On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

UClrvine

On the Limits of
Standard-compliant Parallel Simulation
of the IEEE SystemC Language

Forum on specification & Design Languages
Keynote

Rainer Domer
doemerQuci.edu

Center for Embedded and Cyber-Physical Systems
University of California, Irvine

University of California, Irvine

» Keynote Focus

|EEE Standard 1666-2011

The SystemC Language
— official standard

~ de-facto standard el
for Manual

— modeling

— simulation
of systems containing

— hardware
— software

e s RIS QleEE |

» Parallelism in models
» Parallelism in simulation

» Standard compliance

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 2

(c) 2018 R. Doemer, CECS

On the Limits of Standard-compliant Parallel FDL'18 Keynote,
Simulation of the IEEE SystemC Language Munich, Germany

Discrete Event Simulation (DES)
H - SystemC uses DES thy th, thy thy gr_g
§ — Concurrent threads of execution % § '
B — Managed by a central scheduler
— Driven by events and time advances -F-FH-F 101
+ Delta cycle TS s102
» Time cycle : --: - ,---:- 10:3
> Partial temporal order with barriers i
* Accellera Reference Simulator
— Proof-of-concept implementation <+ % --120:4
of IEEE 1666-2011 standard S - d--1 2005
» A single thread is active at any time ' | 20:6
» Does not exploit parallelism
» Cannot utilize multiple cores %
» Sequential simulation is slow NN N w807
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 3

Approaches for Faster Simulation

= Improved Modeling Techniques Distributed Simulation
H -Transaction-level modeling (TLM) Chandy et al. [TSE'79]
© +TLM temporal decoupling *Huang et al. [SIES'08]
{| -Savoiu et al. [MEMOCODE'05] *Chen et al. [CECS™1]

*Razaghi et al.[ASPDAC’12]

T SMP Parallel Simulation

Sequential DE *Fujimoto [CACM"90]
sirr?ulation is slow —> *Chopard et al. [ICCS’06]
*Ezudheen et al. [PADS’09]

‘1, *Mello et al. [DATE10]

*Sch her et al. [CODES’11
Hardware-based Acceleration .Cf]el:]rg?; e[r_rc-:(‘::D,[M]]
*Sirowy et al. [DAC’10] “Yun et al. [TCAD'12]

*Nanjundappa et al. [ASPDAC’10] -Schmidt et al. [DAC'17]

*Sinha et al. [ASPDAC’12] -and many others

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 4

(c) 2018 R. Doemer, CECS 2

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Parallel Discrete Event Simulation (PDES)

- Parallel DES [Fujimoto1990] thy thy thy th TA
§ — Threads execute in parallel iff % '
| | « in the same delta cycle, and
| | « in the same time cycle . § 101
» Order of magnitude speed up! S P 10:2
» Problem solved!? N » 10:3
» Not quite!
» What about host platforms?
» Multi- an_d many-core hosts >3 AP
are readily available > 1905
» What about accuracy? it 1206
» Is achievable with careful analysis
» What about standard compliance? %
» That's where the problem is! - 130:7
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 5
! Problem Definition
5 * Given
% — Embedded systems are parallel
E — SystemC is suitable and popular for system design
— Models exhibit explicit thread-level parallelism
— Multi- and many-core host platforms are readily available
» Design
— Fast Parallel Discrete Event Simulation
— For the SystemC language
* Optimize
— Maximize compliance with the IEEE 1666-2011 standard
» Why is this difficult?
» 7 Obstacles stand in the way of standard-compliant
parallel SystemC simulation [ESL’16]
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 6

(c) 2018 R. Doemer, CECS

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Obstacle 1: Co-Routine Semantics

+ Fact: IEEE 1666-2011 requires co-operative multitasking

» Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

(-]

Since process instances execute without interruption, only a single process instance can be
running at any one time, [...]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.

The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

7

* Problem: Uninterrupted execution guarantee

match the co-routine semantics.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would

be obliged to analyze any dependencies between processes and to constrain their execution to

4

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS

Parallel Discrete Event Simulation (PDES)

—

» Parallel DES [Fujimoto 1990]

— Threads execute in parallel iff
* in the same delta cycle, and
* in the same time cycle

» Order of magnitude speed up!

» |IEEE 1666 Requirement:
“The scheduler is not pre-emptive.”

th, th, th, th,

int x; // shared variable

void threadl () void thread2() }J'

{ x=0; {x=17; : : :
x=x+1; X=x* 6; R Riaiale falatel bl --
cout << x; cout << x;

} }

» SystemC: guaranteed safe!

» PDES: not safe! (race condition) oy vy

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS

TA
0:0

10:1
10:2

10:3

20:4
20:5
20:6

30:7

(c) 2018 R. Doemer, CECS

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Obstacle 1: Co-Routine Semantics

+ Fact: IEEE 1666-2011 requires co-operative multitasking

» Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

Since process instances execute without interruption, only a single process instance can be
running at any one time, [...]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.

[...]

The scheduler is not pre-emptive. An application can assume that a method process will execute

in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption. 7

* Problem: Uninterrupted execution guarantee

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would

be obliged to analyze any dependencies between processes and to constrain their execution to

match the co-routine semantics. 7

* Proposal: Explicitly allow parallel execution, preemption
— Processes at the same time (T,A) may execute in parallel
* Model designer must write thread safe code, avoid race conditions
» Parallel systems, parallel models, parallel programming

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 9

Obstacle 2: Simulator State

+ Fact: Discrete Event Simulation (DES) is presumed
> Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h
[ooo]]

bool sc_pending activity at_current_time() ;
bool sc_pending_activity at future_time();
bool sc_pending_activity();

bool sc_time_to_pending activity() ;

[...]
* Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES
— After elaboration, there may be multiple running threads
— Scheduling may happen while some threads are still running
» Proposal: Carefully review simulator state primitives
and revise as needed for PDES
» Adapt the functions and APlIs for parallel execution semantics
» Entire accessible simulator state needs attention...

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 10

(c) 2018 R. Doemer, CECS

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Obstacle 2: Simulator State

» Fact: Discrete Event Simulation (DES) is presumed

* Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

* Proposal: Carefully review simulator state primitives
and revise as needed for PDES
» Entire accessible simulator state needs attention

> Special consideration for very strict semantics, e.g. debugging:
Quote from IEEE 1666-2011, Section “4.2.1.2 Evaluation phase” (page 17):

The order in which process instances are selected from the set of runnable processes is
implementation defined. However, if a specific version of a specific implementation runs
a specific application using a specific input data set, the order of process execution shall
not vary from run to run.

» Sequential DES can remain valid as a special case of PDES
» While PDES typically runs up to n threads in parallel,
where n = number of cores on the host,
we can set n = 1 to mimic the classic DES case

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 1

Obstacle 3: Lack of Thread Safety

+ Fact: Primitives are generally not multi-thread safe

» Suspicious example from IEEE 1666-2011, page 194:

[...1

sc_length param lengthl0(10) ;

sc_length_ context cntxtl0 (lengthl0); // lengthlO now in context
sc_int base int_array[2]; // Array of 10-bit integers

Toool
* Problem: Parallel execution may lead to race conditions
— Race conditions result in non-deterministic/undefined behavior
— Explicit protection (e.g. by mutex locks) is cumbersome
— Identifying problematic constructs is difficult
» Example: class sc_context, commented as “co-routine safe”
» Proposal: Require all primitives to be multi-thread safe
— Carefully revise the proof-of-concept SystemC library

> Encouraging item: async_request_update is thread-safe!
» See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 12

(c) 2018 R. Doemer, CECS

On the Limits of Standard-compliant Parallel FDL'18 Keynote,
Simulation of the IEEE SystemC Language Munich, Germany

Computation vs. Communication
+ Traditional model P 3
. Fact: = =
act: = = =
> IEEE B
The - Processes and signals
NO1 - Mixture of computation and communication
othe - Automatic replacement impossible
» sys c1
[.. » SpecC model B1] Bz
typ —
typ| -
L L] - Behaviors and channels
* Proble - Separation of computation and communication ype
- Plug-and-play
- Lan “System Design A Pracical Gude with SpecC™ by A Gersfauer, R. Dosmer, J. Peng. D. Gysii, Kuwer 2001

» No separation of communication and computation
* Breaks a key system-level design principle...
« Proposal: Class sc_channel, derived from sc_module

» Module encapsulates computation (hosts threads/processes)
» Channel encapsulates communication (implemented interfaces)
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 13

Obstacle 4: Class sc_channel

* Proposal: Class sc_channel, derived from sc_module

» Module encapsulates computation (hosts threads/processes)
» Channel encapsulates communication (implemented interfaces)

» Q: Why do we need channels? A: Thread safe communication!
— Example: Blocking write in primitive channel sc_fifo.h

template <class T> inline
void sc_fifo<T>::write(const T& val_)
{ sc_stacked lock 1(m mutex); // lock the channel mutex
while(num free() == 0) {
sc_core::wait(m_data read event);

}
m_num written ++;
buf write(val_);

request update() ;
} 7

> Race condition between num_free andm_num written
> Prevented by locking m_mutex of this channel instance

— Channel acts as a monitor for multi-thread safe communication

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 14

(c) 2018 R. Doemer, CECS 7

On the Limits of Standard-compliant Parallel FDL'18 Keynote,
Simulation of the IEEE SystemC Language Munich, Germany

» Fact: Channel concept has disappeared
» “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,
Presentation by David Black, Doulos, at DAC’15 Training Day
R .
PrOblem ' Initiators, Targets and Interconnect ,z\
Where is :
the channel? o e
Forward Forward
) e path ul Interconnect - path .
e R T, R
' Ea;:::'aﬂ! ' Backward E
------------------- § ------------------------- i
object
* Smgle transaction ﬁbJeCl for request and response
* References to the object are passed along the ferward and backward paths.
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 15

Obstacle 5: TLM-2.0

» Fact: Channel concept has disappeared

» “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”’,
Presentation by David Black, Doulos, at DAC’15 Training Day

. .
Where is -
the Channel’) Interface methods
IQ:‘:T:Y[class tlm_fw_transport_if<> I:;?(Z:
— Interface methods S
are well-defined, { o gt 0 }__
. get_direct_mem_ptr()
but not contained e

- Separatio n Of Concerns class tm_bw_transport_if<>
“Computation # { nb transport_bw) }
Commun/cat’on ” invalidate_direct_mem_ptr()
principle is broken

* Sockets provide fw and bw paths, and group interfaces

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 16

(c) 2018 R. Doemer, CECS 8

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Obstacle 5: TLM-2.0

» Fact: Channel concept has disappeared

» “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

* Problem:
Where is
the channel?

— Interface methods
are well-defined,
but not contained
— Separation of concerns
“Computation #
Communication”
principle is broken

—Naive Proposal: ..
Encapsulate communication methods in channels

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 17

Initiator and Target Sockets
Connected by Channels

THURSDAY IS
f}\ TRAINING DAY

Channels cannot fix this.

Threads execute in foreign territory
and can bypass border protection by DMI.

his problem needs more thought...
(we will revisit this later)
/

6n fw and bw paths

Obstacle 6: Sequential Mindset

* Fact: SC_METHOD is preferred over SC_THREAD,

context switches are considered overhead

» |EEE 1666-2011, Section 5.2.11 on threads (page 44):
Each thread or clocked thread process requires its own execution stack. J

As aresult, context switching between thread processes may impose a simulation overhead
when compared with method processes.

* Problem: Sequential modeling is encouraged
— However, systems are parallel by nature, so should be models
— Avoiding context switches is the wrong optimization criterion
 Proposal: Use actual threads, avoid SC_METHOD,
identify dependencies among threads
» Promote parallel mindset, with true thread-level parallelism
» Speed due to parallel execution, not due to fewer context switches
> Explicitly express task relations (use e.notify (), wait(e))
» Synchronize, communicate through events and channels

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 18

(c) 2018 R. Doemer, CECS

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Obstacle 7: Temporal Decoupling

+ Fact: TD is designed to speed up sequential DES
» |EEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement

by reducing the number of context switches and events.

— Abstraction trades off accuracy for higher simulation speed

* Problem: PDES is a different foundation than DES

— TD design assumptions are not necessarily true for PDES
— Global time quantum is a technical obstacle (race condition)

* Proposal: Reevaluate costs/benefits, redesign if needed
— Analyze TD idea for PDES, adopt advantages, drop drawbacks
* Avoid tlm global quantum, promote wait (time)
— Consider the use of a compiler to optimize scheduling, timing
* Out-of-Order PDES [TCAD’14] is one solution...

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 19

-

Now what?

» Seven Obstacles stand in the Way
of Standard-Compliant Parallel SystemC Simulation

* Truly parallel and truly compliant SystemC appears elusive
given the current IEEE standard

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 20

(c) 2018 R. Doemer, CECS

10

On the Limits of Standard-compliant Parallel FDL'18 Keynote,
Simulation of the IEEE SystemC Language Munich, Germany

SystemC Evolution?

» Seven Obstacles stand in the Way
of Standard-Compliant Parallel SystemC Simulation
— SystemC Evolution Day 2016 [IEEE ESL’16]

» Let's overcome the identified 7 obstacles!
— Move up from DES to PDES
— Adopt a parallel mindset, expose and exploit parallelism
— Apply the principle of separation of concerns
* Modules encapsulate computation
» Channels encapsulate communication
— Simulate models faster with parallel execution semantics

» SystemC must evolve in a major revision (3.x)
— C++11 already has built-in support for multithreading
— SystemC must embrace true parallelism

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 21

Maximum Compliance with Standard
_

» Seven Obstacles stand in the Way
of Standard-Compliant Parallel SystemC Simulation
— SystemC Evolution Day 2016 [IEEE ESL’16]

» In absence of major changes to SystemC standard,
let's make the best of it
— Accept SystemC as it is (well, most of it)
— Build the best parallel SystemC simulator possible
— Aim for maximum compliance with the standard

> We took this risk, and created RISC!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 22

(c) 2018 R. Doemer, CECS 11

On the Limits of Standard-compliant Parallel FDL'18 Keynote,
Simulation of the IEEE SystemC Language Munich, Germany

Recoding Infrastructure for SystemC (RISC)

Advanced Parallel SystemC Simulation

— Aggressive PDES on many-core host platforms

— Maximum compliance with IEEE SystemC semantics
Introduction of a Dedicated SystemC Compiler

— Advanced conflict analysis for safe parallel execution

— Automatic model instrumentation and code generation
Parallel SystemC Simulator

— Out-of-order parallel scheduler, multi-thread safe primitives
— Multi- and many-core host platforms (e.g. Intel® Xeon Phi™)
* Open Source
— Freely available for evaluation and collaboration
— Thanks to Intel Corporation!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 23

! Recoding Infrastructure for SystemC (RISC)
_
= + Out-of-Order Parallel DES th1 thy thy thy — TA
= . . 0:0
| — Threads execute in parallel iff
i * in the same delta cycle, and
* in the same time cycle, ; % 10:1
* OR if there are no conflicts! ----= -110:2
» Breaks synchronization barrier! i P 110:3
» Threads run as soon as possible, i
even ahead of time. !
> Significantly higher speedup! i _
« Results at [DATE'12], [[EEE TCAD'14] -:i: gg;g
> RISC compiler fully preserves... L1906
» Cause and effect relationship
» Accuracy in results and timing
ST 807
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 24

(c) 2018 R. Doemer, CECS 12

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Recoding Infrastructure for SystemC (RISC)

* Out-of-Order PDES Key Ideas

1. Dedicated SystemC compiler with advanced model analysis
» Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling
» Fast decision making at run-time, optimized mapping

* Fundamental Data Structure: Segment Graph
Key to semantics-compliant out-of-order execution [DATE’12]
Key to prediction of future thread state [DATE’13]

* “Optimized Out-of-Order Parallel DE Simulation Using Predictions”
Key to May-Happen-in-Parallel Analysis [DATE’14]

» “May-Happen-in-Parallel Analysis based on Segment Graphs
for Safe ESL Models“ (Best Paper Award)

Combined: “Oo0 PDES for TLM” [IEEE TCAD’14]
» Comprehensive summary with HybridThreads extension

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 25

Dedicated SystemC Compiler

« RISC Software Stack RISC
» Recoding Infrastructure for SystemC
— C/C++ foundation
— ROSE compiler (from LLNL)

ROSE IR
C/C++ Foundation

{ ROSE-based tools]

EDG Front-end/
Open Fortran Parser

Transfermed
Source/Binary

* ROSE Internal Representation
» Explicit support for
= - - = ° Source code analysis
. ([1]n]
swnne | © SoOUrce-to-source
transformations

System Dependence

1 Control Flow

Data Dependence

Source:
Lawrence Livermore National Laboratory (LLNL)

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystémC" (c) 2018 R. Doemer, CECS 26

ROSE compiler infrastructure

(c) 2018 R. Doemer, CECS

13

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Dedicated SystemC Compiler

RISC Software Stack

» Recoding Infrastructure for SystemC

— SystemC Internal
Representation

Class hierarchy to represent
SystemC objects

RISC

SystemC IR

ROSE IR |

C/C++ Foundation

object]

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS 27

SystemC Model

Dedicated SystemC Compiler

RISC Software Stack

» Recoding Infrastructure for SystemC

1) Segment Graph

2) Parallel access conflict analysis

RISC
Segment Graph
SystemC IR
ROSE IR |

C/C++ Foundation

SystemC Compiler

Parallel
C++ Model

systemc.h

o Segment Graph

Model.cpp Construction

4

RISC

Parallel Access
Conflict Analysis

Model Compilation,
_par.cpp Simulation

Segment Graph

Step 1: Build a Segment Graph

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS 28

(c) 2018 R. Doemer, CECS

14

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Dedicated SystemC Compiler

+ Segment Graph

— Segment Graph is a directed graph

* Nodes: Segments

» Code statements executed
between two scheduling steps

— Expression statements

— Control flow statements (i £, while, ...)

— Function calls

« Edges: Segment boundaries
» Primitives that trigger scheduler entry

- wait (event)

- wait (time)

» Segment Graph is built automatically by the compiler [TCAD’14]

* From the model source code

Seg 2 |Se93|
v &V
[Seg4] [Seg5]

Segment Graph

» Via Abstract Syntax Tree and Control Flow Graph

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS 29

Dedicated SystemC Compiler

* RISC Software Stack

» Recoding Infrastructure for SystemC
1) Segment Graph construction
2) Parallel access conflict analysis

3) Model instrumentation

RISC

Segment Graph
SystemC IR

ROSE IR |

C/C++ Foundation

SystemC Model 7 Parallel
SystemC Compiler C++ Model
systemc.h RISC
Model ilati
o Segment Graph Parallel Access Csolmp||latt_|on,
Model.cpp Construction Conflict Analysis — 7 imulation
Instrumentation!
Seg 2 Seg 3 Conflict Seg1 Seg 2 Seg 3
R: R:
5 o v 2] seor NN
RW: z RW: Seg 2 ---
seg 3 [I
Segment Graph

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS 30

(c) 2018 R. Doemer, CECS

15

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

+ Segment Conflict Analysis

Dedicated SystemC Compiler

— Need to comply with SystemC LRM [IEEE Std 1666 ™]
» Cooperative (or co-routine) multitasking semantics
— “process instances execute without interruption”

— System designer “can assume that a method process
will execute in its entirety without interruption”

» A parallel implementation “would be obliged
to analyze any dependencies between processes and
constrain their execution to match the co-routine semantics.”

— Must avoid race conditions when using shared variables!
» Prevent conflicting segments to be scheduled in parallel

Seg 2 Seg 3 Conflict Seg1 Seg 2 Seg 3
Boo| IR an) sent |
RW: z| |RW: seg2 [[N SN
seg 3 [I
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS

31

» Automatic Model Instrumentation

» Compiler and Simulator work hand in hand
— Compiler performs conservative static analysis
— Analysis results are passed to the simulator
— Simulator can make safe scheduling decisions quickly

> Static analysis results are inserted into the source code

SystemC Compiler and Simulator

Input Model . Parallel .
SystemC Compiler C++ Model systemo RISC Simulator
systemc.h RISC arh
] AN — B Out-of-Order
- I Source Code i’ > Parallel
. Compiler . N
Model.cpp Instrumentation Simulation
Parallel
SystemC
Library
Model Instrumentation:
Segment and Instance IDs
Segment Conflict Tables
Time Advance Tables
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 32

(c) 2018 R. Doemer, CECS

16

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Parallel SystemC Simulator

« Simulator kernel with Out-of-Order Parallel Scheduler
— Conceptual OoO PDES execution

,,,

| simulate
i

[
! | crunch

I
! | | mapper

L 1
Issue | L=

P Evaluate 0.4

Issue threads...
¥ « truly in parallel and out-of-order
J’ * whenever they are ready
e | + and have no conflicts!

> Fast conflict table lookup
nmedcvc.e§ » Optimized thread-to-core

s mapping
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 33

I Advance Time

Experiments and Results

+ DVD Player Example
— Parallel video and audio decoding with different frame rates

Multimedia
input Stimulus
stream

1: SC_MODULE(AudioCodec)
2: { sc_port<i_receiver>p1;

1: SC_MODULE(VideoCodec) 3: sc_port<i_sender> p2;
2: { sc_port<i_receiver>p1; 4: ..

3: sc_port<i_sender> p2; 5: while(1){

4: .. 6: p1->receive(&inFrm);
5: while(1){ 7 outFrm = decode(inFrm);
6: p1->receive(&inFrm); 8: wait(26120, SC_US);
7: outFrm = decode(inFrm); 9: p2->send(outFrm);

8: wait(33330, SC_US); 10: }

9: p2->send(outFrm); 1:}

10: }

11

s

Video 2 Audio Channels
30 FPS 38.28 FPS
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 34

(c) 2018 R. Doemer, CECS

17

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Experiments and Results

Stimulus

+ DVD Player Example (

— Parallel video and audio decoding -
with different frame rates

1. Real time schedule: fully parallel

3333 , 6667 , 100
Video | Frame1 | Frame2 | Frame3 |

left| LF1 | LF2 | LF3 | LF4 | f
Right _ RF1 | RF2 | RF3 | RF4 |

0 2612 5225 78.38 Time [ms]

2. Reference simulator schedule (DES)

) 33,33) 66,67 100
Video Frame 1 Frame 2 Frame 3
Left| LF1 LF2 LF3 LF 4
Right RF 1 RF 2 RF 3
0 26.12 52.25 78.38 Time [ms] ...
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 35

Experiments and Results

Stimulus

+ DVD Player Example

— Parallel video and audio decoding
with different frame rates

1. Real time schedule: fully parallel

3333 6667 , 100
Video | Frame1 | Frame2 | Frame3 |

Left [LF 1 LF2 LF3 LF4 |
Right [RF 1 RF 2 RF 3 RF4 |

0 26.12 52.25 78.38 Time [ms]

3. Synchronous parallel schedule (PDES)

33,33 66,67 100
Video | Frame 1 Frame 2 Frame 3
Left | LF1 | LF2 LF3 LF4
Right | RE1 | RF 2 RF 3 RF 4
0 26.12 52.25 78.38 Time [ms]
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS

36

(c) 2018 R. Doemer, CECS

18

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Experiments and Results

+ DVD Player Example

— Parallel video and audio decoding
with different frame rates

1. Real time schedule: fully parallel
3333 | 6667 100
Video | Frame1 | Frame2 | Frame3 |

left| LF1 | LF2 | LF3 | LF4 |
Right _ RF1 | RF2 | RF3 | RF4 |

0 26.12 52.25

78.38 Time [ms]

4. Out-of-order parallel schedule (OoO PDES)
3333 , 6667 , 100
Video |_Frame 1 | Frame 2 | Frame 3 |

Left [LF 1 LF2 F3 LF4 |
Right [RF 1 RF 2 RF 3 RF4 |

0 26.12 52.25 78.38 Time [ms]

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(Stimulus]

(c) 2018 R. Doemer, CECS 37

Experiments and Results

+ DVD Player Example
— Parallel video and audio decoding
with different frame rates
* Simulator Run Times
— 4-core Intel® Xeon® CPU at 3.4 GHz
— RISC v0.2.1, Posix-threads

[Stimulus]

000
DES PDES PDES
Run Time 6.98 s 467s 294s
10 sec o o o
CPU Load 97% 145% 238%
stream
Speedup 1x 1.49 x 2.37 x
Run Time 68.21s 4591s 28.13s
100sec " opy oad | 100% 149% 251%
stream
Speedup 1x 1.49 x 2.42 x
FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 38

(c) 2018 R. Doemer, CECS

19

On the Limits of Standard-compliant Parallel FDL'18 Keynote,
Simulation of the IEEE SystemC Language Munich, Germany

Experiments and Results

+ Mandelbrot Renderer (Graphics Pipeline Application)
— Mandelbrot Set
* Mathematical set of points
in complex plane

— Two-dimensional fractal shape
» High computation load

— Recursive/iterative function
* Embarrassingly parallel

— Parallelism at pixel level [ms
— SystemC Model e

* TLM abstraction
» Horizontal image slices
» Highly configurable

» Parallelism parameter
from 1 to 256 slices

Stimulus Monitor

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 39

Experiments and Results

« Mandelbrot Renderer (Graphics Pipeline Application)

» Simulated Graphics Demonstration
(when network delays prevent actual graphical demo)

X Mondelbrot 1 =8 = | X Mandelort &

X Mandelbrot 8

N Mandelbrot 8

X Mandelbrot &
X Mandelbrot &

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 40

(c) 2018 R. Doemer, CECS 20

On the Limits of Standard-compliant Parallel FDL'18 Keynote,
Simulation of the IEEE SystemC Language Munich, Germany

Experiments and Results

+ Mandelbrot Renderer (Graphics Pipeline Application)
— Simulator run times on 16-core Intel® Xeon® multi-core host
— 2 CPUs at 2.7 GHz, 8 cores each, 2-way hyper-threaded
— RISC V0.2.1, Posix-threads

Parallel DES PDES OO0 PDES
; Run CPU Run CPU Run CPU
Slices Time Load Time Load Speedup Time Load Speedup
1 162.13s| 99% [162.06s| 100% | 1.00x [161.90s| 100% | 1.00 x
2 162.19s| 99% [96.50s | 168% | 1.68x |96.48s | 168% | 1.68x
4 162.56s| 99% [54.00s| 305% | 3.01x |53.85s| 304% | 3.02x
8 163.10s| 99% |29.89s| 592% | 5.46x | 30.05s | 589% | 5.43x
16 164.01s| 99% |19.03s | 1050% | 8.62x | 20.08s | 997% | 8.17 x
32 165.89s| 99% | 11.78s | 2082% | 14.08 x | 11.99 s | 2023% | 13.84 x
64 170.32s| 99% | 9.79s | 2607% | 17.40x | 9.85s | 2608% | 17.29 x
128 174.55s| 99% | 9.34s | 2793% | 18.69x | 9.39s | 2787% | 18.59 x
256 185.47s| 100% | 8.91s | 2958% | 20.82x | 8.90s | 2964% | 20.84 x

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 41

Experiments and Results

* Many-Core Target Platform: Intel® Xeon Phi™
— Many Integrated Core (MIC) architecture @
« 1 Coprocessor 5110P CPU at 1.052 GHz ‘%}’A
» 60 physical cores with 4-way hyper-threading V@;
— Appears as regular Linux host with 240 cores A\
* Up to 8 lanes available for vector processing
» RISC extended for exploiting 2 types of parallelism
— Out-of-Order PDES: thread-level parallelism
— Intel® compiler SIMD: data-level parallelism
» RISC SIMD Advisor identifies functions with data-level
parallelism suitable for SIMD vectorization
» DAC ’17 paper:
"Exploiting Thread and Data Level Parallelism
for Ultimate Parallel SystemC Simulation”

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 42

(c) 2018 R. Doemer, CECS 21

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Experiments and Results

250

[PAR |_MT _| SIMD _IMT+SIMD|
1 100 6.92 694 o0

2 168 692 1177
4 304 692 2119 1w

8 584 692 40.10
16 11.37 692 7252 100

32 2132 691 137.21
64 41.07 690 208.41 50

128 4629 6.89 212.96
256 49.90 6.87 194.19 0

+ Many-Core Target Platform: Intel® Xeon Phi™
— Exploiting thread- and data-level parallelism [DAC’17]
— Mandelbrot renderer (graphics pipeline application)

+ Experimental Results:

Speedup
A

™

——MT
—+—SIMD

A

1 2 4 8 16 32 64 128256 Threads

> Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 43

Installation notes and script:
Open source tar ball:
Docker script and container:

Doxygen documentation:
Tool manual pages:
BSD license terms:

» Docker container:
» https://hub.docker.com/r/ucirvinelecs/risc/

— Companion Technical Report
» CECS Technical Report 17-05:

RISC Open Source Software

* RISC Compiler and Simulator are freely available
— http://www.cecs.uci.edu/~doemer/risc.html#RISC042

INSTALL, Makefile
risc v0.4.2.tar.gz
Dockerfile

RISC API, OOPSC API
risc, simd, visual, ...
LICENSE

CECS_TR 17_05.pdf

bash# docker pull ucirvinelecs/risc
bash# docker run -it ucirvinelecs/risc
[dockeruser]# cd demodir

[dockeruser]# make test

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 44

(c) 2018 R. Doemer, CECS

22

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Ongoing Efforts: Scaling RISC

» Support for Industrial Sizes and Design Flows

1. New concept of Partial Segment Graphs (PSG)
« File hierarchies with multiple translation units
» Support for 3rd party libraries, IP protection

2. Improved compiler analysis for less false conflicts
» Port-Call-Path technique identifies instances [DATE’18]
» Reference type analysis identifies target variables

3. Evaluation of RISC in industry
» “Big example”, very large SystemC model at RTL abstraction
* Integration with Simics virtual platforms

4. Support for TLM-2.0
* Pro: Part of SystemC standard, needed for wide RISC adoption

» Con: Obstacle 5!
No channel, unprotected execution in foreign territory

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 45

Scaling RISC: Overcoming Obstacle 5

+ SystemC TLM-2.0

— Initiators and Targets socket socket socket sacket
» Sockets
» Forward path
« Backward path

» Shared transaction
object

« DMI bypass
— Well-defined Socket API

] h ' S
H : '
i |]
\ i ;
i : i
Transaction N S T, '
object
[image source: Doulos Ltd]

Interface methods

Initiatar Target
socket class tm_iw_transport_if<> socket

b_transport ()
nb_transport_fw() =
b Target
get_direct_mem_ptr()
transport_dbg()

class Um_bw_transport_if<>
nb_transport_bw() }
Iinvalidate_direct_mem_ptr()

[image source: Doulos Ltd]

1. b_transport()
2.nb_transport fw()
3. nb_transport bw()
4. transport_dbg()
5. get_direct mem ptr()

6. invalidate_direct mem ptr() {

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 46

(c) 2018 R. Doemer, CECS

23

On the Limits of Standard-compliant Parallel

Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Scaling RISC: Overcoming Obstacle 5

* Classic TLM: Producer-Consumer Example

Farm

N\ A

EnES

A

Farmer

y

N A

A

N\ N\

N\

sell

Market

buy

1 e [

Home
Customer

work

eat

— Threads operate in their own modules or protected channels
» Well-behaved execution in safe execution contexts
» Current RISC analysis fully supports this modeling style

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS 47

Scaling RISC: Overcoming Obstacle 5

* New TLM-2.0: Producer-Consumer Example

-
Farm

\ \

yyorkers_

Farmer

N \

v V

-

Eggs

take

Home
Customer

work

L eat

F

— No channels! Threads operate directly in others’ modules
» Fast, but dangerous execution in foreign territory
» Current RISC analysis cannot handle this modeling style

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC"

(c) 2018 R. Doemer, CECS 48

(c) 2018 R. Doemer, CECS

24

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Scaling RISC: Overcoming Obstacle 5

+ TLM-2.0 is quite different from traditional TLM

> Need significant extension of compiler analysis

» Conflict analysis must follow the initiator’s threads execution
through the hierarchical model structure to the targets

Initiator Interconnect Interconnect Target

Initiator sets
attributes

Target
modifies
attributes

Initiator
checks N
response [image source: Doulos Ltd]

» Leverage and extend existing RISC technology
« Instance tree, instance path, and instance ID [RISCv020]
+ Hybrid analysis [ASPDAC’17]
+ Port-Call-Paths (PCP) [DATE’18]

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 49

Concluding Remarks

* On the Limits of Standard-compliant
Parallel Simulation of SystemC

— Seven Obstacles stand in the way of parallel SystemC

» Co-routine semantics, sequential simulator state primitives,
lack of thread-safety, weak role of channels, TLM-2.0, temporal
decoupling, and an overall sequential modeling mindset

» Truly parallel SystemC appears elusive
given the current IEEE Standard 1666-2011

» Parallel Simulation with Maximum Compliance

— Example: Recoding Infrastructure for SystemC (RISC)
» Out-of-order Parallel Discrete Event Simulation
» Dedicated SystemC compiler and parallel simulator
* Multi- and many-core host platforms
» Two orders of magnitude faster simulation with full accuracy
* Open source

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 50

(c) 2018 R. Doemer, CECS

25

On the Limits of Standard-compliant Parallel
Simulation of the IEEE SystemC Language

FDL'18 Keynote,
Munich, Germany

Acknowledgments

For solid work, fruitful discussions, and honest feedback,
| would like to thank:
— My team at UCI
» Zhongqgi Cheng
* Guantao Liu
« Daniel Mendoza
* Tim Schmidt
— Our collaborators at Intel
« Ajit Dingankar
» Desmond Kirkpatrick
» Abhijit Davare
» Philipp Hartmann
— And many others...

This work has been supported in part by substantial funding
from Intel Corporation. Thank you!

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 51

Selected References

[RISC v0.4.2] RISC project, release 0.4.2: http://www.cecs.uci.edu/~doemer/risc.html
[DATE’18] T. Schmidt, Z. Cheng, R. Ddmer: "Port Call Path Sensitive Conflict Analysis for
Instance-Aware Parallel SystemC Simulation", Proceedings of DATE, Dresden, Germany,
March 2018.

[CECS’17] G. Liu, T. Schmidt, Z. Cheng, R. Démer: "RISC Compiler and Simulator, Release
V0.4.0: Out-of-Order Parallel Simulatable SystemC Subset", CECS TR 17-05, July 2017.
[DAC’17] T. Schmidt, G. Liu, R. Démer: "Towards Ultimate Parallel SystemC Simulation
through Thread and Data Level Parallelism", Proceedings DAC, Austin, TX, June 2017.
[Springer'17] R. Démer, G. Liu, T. Schmidt: "Parallel Simulation", chapter 17 in "Handbook
of Hardware/Software Codesign" by S. Ha and J. Teich, Springer Netherlands, June 2016.
[ASPDAC’17] T. Schmidt, G. Liu, R. Démer: "Hybrid Analysis of SystemC Models for Fast
and Accurate Parallel Simulation", Proceedings ASPDAC, Tokyo, Japan, January 2017.
[IEEE ESL'16] R. Démer: "Seven Obstacles in the Way of Standard-Compliant Parallel
SystemC Simulation", IEEE Embedded Systems Letters, vol. 8, no. 4, pp. 81-84, Dec. 2016.
[DAC’15] R. Démer:

“Towards Parallel Simulation of Multi-Domain System Models", Keynote, DAC workshop on
System-to-Silicon Performance Modeling and Analysis, June 2015.

[IEEE TCAD14] W. Chen, X. Han, C. Chang, G. Liu, R. Démer:

"Out-of-Order Parallel Discrete Event Simulation for Transaction Level Models",

IEEE Transactions on CAD, vol. 33, no. 12, pp. 1859-1872, December 2014.

[DATE’12] W. Chen, X. Han, R. Démer: "Out-of-Order Parallel Simulation for ESL Design”,
Proceedings of DATE, Dresden, Germany, March 2012.

FDL '18 Keynote, "Limits of Standard-compliant Parallel SystemC" (c) 2018 R. Doemer, CECS 52

(c) 2018 R. Doemer, CECS

26

