peripheral, Bus), SW IP models 
(RTOS, Drivers)

• Constraints
– Bounds on metrics (Performance, area, power, reliability, security)

– Optimization goal as a cost function of metrics

• Output
• TLM of application mapped to HW/SW platform
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Three Models with Respect to OSI (Ref. Chapter 3)

Cycle Accurate Model

Transaction Level Model

Specification Model

7. Application
6. Presentation
5. Session
4. Transport
3. Network
2b. Link + Stream
2a. Media Access Ctrl
2a. Protocol
1. Physical

7. Application
6. Presentation
5. Session
4. Transport
3. Network
2b. Link + Stream
2a. Media Access Ctrl
2a. Protocol
1. Physical

Address lines
Data lines

Control lines

TLMs

Spec 
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Synthesis Case 1: Fixed Platform and Mapping

• Initial platform and mapping are given

• Optimization tools may modify spec under given constraints
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Tool support for Synthesis Case 1

• GUI for application specification

• GUI for platform specification

• GUI for application to platform mapping

• TLM generation tool

• TLM-based metric estimation tools

• Constraint-based spec optimization tools
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Input: Application Model
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• Application model consists of
• Processes for computation (eg. P1, P2, P3, P4)
• Channels for communication (eg. C1 between P1 and P3)
• Variables for storage (eg. v1)
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Application Model Objects

• Processes
• Symbolic representation of computation 
• Contain C/C++ code imported from reference

• Process ports
• Symbolic representation of communication 

services required by processes
• Provide object orientation by allowing 

processes to connect to different channels

• Channels
• Symbolic representation of inter-process 

communication
• Implement communication services such as 

blocking, non-blocking, handshake, FIFO etc.
• Encapsulation for communication functions

• Variables
• Symbolic representation of data storage
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Input: Platform Architecture
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• Platform consists of
• Hardware: PEs (eg. CPU1, HW), Buses (eg. Bus1), Memories 

(eg. Mem), Interfaces (eg. Transducer)
• Software: Operating systems (eg. OS1) on SW PEs
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Platform Objects

• Processing element (PE)
• Symbolic representation of computation resources
• Different types such as SW processors, HW IPs etc.

• Bus
• Symbolic representation of communication media
• Types include shared, point-to-point, link, crossbar etc.

• Memory
• Symbolic representation of physical storage
• May contain shared variables or SW program/data

• Transducer
• For protocol conversion and store-forward routing
• Necessary for PEs with different bus protocols

• Operating system (OS)
• Software platform for individual PEs
• Needed for scheduling multiple processes on a PE
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Input: Mapping
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• Processes  PEs
• Channels  Routes
• Variables  Memories
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Mapping Rules

• Processes to PEs
• Each process in the application must be mapped to a PE
• Multiple processes may be mapped to SW PE with OS support
• Example: P1, P2  CPU1

• Channels to Routes
• All channels between processes mapped to different PEs are 

mapped to routes in the platform
• Route consists of bus segments and interfaces
• Channel on each bus segment is assigned a unique address

• Variables to Memories
• Variables accessed by processes mapped to different PEs are 

mapped to shared memories
• All variables are assigned an address range depending on size
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Computation Timing Estimation

• Stochastic memory delay model
• DFG scheduling to compute basic block delay [DATE 08]
• RTOS model added for PEs with multiple processes

Timing 
Estimation

Timed Process

Processor Model

wait(t1) 

BB1

If

If YN

YN

BB2 BB3

wait(t2) wait(t3) 

Process CDFG

BB1

If

If YN

YN

BB2 BB3
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Stochastic Memory Delay Model

Mem. Overhead= 4.1
Branch Delay= 1.2

• Assumption
• Cache and branch prediction hit rate available in data model

• Delay Estimation
• Operation access overhead = Nop * ((1.0 – HRi) * (CD + Lmem)) 
• Data access overhead = Nld * ((1.0 – HRd) * (CD + Lmem)) 
• Branch prediction miss penalty = MPrate * Penalty

Cache
D-Mapped

16K
Icache: 97.79%
Dcache: 69.96%

Delay : 1

Memory
Delay:  8

BrPredict
Policy: Taken

Penalty : 2
60.00%

Memory/Branch Model

Mem./Br. Delay 
Calcutation

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp

LLVM Bytecode
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Pipeline 
Scheduling

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp
8: wait 47*CT

• Assumptions
• In-order, single issue processor
• Optimistic during scheduling (100% cache hit)

Operations Datapath

Processor Data Model

Add
IF
ID

EX: int-ALU IntAdd

Sub
IF
ID

EX: int-ALU IntSub

Int-ALU
Qty: 1
IntAdd IntSub
Lat: 1 Lat: 1

Processor Timing Estimation

LLVM Bytecode

Operation delay= 42

Total BB delay= 
Op.+Mem.+Br. =
47.3 cycles
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Communication Timing Estimation
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• Protocol model used to estimate synchronization, arbitration 
and transfer

• Timing is annotated in bus channel

Write( ) {
Get_Bus( );
Transfer( );
Release_Bus( );

}

Write( ) {
Get_Bus( );
wait (t1); 
Transfer( );
wait (t2);
Release_Bus( );
wait (t3);

}
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Output: SystemC Timed TLM

Bus1
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TX

TLM Generation Technique
• Application code  sc_thread
• Processing element  sc_module
• OS Model  sc_module
• Bus  sc_channel
• Memory  Array inside sc_module
• Interface  FIFO channel+sc_process

P4

OS
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Application to Platform Mapping

25

• Mapping is derived from Application and Platform

• Optimization loop is driven by estimation results and constraints

Chapter 4 System Synthesis
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Application Example

• GSM Encoder
• Compresses raw speech data frame-by-frame

• Over 10K lines of C code in specification

• 5 top level functions: LP, OP, CL, CB, UP

• Contains if-then-else and loop control flow
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Profiling

• Given input MoC, profile application for:

• Computation
– Number of operations (size)

– Operations type per data type and frequency 
of use

– Concurrency between modules and 
dependency

• Communication
– Volume, frequency of communication between 

modules 

– Timing dependency

– Latency requirements

• Storage
– Instruction size

– Variable size
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Profiled Statistics

• Profiling helps select the appropriate components for 
implementation
• All fixed point ops No need for processors with floating point units

• Large number of multiplications  Processor with HW multiplier is ideal

• CB is most computationally intensive  Ideal for custom HW mapping
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Application Graph
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• Profile information is abstracted into a simplified graphical 
representation for synthesis algorithms
• Node tags = millions of operations

• Edge tags = kilobytes transferred

• Control dependencies are excluded for simplicity
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Platform Connectivity Graph
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• Platform architecture is abstracted into a connectivity graph 
showing possibility of inter-PE communication
• Node tag = PE speed (relative)

• No edge between HW and DSP due to missing DMA on Bus1
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Load Balancing Algorithm
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(a) Application graph

(b) Platform connectivity graph w/ mapping
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Connectivity Graph of Updated Platform

• Platform architecture is abstracted into a connectivity graph
• Node = PE, Node label = Relative PE speed

• Edge = Path between PEs, Edge label = Relative communication delay
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Longest Processing Time Algorithm

LP

377

OP

337

Cl

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Platform connectivity graph w/ mapping
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LPT Cost Function Computation

• Cost is computed as the timing overhead of selecting a PE

• System end time and PE costs are updated at each LPT step

• PE with lowest execution time may not have the lowest cost

• LPT terminates when all functions are mapped
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Longest Processing Time Algorithm Result
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(a) Application graph

(b) Platform connectivity graph w/ mapping
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Platform Generation
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Component Database

PE Type Cost Speed Capacity 
(Speed *6 sec)

CPU 2 100 600

DSP 1 50 300

HW 5 200 1200

• Timing constraint:  Application must complete in <6 seconds.

• Database of processing elements used for component selection
• Characterized by type, cost and speed

• Computation capacity is the PE speed multiplied by timing constraint

• Similar library for buses and memories may be used
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Platform Generation Algorithm
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(a) Application graph

(b) Generated Platform w/ mapping
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CAM Generation

SystemC TLM
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Cycle-Accurate Software Synthesis (Chapter 5)
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• Processes  Compiled App.
• OS model Real OS
• HAL model  Real HAL



7/08/2009 43Embedded System Design 
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 4: System Synthesis

Cycle-Accurate Hardware Synthesis (Chapter 6)
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• Process  Synthesizable RTL
• High level synthesis for custom
• Replacement for HW IP
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Cycle-Accurate Interface Synthesis (Chapter 7)
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• Sync. Model  Interrupts
• Bus channel  Arbiter + Signals
• Interface model  RTL
• Channel access  PE interface 
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Cycle-Accurate Model
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Summary

• Emergence of model-based system design
• Virtual platforms replace prototypes for early SW development
• Increasing adoption of TLMs for SW/HW design

• Challenges for synthesis of large system designs
• Manual model development is time consuming and error-prone
• Different platforms are needed for different application domains
• Mapping application to a multi-core platform is complicated

• Need for well defined model semantics is needed at TLM 
and cycle-accurate levels
• Enables automatic TLM generation
• System synthesis becomes possible

• Future of system synthesis
• Based on formalized system level models such as TLM
• Automatic mapping of application to platform
• Automatic generation of application specific platforms
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