
Automatic Generation of Thread Communication Graphs
from SystemC Source Code

Tim Schmidt, Guantao Liu, and Rainer Dömer
Center for Embedded and Cyber-physical Systems

University of California, Irvine, USA
schmidtt@uci.edu, guantaol@uci.edu, doemer@uci.edu

ABSTRACT
In an ideal top-down system design flow, graphical diagrams
are designed before an executable specification in a System
Level Description Language (SLDL) is derived. Such ini-
tial charts typically also serve as visual documentation of
the textual specification and aid in maintaining the model.
In the absence of graphical charts, e.g. in case of legacy
or 3rd party code, a textual SLDL model is hard to com-
prehend for any unfamiliar designer. Here, we propose to
automatically extract graphical charts from given SystemC
code to ease the understanding of the source code with a
visual representation. Specifically, we extract the communi-
cation flow between the threads from the design model by
use of an automatic SystemC compiler infrastructure that
statically analyzes the code and generates custom Thread
Communication Graphs (TCG) similar to message sequence
charts. Our experimental results on embedded applications
demonstrate that our novel static analysis can quickly ex-
tract accurate TCG that are highly useful for designers in
becoming familiar with new source code.

1. INTRODUCTION
A picture is worth a thousand words. In the absence of a

picture or graphical charts, the model of a system described
in a System Level Description Language (SLDL) is hard to
comprehend. For the system designer who faces legacy code
that needs to be reused and revised, identifying essential
design elements, such as the main design modules, threads
and their communication patterns, becomes a tedious and
lengthy task. Before adjustments, improvements or exten-
sions of the model can be applied, the existing source code
needs to be read, analyzed and fully understood. Without
documented schematic charts, such reverse engineering can
require months of unproductive time.

In this paper, we propose an automated technique to quickly
generate graphical charts from SystemC source code that
can help the system designer in understanding third party
or legacy models. Our automatic chart generator, which is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCOPES ’16, May 23-25, 2016, Sankt Goar, Germany
c© 2016 ACM. ISBN 978-1-4503-4320-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2906363.2906365

based on sophisticated static code analysis by a novel Sys-
temC compiler, quickly produces module hierarchy trees and
multi-thread communication charts that assist the designer
to puzzle out and grasp the intricacies of the complex source
code. As such, this work provides a powerful resource in get-
ting familiar with legacy or third-party SystemC code.

Sender::main INIT

Segment ID: 1

Ack.notify(SC_ZERO_TIME)

send_data()

event.notify(SC_ZERO_TIME)

Segment ID: 4

send_data()

event.notify(SC_ZERO_TIME)

Segment ID: 8

Segment ID: 10

receive_data()

Segment ID: 5

End.notify(SC_ZERO_TIME)

Segment ID: 6

Segment ID: 12

compute_checksum()

Receiver::main INIT

Req.notify(SC_ZERO_TIME)

Figure 1: Generated Thread Communication Graph (TCG)
from SystemC code

Figure 1 shows an example Thread Communication Graph
(TCG) that we generated automatically from original Sys-
temC source code for a model where a pair of modules obvi-
ously communicates in producer-consumer fashion. Instead
of reading the 586 lines of source code distributed over 3
files that make up the design model, a simple glance over the
quickly generated figure reveals the essential communication
protocol used between the modules Sender and Receiver. A
closer look at the chart then shows that events Req, Ack,
and End are used to synchronize the communicating parties,
then data is exchanged in a loop, and finally a checksum is
computed. The automatically generated TCG clearly saves

the designer precious time in understanding the model.
The key contributions of this paper are as follow:

• We developed a dedicated compiler to analyze the struc-
tural and behavioral aspects of legacy SystemC code.

• We integrated the SystemC discrete event simulation
semantics in the analysis.

• We designed a novel algorithm to extract communica-
tion patterns and illustrate them in form of a chart.

• We demonstrated the capabilities of our project on a
3rd party library and an abstract AMBA bus model.

• We contribute our SystemC compiler to the open source
community.

1.1 Related work
Static analysis of source code has been discussed in various

works. CARH [1] is an architecture for validating system-
level designs. The software documentation generation tool
Doxygen [2] and other open source tools generate a XML
representation of source code. Our work differs in that we
analyze and identify the structural and behavioral aspects
of the model. Specifically, we focus on the communica-
tion pattern in a given design. We utilize the knowledge
of Discrete Event Simulation (DES) semantics to achieve
a deeper recognition of the design. In comparison, general
purpose tools like Doxygen cannot handle this task. The
missing sensitivity to the SystemC semantics does not allow
deeper analysis. Doxygen is familiar with C++ constructs
like classes, templates, functions, and other concepts. How-
ever, the tool is not trained to analyze modules, channels,
and event notifications and cannot extract communication.

A very similar tool is the systemc-clang framework [3] for
static analysis of SystemC models which generates an inter-
mediate representation of RTL and TLM designs. systemc-
clang can identify communication properties (callback func-
tion name, socket name, payload information, ...) through
static analysis in TLM 2.0 style. Their compiler recognizes
communication function calls. The attributes of the commu-
nication type are analyzed through the function parameters.
However, we are analyzing the port binding, linked chan-
nels, and communication peers as well. Thus, our approach
is designed for static analysis of structural and behavioral
communication charts among the threads in the model.

PinaVM [4] is a tool which bases on LLVM to extract
structural information. This work is inspired from [5]. Scoot
[6] is a tool for type checking to gain faster simulation via
code re-synthesis.

A Segment Graph was first proposed in [7] for out-of-order
scheduling to speedup simulation in context of the SpecC
language, and later [8] to detect race conditions and paral-
lel execution conflicts. In contrast, we are generalizing the
concept of the Segment Graph for SystemC and aim at ex-
tracting communication graphs from source code.

The rest of this paper organized as following. We intro-
duce the TCG in Section 2. Following, in Section 3 we ex-
plain how to generate a TCG from a Segment Graph. Our
experiments are presented in Section 4, followed by a sum-
mary and future work in Section 5.

2. THREAD COMMUNICATION GRAPH
The design process of embedded systems typically requires

combining various in-house modules and third party compo-
nents, each of which the system designer needs to become fa-
miliar with. Minimizing the time to study new parts is crit-
ical, so the designer needs to focus on the essential aspects,
including the communication and causal chain of composed
components. Tools like Doxygen can generate call graphs
to illustrate the software function hierarchy. However, these
tools are agnostic to the system design semantics. To be
effective, SystemC constructs for structure and communica-
tion need to be recognized and properly represented.

The problem of missing semantic analysis is illustrated
in Figure 2. Two functions are shown in Figure 2a, inde-
pendent entities, as software tools would see them. When
SystemC semantics are applied, threads and events can be
identified and the chart in Figure 2b can visualize the syn-
chronization between the two threads. Even more so, we can
utilize the knowledge of Discrete Event Simulation (DES) se-
mantics and explicitly show the communication and timing
dependencies between the two threads.

Figure 2c shows the resulting graph when wait() is cor-
rectly represented as a construct that incurs a delay due to
the underlying multi-thread scheduling. For the remainder
of this paper, we will refer to this as a segment boundary
that separates the segments of code that SystemC seman-
tics imply as being executed without interruption. We will
formally define the corresponding Segment Graph below in
Section 3.

In Figure 2c, the solid edges show the flow of thread execu-
tion over individual segments, whereas the event notification
dependencies are indicated by dashed lines. Here, segment
A notifies event e1 for which segment D is waiting. Thus,
the designer can see immediately that segment D must be
executed before segment B.

Please note that for this analysis references and port map-
pings of events must be resolved as well. For this, our
approach generates an instance tree over the entire design
hierarchy so that shared variables can be correctly disam-
biguated.

3. STATIC COMPILER ANALYSIS
At the core of our SystemC visualization is the Recoding

Infrastructure for SystemC (RISC), an advanced compiler
framework for analyzing, executing and instrumenting Sys-
temC models.

3.1 RISC Compiler Infrastructure
Figure 3 shows the software stack of RISC. On top of a

C/C++ software foundation, we selected the ROSE com-
piler [9] and its internal representation (IR) to generate and
maintain an abstract syntax tree (AST) of the design model
and the SystemC library. Our SystemC IR layer represents
SystemC constructs, such as modules, channels, instances,
threads and ports, explicitly (similar to [3]). On top of this,
we have placed our Segment Graph Generator which analy-
ses and visualizes thread execution and synchronization.

Our Segment Graph Generator is a parameterizable al-
gorithm to extract segments of a given scope for a pro-
gram (e.g. function foo in Figure 4a). Formally, a Segment
Graph [7] consists of segment nodes and transition edges. A
segment includes all reachable code from a segment bound-
ary. Segment boundaries are generally user defined and can

func 1 func 2

1: a

2: b

3: e1.notify()

4: wait(e2)

5: c

6: d

1: wait(e1)

2: x

3: y

4: z

5: e2.notify()

(a) Two functions

SC_THREAD 1 SC_THREAD 2

1: a

2: b

3: e1.notify()

4: wait(e2)

5: c

6: d

1: wait(e1)

2: x

3: y

4: z

5: e2.notify()

(b) Threads and events

SC_THREAD 1 SC_THREAD 2

Seg A:

1: a

2: b

3: e1.notify()

Seg C:

5: c

6: d

2: x

3: y

4: z

5: e2.notify()

Seg B: wait(e2) Seg D: wait(e1)

(c) DES dependency

Figure 2: Analysis of communicating threads

RISC

Segment Graph
Generator

C/C++ Foundation

ROSE IR

SystemC IR

Figure 3: Software Stack

0 void foo() {

1 r++;

2 wait();

3 a=b+c;

4 if(condition){

5 i++;

6 wait();

7 j++;

8 } else {

9 b=x+y;

10 }

11 z=z*z;

12 wait()

13 y=z+4; }

(a) Source Code

r++

a=b+c;

condition

i++

b=x+y;

z=z*z;

wait (line 2)

j++

z=z*z;

wait (line 6)

y=z+4;

wait (line 12)

(b) Segment Graph[wait]

Figure 4: Recoding Infrastructure for SystemC (RISC)

be any functions calls or control flow statements (e.g. if,
while, ...). Here, we use wait() as boundary, since we are
interested in the flow of time with synchronization depen-
dencies.

The edges in a Segment Graph are defined by control flow
transitions. A transition exists between two segments S1

and S2 if segment S2 can be reached after segment S1 (e.g.
wait(line6) to wait(line12) in Figure 4b).

Figure 4b shows an example Segment Graph where the
only segment boundary is the function call of wait() (aka.
Segment Graph[wait]). The corresponding input code for
this graph is listed in Figure 4a. Note that the expression
z=z*z; is part of both segments wait(line2) and wait(line6)
because it can be reached from both wait() boundaries.

Note that our Segment Graph Generator differs in key
aspects from the work in [7]. First, the user can parameter-
ize the segment graph with any chosen segment boundaries
(in [7] boundaries are hard coded). For instance, if the user
selects all control flow statements as segment boundaries,
the output will be a classic control flow graph (CFG). Al-

ternatively, if we choose scheduler entry points (i.e. wait)
as the segment boundaries, we obtain a Segment Graph for
analysis of Discrete Event Simulation (DES) semantics. Sec-
ond, our RISC compiler can handle recursive function calls
which was not possible before. Third, we can process jump
statements break and continue, as well as multiple return

statements from functions. Before, valid input code could
not include these statements. Also, expressions which have
an undefined evaluation order will be properly ordered into
a fixed sequence to avoid ambiguity. For instance, the ex-
pression x=a+f()+b; does not specify if the read access to
the variables or the function call executes first. The RISC
compiler translates this into int t=f(); x=a+t+b; where the
function call always happens before the variable read.

3.2 Segment Graph Generator
The algorithm of our Segment Graph Generator is de-

scribed in Listing 1 by the recursive function build_graph.
The first parameter curr_stmt is the statement which will
be processed next. The set curr_segs contains the segments
which will consume the current statement. For instance,
while processing the assignment z=z*z in Figure 4 the set
curr_segs is {wait(line2), wait(line6)}, so the expression will
be added to both segments. The break and continue state-
ments represent an unconditional jump in a program. If we
hit these keywords, the segments in curr_segs will be moved
into the associated set break_segs or continue_segs, respec-
tively. After completing the corresponding loop or switch
statement, all segments in break_segs or continue_segs will
be moved back to the curr_segs set.

For simplicity, we illustrate the processing of function
calls and loops in Figure 5 and Figure 6, respectively. Fig-
ure 5 shows how the build_graph algorithm handles function
calls. In step 1 the dotted circle represents the segment set
cur_segs. The algorithm will detect the function call and
check if the function is already analyzed. If not and it is
the first time, the function will be analyzed separately, as
shown in step 2. Otherwise, the algorithm reuses the cached
graph for the particular function. Finally, each expression
of segment 1 will be joined into each individual segment in
the segment set 0. Segment 4 and 5 represent the new set
cur_segs.

Correspondingly, Figure 6 shows the loop analysis for a
while loop. Again in step 1 the dotted circle represents the
segment set cur_segs. The algorithm detects the while state-
ment and analyzes the loop body separately. The graph for
the body of the loop is shown in step 2. Afterwards, each

1

2 3

4 5

0

func()

Graph for func()

2 3

4 5

(1) (2) (3)

0+1

Figure 5: Function call processing

0 1

2 3

4 5

while(var){

 //body

}

0+1

2 3

4 5

Graph for loop body

(1) (2) (3)

Figure 6: Loop processing

expression of segment 1 will be joined into the segment set
0. The new set cur_segs is the joined set of 0+1, 4, and 5.
Note that we have to consider set 0+1 for the case that the
loop is not taken.

1 SegSet build_graph(curr_stmt , curr_segs ,
break_segs , SegSet continue_segs) {

if(isBoundary(curr_stmt))
5 Segment new_seg; SegSet result(new_seg)

foreach(seg in curr_segs)
add_edge(seg , new_seg)

return result

10 if(isBasicBlock(curr_stmt))
foreach(stmt in curr_stmt)

cur_segs = build_graph(stmt , curr_segs ,
break_segs , continue_segs)

return cur_segs
15

if(isIfStmt(curr_stmt))
add_expression(if_condition , curr_segs)
new_seg_set_1

= build_graph(if_body , curr_segs ,
20 break_segs , continue_segs)

new_seg_set_2
= build_graph(else_body , curr_segs ,

break_segs , continue_segs)
return join(new_seg_set_1 , new_seg_set_2)

25

if(isBreakStmt(curr_stmt))
break_segs = join(break_segs , current_segs)
curr_segs.clear
return curr_segs

30

if(isContinueStmt(curr_stmt))
continue_segs = join(continue_segs ,

current_segs)
curr_segs.clear

35 return curr_segs

if(isExpression(curr_stmt))
if(isFunctionCall(curr_stmt))

// see Figure 5
40 else

add_expression(stmt , curr_segs)
return curr_segs

}

Listing 1: Algorithm of Segment Graph Generator

3.3 Thread Communication Graph
Based on the generated Segment Graph, we then extract

the TCG to aid designers who face legacy code that needs
to be reused and revised. For this, we identify and pair the
synchronization and communication points in the individual
scheduling steps in the design.

The Segment Graph already determines which code ele-
ments are potentially executed in any given scheduling step.
However, we have to add the edges for the identified synchro-
nization and communication points. Specifically for event
notifications, we have to analyze the notify() and wait()

function calls in each segment. Additionally, we need to
identify any channel communication calls, e.g read() and
write(). Finally, the mapped channels and events are fol-
lowed and matched through the design hierarchy.

3.3.1 Port Mapping
SystemC ports provide a flexible interface to send and re-

ceive data via mapped channels (or other mapped ports).
While the indirect function calls via ports to channel meth-
ods are a powerful modeling feature, it is difficult to follow
the actual flow of control in unfamiliar code. Here, our RISC
compiler can help and determine which port is mapped to
which channel, including for cases where this mapping goes
through multiple levels of the design hierarchy.

To resolve port mappings, two steps are required. First, a
port needs to be unambiguously identified in the hierarchy of
the design. Second, we have to follow the module hierarchy
to find the mapped channel.

For step 1, we identify a port in the design through a
so-called instance path. An instance path is a list of tuples
where each tuple contains a scope and an instance. For ex-
ample, the path to a port DataIn could be [GlobalScope::top]
→ [Top::platform] → [Platform::datain] → [DataIn::port1].
Note that the instance path uniquely identifies a port, even
if there are multiple instances of this port in the module
hierarchy.

For step 2, we use the instance path to identify the mapped
channel. Specifically, we analyze the mapping between a tu-
ple and its successor. Here, we check the module constructor
and identify the mapping to a channel or another port, and
repeat the process as needed. In each iteration we go up in
the instance tree until the port is mapped to a channel.

3.3.2 Event and Reference Mapping
SystemC threads use events for synchronization with each

other. If the synchronizing threads are in the same module,
a shared event variable in the module can be used. However,
if threads have to synchronize across module boundaries, an
event at a higher level in the hierarchy is needed, which is
typically mapped via references.

Here, we can determine the reference mapping in the same
fashion as the port mapping. We describe the event by an in-
stance path and go up the path until the reference is mapped
to an actual variable.

3.3.3 Handling of Loops
Loops are naturally present in virtually all algorithms and

clearly need to be supported by our source code analysis.
However, general loops can also lead to complex control
flows that are difficult to represent cleanly in visual graphs.
For the purpose of our TCG, we aim at a loop abstraction
that simplifies the understanding of the protocol between the

communicating parties. Specifically, our goal is to visualize
the overall sequential flow of exchanged messages, in similar
manner as exhibited by message sequence charts [10].

For our TCG, we support loops in one of two ways. On
the one hand, we can assume that each loop will be taken
at least once. On the other hand, loops can be unrolled. By
default, our TCG assumes the first option because not every
loop can be unrolled. Additionally, loop unrolling can lead
to state explosion and often decreases the readability of the
TCG.

In context of communication protocols, it is reasonable
to assume that the sender and the receiver are exchanging
messages equally. Listing 2 shows an example where thread1

notifies thread2 ten times. Here, the sender and the receiver
are exchanging messages and thus the associated notify()

and wait() functions must be called equally often. Figure 7
shows the TCG for the example in Listing 2. The graphs
shows that the loop is taken at least once.

void thread1 () {
2 for(int i = 0; i < 10; i++) {

event.notify(SC_ZERO_TIME);
4 /* Do some stuff */

wait(SC_ZERO_TIME); } }
6 void thread2 () {

for(int i = 0; i < 10; i++) {
8 wait(event);

/* Do some stuff */ } }

Listing 2: Producer and consumer example

C:

event.notify(

SC_ZER_TIME)

A:

event.notify(

SC_ZER_TIME)

B:

wait(SC_ZERO_TIME)

event.notify(

SC_ZER_TIME)

D:

wait(event)

Figure 7: Example of a loop with synchronization

3.4 Module Hierarchy
We can use the SystemC IR to determine the module hi-

erarchy of the design model in two steps. First, we identify
the top module of the design. Unless explicitly specified by
the designer, we assume that the top module is declared in
the function sc_main. From the declaration, we can then
derive the module definition. Finally, we can traverse the
hierarchy of the design as described in Listing 3.

traverse_hierarchy(ModuleDefintion md) {
2 foreach(ModuleInstance mi

in get_all_sub_mdules(md)) {
4 traverse_hierarchy(get_module_definition(mi))

}
6 }

Listing 3: Traversing the module hierarchy

The function traverse_hierarchy() takes the module def-
inition md and iterates over all its child modules. For each
child module instance mi, the corresponding module defini-
tion is determined and the function traverse_hierarchy() is
called recursively.

3.5 Optimization and Designer Interaction
The system designer has a set of configuration options and

parameters available to get a better picture of the design.
For example, the designer can select what types of edges
should be displayed for the communication. Our TCG dis-
tinguishes native event notifications, primitive, and hierar-
chical channel communication.

The system designer can also select only a subtree of the
module hierarchy or a subset of the SystemC threads for
which the TCG will be generated. Thus, the designer can
easily choose and focus on the points of interest and see the
communication and dependencies between them.

Finally, pseudo comments may be used to indicate loop
unrolling and wait statements can be annotated and labeled.
This information is then displayed in the generated graph for
enhanced readability.

Overall, the system designer can quickly and iteratively
generate custom charts, getting more familiar, and obtaining
a better picture of the model and its components.

3.6 Visualization
Our RISC compiler performs the analysis and graph gen-

eration based on the internal representation of the model
and generates DOT files [11] for the Segment Graph and
TCG. These files can then be visualized by the DOT tools,
e.g. as interactive chart on screen or as PDF.

3.7 Accuracy and Limitations
The current implementation of our fully automated com-

piler has some limitations. We cannot handle pointers. Also,
currently we cannot match array indices in port mappings.

Our compiler produces charts which are giving an impres-
sion of the communication behavior. However, static anal-
ysis can misinterpret situations and illustrate too many or
too few communication edges. As mentioned, a picture is
worth a thousand words (and even if a few words are in-
accurate, the picture helps a lot in quick comprehension).
For instance, in Figure 11 we can see immediately that the
master m1 requests the bus through the arbiter. After the
arbiter acknowledges the request, master m1 starts commu-
nicating to the slave. We should emphasize that our TCG
generator is fully automated and quickly visualizes identified
communication patterns without designer interaction. The
generated illustrations may be inaccurate in minor aspects
(limitations listed above), but they nevertheless convey an
overall image that is helpful for getting to understand the
source code quickly.

4. EXPERIMENTS
We have evaluated our TCG generation from SystemC

source code on a Mandelbrot graphics application, an AMBA
bus model, and the S2CBench benchmark set. For all ex-
amples, we tested both our hierarchical and communication
analysis.

4.1 Mandelbrot Renderer
The Mandelbrot example computes a stream of Mandel-

brot [12] images and as such is a representative for highly
parallel graphics applications. The source code is complex,
heavily instrumented with macros for customization. Here,
we choose 2 parallel renderer modules.

The Mandelbrot module hierarchy is shown in Figure 8.

Top top

+- DataChannel c1

+- DataChannel c2

+- Stimulus stimulus

+- Platform platform

+- DataIn din

+- DUT dut

+- main (thread)

+- mb1 (thread)

+- mb2 (thread)

+- mb3 (thread)

+- mb4 (thread)

+- DataOut dout

+- Monitor monitor

Figure 8: Module hierarchy of the Mandelbrot

We can deduce that the modules Stimulus and Monitor
feed data in and out of the Platform and in turn the DUT
(Design Under Test) (via DataIn and DataOut). The DUT
hosts one main and four worker threads mb1, mb2, mb3, and
mb4.

Next, we performed behavioral analysis and generated
TCG, such as Figure 9. The INIT segments start threads
and the solid arrows illustrate the transitions between the
segments. The dashed arrows show the event synchroniza-
tion. The generated Figure 9 focuses on the synchronization
between the main and worker threads in the module DUT.
We can see that the thread main notifies the worker threads
mb1, mb2, mb3, and mb4 when data is available and both
respond back to main.

Figure 10 shows a higher level of communication analysis,
where our RISC compiler first analyzed the module hierar-
chy and channel binding to identify the port mapping. Then
it followed the port mapping through the different module
levels and associated them with the corresponding read()

and write() function calls. The resulting communication
and data flow is generated in Figure 10. We can easily see
that the data flows from Stimulus via DataIn into the DUT
where the coordinates are processed. An image is then sent
via DataOut to the Monitor module.

For both diagrams the assumption that loops are taken
once fits very well. The combination of the structural and
behavioral analysis provides quick insight into the behavior
of the design.

4.2 AMBA Bus Model
As an example with complex multi-component communi-

cation, we reimplemented an AMBA bus model from [13] at
TLM abstraction. The generated module hierarchy is shown
in Figure 12.

The corresponding TCG for a BWRITE operation is shown
in Figure 11. Here, the red dashed lines represent event noti-
fications and blue dashed lines communication via channels.
We can clearly see that master M1 requests the bus through
the arbiter via the event areq1. In turn, the arbiter grants
the bus to M1 via the agnt0 event. Next, M1 uses the bus to
send data via BD to the Slave, which receives the address via
the Decoder. Without this chart, the designer would need
to read and study the 498 lines of code and manually figure
out the port mappings and execution dependencies.

4.3 S2C Testbench
Finally we have evaluated our TCG generation on the

S2CBench [14], a benchmark suite of 16 synthesizable Sys-
temC models that includes industrial, automotive, security,
telecommunication, and consumer applications. Our RISC
compiler accurately generates the module hierarchy and TCG
for these examples1. Due to space limitations, we unfortu-
nately cannot present the resulting graphs here.

Each TCG was generated in less than 34 seconds, where
on average the compiler spent 15 seconds on AST creation
(ROSE parser), 10 seconds for SystemC IR generation, and
9 seconds on the TCG.

Top top

+- Channel master1_to_decoder

+- Channel master2_to_decoder

+- Channel address_bus_to_decoder

+- Channel master1_to_data _bus

+- Channel master2_to_data _bus

+- Channel data_to_bus _to_slave

+- Channel decoder_to_slave

+- Channel master1_to_slave _bwrite

+- Master1 m1

+- Master2 m2

+- Arbiter arbiter

+- DataBus databus

+- Slave slave

+- Decoder decoder

Figure 12: Module hierarchy of the AMBA bus

5. CONCLUSION
Becoming familiar with an unknown SystemC design is

an often necessary and complex process. Designers have to
identify communication patterns between threads and the
behavior of individual components which can consume weeks
of unproductive work.

In this paper, we propose the RISC compiler framework to
analyze and identify structural, behavioral and communica-
tion aspects of SystemC models. Specifically, we automati-
cally extract execution, synchronization and communication
dependencies and visualize them quickly as Thread Commu-
nication Graphs (TCG).

The experimental evaluation of our framework using more
than a dozen SystemC examples from different application
domains shows that the automatically generated module hi-
erarchy and visual communication charts are very helpful for
system designers in becoming familiar with legacy or third
party source code.

In future work, we plan to extend our approach for models
with detailed timing and advanced TLM 2.0 semantics.

ACKNOWLEDGMENT

This work has been supported in part by substantial fund-
ing from Intel Corporation for the project titled ”Out-of-
Order Parallel Simulation of SystemC Virtual Platforms on

1For six of the 16 benchmarks, we manually replaced indexed
array variables with regular ones, since our RISC compiler
currently cannot match array indices in port mappings.

Segment ID: 5 [DUT::mb1] INIT

Segment ID: 7

mandel1.notify(SC_ZERO_TIME)

Segment ID: 4

mb_run.notify(SC_ZERO_TIME)

Segment ID: 11 [DUT::mb2] INIT

Segment ID: 13

mandel2.notify(SC_ZERO_TIME)

Segment ID: 2 [DUT::main] INIT

mb_run.notify(SC_ZERO_TIME)

Segment ID: 19

mandel1.notify(SC_ZERO_TIME)

Segment ID: 25

mandel2.notify(SC_ZERO_TIME)

Segment ID: 17 [DUT::mbj] INIT Segment ID: 23 [DUT::mb4] INIT

Figure 9: Mandelbrot TCG for DUT

Segment ID: 0 [DataIn::main] INIT

CoordsIn->read(coords)

CoordsOut->write(coords)

Segment ID: 2 [DUT::main] INIT

CoordsIn->read(coords)

Segment ID: 4

ImgOut->write(image)

CoordsIn->read(coords)

Segment ID: 17 [DataOut::main] INIT

ImgIn->read(image)

ImgOut->write(image)

Segment ID: 21 [Monitor::main] INIT

ImgIn->read(image)

Segment ID: 19 [Stimulus::main] INIT

CoordsOut->write(coords)

Figure 10: Generated Mandelbrot TCG with data flow from Stimulus via DUT to Monitor

Segment ID: 3 [Arbiter::main] INIT

Segment ID: 4

agnt0.notify(SC_ZERO_TIME)

Segment ID: 0 [M1::main] INIT

areq1.notify(SC_ZERO_TIME)

Segment ID: 1

port_decoder->write(0x24)

port_data_bus->write(0x23)

port_bwrite->write(1)

areq0

Segment ID: 8 [Decoder::main] INIT

port_decoder->read(address)

port_slave->write(address)

Segment ID: 7 [Slave::main] INIT

port_slave->read(address)

port_bwrite->read(bwrite_val)

port_slave->read(data)

Segment ID: 6 [BD::main] INIT

port_data_bus->read(data)

port_slave->write(data)

BWRITE

Figure 11: Communication Graph generated from an AMBA bus model for a BWRITE operation

Many-Core Architectures”. The authors thank Intel Corpo-
ration for the valuable support.

6. REFERENCES
[1] H. D. Patel, D. Mathaikutty, D. Berner, and S. K.

Shukla, “CARH: Service-Oriented Architecture for
Validating System-Level Designs,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 25,
no. 8, pp. 1458–1474, 2006.

[2] “Doxygen,” 2015. [Online]. Available:
http://www.stack.nl/˜dimitri/doxygen

[3] A. Kaushik and H. D. Patel, “Systemc-clang: An
Open-source Framework for Analyzing
Mixed-abstraction Systemc Models,” in Forum on
specification and Design Languages (FDL), 2013.

[4] K. Marquet and M. Moy, “PinaVM: A SystemC
Front-End Based on an Executable Intermediate
Representation,” in Proceedings of the Tenth ACM
International Conference on Embedded Software, ser.
EMSOFT, 2010, pp. 79–88.

[5] M. Moy, F. Maraninchi, and L. Maillet-Contoz,
“Pinapa: An Extraction Tool for SystemC
Descriptions of Systems-on-a-Chip,” in EMSOFT,
September 2005, pp. 317–324.

[6] N. Blanc, D. Kroening, and N. Sharygina, “Scoot: A
Tool for the Analysis of SystemC Models,” in TACAS,
2008, pp. 467–470.

[7] W. Chen, X. Han, and R. Dömer, “Out-of-Order
Parallel Simulation for ESL Design,” in Proceedings of
the Design, Automation and Test in Europe (DATE)
Conference, 2012.

[8] ——, “May-Happen-in-Parallel Analysis based on
Segment Graphs for Safe ESL Models,” in Proceedings
of the Design, Automation and Test in Europe
(DATE) Conference, 2014.

[9] D. J. Quinlan, “ROSE: Compiler Support for
Object-Oriented Frameworks,” Parallel Processing
Letters, vol. 10, no. 2/3, pp. 215–226, 2000.

[10] S. Mauw and M. Reniers, “High-level message
sequence charts,” 1997.

[11] “Dot language,” 2015. [Online]. Available:
http://www.graphviz.org/doc/info/lang.html

[12] B. B. Mandelbrot, Fractals and Chaos: The
Mandelbrot Set and Beyond. New York, Berlin, Paris:
Springer, 2004.

[13] S. Roopak, R. Parthasarathi, and B. Samik,
Correct-by-Construction Approaches for SoC Design.
New York, Berlin, Paris: Springer, 2004.

[14] B. C. Schäfer and A. Mahapatra, “S2CBench:
Synthesizable Systemc Benchmark Suite for
High-Level Synthesis,” Embedded Systems Letters,
vol. 6, no. 3, pp. 53–56, 2014.

