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ABSTRACT

At the Electronic System Level (ESL), a well-defined design
model enables early design space exploration and automatic
synthesis on custom multiprocessor platforms. However, the
initial design model is usually manually recoded from un-
structured and sequential source code. To efficiently create
cleanly structured and parallel models, this paper proposes
a designer-in-the-loop approach on Eclipse platform where
the system model is analyzed and recoded using automated
functions. Particularly, advanced static analysis at compile
time can guarantee that the parallelism in the model is safe
and free from race conditions. Experiments using the tool
with a class of graduate students show significant produc-
tivity gains and error reduction in model creation.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Programming Environments—
Integrated environments; D.3.4 [Programming Languages]:
Processors—Compilers

General Terms

Algorithms, Design

Keywords

Executable Specification, ESL, Recoding, Eclipse

1. INTRODUCTION
Electronic System Level (ESL) design with proper method-

ology and tools, such as [5, 12], enables early design space
exploration, high-level synthesis, and software refinement to
cycle-accurate level. Here, a well-structured system-level
model is critical as the input to the automation tools. In
order to shorten the time to market, quickly creating clean
and parallel ESL models is a prerequisite for building cost-
effective MPSoCs.
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However, most application codes are specified in sequen-
tial C code while an ESL model is typically described in
a System Level Description Language (SLDL) such as Sys-
temC or SpecC, with exposed parallelism and block struc-
ture. Manually recoding original C code to ESL models con-
taining explicit structure, communication, and parallelism is
very time-consuming, and the step to expose the parallelism
in the application is especially difficult and error-prone.

This paper addresses this problem by a designer-in-the-
loop approach similar to [6] where the system model is re-
coded and analyzed using automated functions guided by
designer decisions. The proposed design flow speeds up the
creation of a clean and parallel ESL model from original ref-
erence code of an application. In particular, we use static
dependency analysis at compile time to guarantee that the
recoded model is safe and free from parallel access conflicts.
A case study with a class of graduate students on paralleliz-
ing a Canny Edge Detector example shows that designers
not only find the proposed approach useful, but also can
complete the recoding faster and with fewer errors.

1.1 Related Work
When time and budget are limited, automated refinement

and parallelizing tools are desirable. [9] automatically trans-
forms C programs into parallelized SystemC models based
on user-directives in the input program. The parallelism
here is limited to task-level pipelining. [10] uses an ILP-
based approach on hierarchical task graphs to parallelize
applications for embedded systems. The tasks in the appli-
cation need to be clearly defined and parallelism needs to
be exposed from the source code. Advanced parallelizing
compilers, such as [1, 13], are still ineffective in exploiting
thread-level parallelism in real-life applications. As studied
in [14], only an average of 10% of the loops (which cover
12.5% of the total execution time) can be parallelized auto-
matically for the chosen benchmarks using the Intel C++
Compiler 9.1.

In contrast, the proposed approach utilizes designer’s knowl-
edge and offers greater flexibility in the types of parallelism
to exploit. Some parallelism can only be extracted with the
understanding of the algorithms in the application. Also, a
clean input model is usually a prerequisite for parallelization
tools to work effectively.

Research work has been done to verify system-level mod-
els with parallelism in SystemC. Formal approaches, such as
model checking, provide comprehensive coverage and guar-
antees on system descriptions. [17] proposed a trace driven
approach to detect race conditions and deadlocks in sys-



tem models. The trace record can grow exponentially when
the size of the design is increasing. [2] uses dynamic par-
tial order reduction approach to address the state explo-
sion problem. Exhaustive simulation is needed which is not
efficient for checking industrial-size models. A simulation-
based approach, such as [16], is also studied to analyze non-
deterministic anomalies among parallel logical processes.

The proposed approach in this paper is based on static
code analysis which is practically linear to the size of the
design. Large designs can be completely checked with neg-
ligible compilation cost.

A good amount of research on the topic of ‘programmer
in the loop’ is done in ExCAPE center [15], aiming to syn-
thesize programmer’s insights into the actual software im-
plementation. Their approach involves automatic program
completion with partial code specified by the programmer,
code generation with desired input and output specified by
the programmer, and synchronization insertion for parallel
code. Instead of targeting general computing, our work fo-
cuses on system-level modeling. Our goal is to create the
modularity and parallelism required in system-level mod-
els efficiently using automatic code analysis and transfor-
mations. In our context, the low-level software is generated
by back-end ESL tools.

2. DESIGNER-IN-THE-LOOP RECODING
Creating parallel ESL models in SLDLs from existing se-

quential applications involves a number of tasks, as shown
in Fig. 1:
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Figure 1: Designer-in-the-Loop Recoding Flow

Decision for Parallelization

The first step requires the designer to identify effective par-
allelism in the model. The designer also needs to identify
the risk and avoid cases when parallelization downgrades
the performance due to heavy data dependencies, frequent
synchronization, or I/O bottlenecks. For these reasons, this
step is kept manual in the design flow.

Variable Dependency Analysis

Resolving data dependencies is one major task in expos-
ing parallelism. To guarantee the variables are in the cor-
rect scope when structures are recoded and the implemented
parallelism is free from parallel access conflicts, the designer
must locate the variables in related statements, and identify
their access type and dependency on other statements. Due
to its complexity, this process is lengthy and very error-prone
if done manually.

In our work, the variable dependency analysis is auto-
mated using static code analysis in the compiler. This is the
focus of this paper and is presented in detail in Section 3.

Parallel Access Conflicts Display and Navigation

With our extension of the on Eclipse platform (described in
detail in Section 4), the designer is provided a monitor and
checker for potentially dependent variables for each func-
tion or module during model development. The tool can
also navigate instantly to any variable in the displayed list
based on designer’s selection so that a recoding action can
be quickly performed.

Structure Recoding

Structure Recoding is needed to explicitly describe the hi-
erarchy and parallelism in SLDL. This involves a number of
transformations. Partitioning breaks large functional blocks
into smaller ones. Encapsulation transforms functional blocks
into modules (e.g. behaviors in SpecC or modules in Sys-
temC). Hierarchy is recoded to expose the parallelism by
instantiating and connecting newly created blocks and plac-
ing them for parallel execution.

These transformations are applied with the designer’s in-
put, especially with the knowledge of the target platform
and design constraints. Here, we rely on existing transfor-
mations [6, 7]:

• Loop Splitting: With designer-specified parameters of
trip count and the number of unrolls, this function cre-
ates different incarnations of the loop (with the same
loop body) where each split loop iterates over different
contiguous subsets of the loop index range.

• Encapsulating Functions: This function creates a new
behavior from the body of a function call selected by the
designer and a port list of the function interface. The
created instance is placed and connected in its parent,
and the original function call is replaced with a call to
this instance.

Variable Recoding

The purpose of recoding variables is two-fold. (1) The func-
tionality of the model must be maintained as its structure
is recoded. The variables involved in restructuring must be
recoded according to how they are used in each block by re-
locating them to proper scope or creating channels for them.
(2) Data dependencies must be resolved when parallelism is
implemented. In case of data parallelism on a distributed
memory platform, data can be partitioned onto the process-
ing elements. If communication is required among parallel
tasks, variable accesses must be synchronized in a shared
memory platform, or communication channels must be es-
tablished in a distributed system.



As indicated by the back arrows in the recoding flow
(Fig. 1), the designer iteratively recodes the variables in the
list provided by the previous step.

The automated variable recoding currently includes [6]:

• Rescoping: Relocating variables to proper local, class, or
global scope, is needed to maintain the recoded model,
eliminate false dependencies, and indicate memory map-
ping. This transformation is automated with designer
specified target variable and destination scope.

• Array Splitting: When different parallel tasks work on
a slice of an array each, the array can be split into sub-
arrays automatically with user-specified parameters of
index ranges.

• Synchronization through Channels: When dependency
exists among parallel tasks, the user specifies the vari-
ables used for communication and the dependent behav-
iors and then the function creates channels and inserts
blocking send and receive calls for those behaviors.

To summarize, the model is iteratively recoded by the de-
signer using automated transformation functions and guided
by analysis results. Then the recoded model is used as input
for validation, exploration, refinement and further genera-
tion of implementation models.

In general, the complex and iterative recoding process can-
not be fully automated and requires ‘designer-in-the-loop’.
First, the task requires information about target platform
and implementation constraints which may only be known
by the designer. Second, manual coding is still needed when
a model is recoded. For example, interfaces need to be de-
fined after code partitions; data merging or collection may be
necessary after data partitions. Third, having the designer
in control provides flexibility and generally can produce bet-
ter designs than fully automatically generated models.

3. VARIABLE DEPENDENCY ANALYSIS
This section describes the variable dependency analysis

algorithm implemented in our proposed design flow.
At compile time, variable access lists (VarAList) are built

statically at function level for data dependency checking.
Each item in the list is a 3-tuple (Symbol, AccessType,
InstancePath), where:

• Symbol : the identifier of the variable.

• AccessType: the variable access type, i.e. read-only
(R), write-only (W), read-write (RW), or pointer access
(Ptr).

• InstancePath : the scope of the variable in the design
instance hierarchy.

SLDLs support different types of variables that need to be
analyzed separately. We distinguish and handle the follow-
ing cases (variable examples are from the design in Fig. 2(a)):

• Global variables (G), e.g. array in line 2: This case is
handled directly as tuple (Symbol, AccessType, NULL).

• Local variables, e.g. j in line 9: Local variables are
stored on the function call stack and cannot be involved
in any dependency due to parallel execution of the func-
tion. Thus, we can ignore them in the access lists.

1 #inc lude <s td i o . h>

2 in t array [ 1 0 ] = {0 ,1 ,2 , 3 ,4 ,5 , 6 , 7 ,8 ,9} ;
3
4 behavior A( in in t s ta r t , behavior Main ( )
5 in in t end , {
6 inout i n t sum) in t sum1 , sum2 ;
7 { A a1 (0 , 4 , sum1 ) ;
8 in t i ; A a2 (5 , 9 , sum2 ) ;
9 void g ( i n t j ){ i n t main (){

10 sum += array [ j ] ; par{
11 } a1 . main ( ) ;
12 void main (){ a2 . main ( ) ;
13 i = s t a r t ; }
14 whi le ( i <= end ){ p r i n t f (”%d\n” , sum1 ) ;
15 g ( i ++); p r i n t f (”%d\n” , sum2 ) ;
16 } return 0 ;
17 } }
18 } ; } ;

(a) Example source code in SpecC.
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(b) Function Local VariableAccess Lists
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(c) Function Variable Access Lists

Figure 2: Simple design example with the variable
access lists.

• Instance member variables (M), e.g. i in line 8: A
block or channel can be instantiated multiple times and
then produce multiple variables with the same identifier.
We distinguish these by their InstancePath in the (Sym-
bol, AccessType, InstancePath) tuple.

• Port variables (P), e.g. start in line 4: Ports are
mapped to other variables during instantiation. We find
the actual mapped variable by tracing up the known
instance path and store that variable with its instance
path.

• Pointers: We currently do not perform pointer analy-
sis. For now, we conservatively mark pointer accesses as
potential dependencies and leave the final decision to the
designer.

To obtain the variable access information, we propose a
three-phase code analysis algorithm:

• Phase 1: Function preprocessing.
In this phase, we add the variables that are accessed in
the statements of a function (or method) definition to
a local VarAList. Instead of following the function call
tree, we simply add the functions that are called in the
function body to the list of callees. Fig. 2(b) shows the
local VarALists for the functions in the example. Since
we just scan the code and do not follow the function call
tree, as shown in Algorithm 1, the time complexity of
this phase is linear to the size of the design.



• Phase 2: Build Variable Access Lists.
In this phase, we build the complete variable access lists
for each function (or method). The complete VarAList
contains not only the variables accessed locally in a func-
tion, but also those that are accessed indirectly by called
functions. The Variable Access Lists get updated in this
phase as shown in Fig. 2(c).

Algorithm 2 shows that the compiler starts from the top
of the function call tree and traverses down to each leaf
function. This analysis could grow exponentially if each
callee function is followed and there are frequent deep
function calls. We avoid this by caching the variable
access information for each function (line 15-20 in Algo-
rithm 2). Instead of calling BuildFctAccessList to ana-
lyze the callee function f, we use the cached data if f is
already analyzed. The time complexity of this phase is
therefore also linear to the code size.

• Phase 3: Get Instance-Specific Variable Access Lists.
In this phase, we build the complete InstancePath for
the variables. In phase 2, the variable access lists are
at function level and instance member variables cannot
be distinguished. For instance in Fig. 2, i is a member
variable of behavior A, and after phase 2, we have the
entry (i, RW, NULL) in the VarAlist of A.g(). However,
we cannot identify Main.a1.i or Main.a2.i at that level.

In phase 3, we prepend the instance path to the variables
so as to have the instance-specific entries in the VarAList,
such as (i, RW, Main.a1) or (i, RW, Main.a2).

Note that not all variables are straightforward to ana-
lyze. The SLDL actually supports ports which are con-
nected by port maps in the structural hierarchy of the
design model. We need to trace the instance path for
the mapping of the port variables so as to identify the
real variables that are accessed. For example, start and
end are ports of behavior A. Their real mapping are the
two constants 0 and 4 for instance Main.a1. Therefore,
the real variables accessed in Main.main are constants 0
and 4, not Main.a1.start and Main.a1.end, respectively.

The time complexity of this phase is linear to the size of
the VarAList.

Note that Phase 1 and Phase 2 are performed auto-
matically by the compiler, while Phase 3 is executed when
the designer launches the analysis and recoding functions by
clicking on the Eclipse interface (explained in the following
section).

4. INTEGRATION WITH ECLIPSE
We have implemented the proposed design flow supporting

SpecC as an Eclipse [4] plug-in. Fig. 3 shows the interface of
our SpecC-extended Eclipse which integrates the recoding
and analysis functions together with many other features,
including:

Automatic Compiling

Whenever the user edits and saves a working model, the
model is compiled in the background. At this time, Phase
1 and Phase 2 (described in Section 3) execute to build the
data structures needed for parallel access conflict analysis.

Algorithm 1 Function Preprocessing to Build Variable Ac-
cess Lists
1: BuildFctLocalAccessList(fct)
2: {
3: fct.localVarAList = BuildStmntAccessList(fct.topstmnt);
4: }
5:
6: newStmntVarAList = BuildStmntAccessList(stmnt)
7: {
8: newVarAL = new VAList;
9: switch (stmnt.type) do

10: case STMNT COMPOUND:
11: for all subStmnt ∈ Stmnt do

12: newVarAL += BuildStmntAccessList(subStmnt);
13: end for

14: case STMNT IF ELSE:
15: newVarAL += ExtendAccess(stmnt.conditionVar, NONE);
16: newVarAL += BuildStmntAccessList(subIfStmnt);
17: newVarAL += BuildStmntAccessList(subElseStmnt);
18: case STMNT WHILE:
19: newVarAL += ExtendAccess(stmnt.conditionVar, NONE);
20: newVarAL += BuildStmntAccessList(subWhileStmnt);
21: case STMNT EXPRESSION:
22: if stmnt is a function call f() then

23: Add f() to fct.callee list;
24: else

25: newVarAL += ExtendAccess(stmnt.expression, AC-
CESS NONE);

26: end if

27: case ...: /* other statements omitted for brevity */
28: end switch

29: return newVarAL;
30: }
31:
32: newExprVarAList = ExtendAccess(expression, ACCESSTYPE)
33: {
34: newVAL = new VAList;
35: switch (stmnt.type) do

36: case EXPR ASSIGNMENT: /*assignment*/
37: newVAL += ExtendAccess(left expr, W);
38: newVAL += ExtendAccess(right expr, R);
39: case EXPR ADD ASSIGN: /*augmented assignment*/
40: newVAL += ExtendAccess(left expr, RW);
41: newVAL += ExtendAccess(right expr, R);
42: case EXPR DIVIDE: /*binary operation*/
43: newVAL += ExtendAccess(left expr, R);
44: newVAL += ExtendAccess(right expr, R);
45: case EXPR NOT: /*unary operation*/
46: newVAL += ExtendAccess(left expr, R);
47: case EXPR POST INCREMENT:
48: newVAL += ExtendAccess(left expr, RW);
49: case ...: /* other expressions omitted for brevity */
50: end switch

51: return newVAL;

Hierarchy View and Non-local Variables View

After the model compiled, its structure and hierarchy is vi-
sualized in Hierarchy View. The user is able to analyze the
dependent variables for a single behavior instance or func-
tion by clicking it in the view window. Then based on the
item selected by user, an InstancePath is computed, Phase
3 runs in the background to build a corresponding Vari-
able Access List which is immediately visualized in Non-local
Variables View. Another use case is when the user selects
multiple parallel candidates in Hierarchy View, their access
lists are compared and potential parallel access conflicts are
highlighted. This feature is best for checking parallel access
conflicts during model development.

Parallel Access Conflict Analysis and Browser

An action Parallel Access Conflict Analysis is imple-
mented to locate all potential parallel access conflicts in a
model and display them in a browser. The action takes the
intermediate representation after Automatic Compiling as



Algorithm 2 Build Variable Access Lists

1: BuildDesignAccessLists()
2: {
3: /*Preprocess functions in the design*/
4: for all fct ∈ Design do

5: BuildFctLocalAccessList(fct);
6: endfor

7: /*traverse the function call tree from the top*/
8: BuildFctAccessList(Main.main);
9: }

10:
11: BuildFctAccessList(fct)
12: {
13: fct.VarAList = fct.localVarAList; /*add local access list*/
14: for all f ∈ fct.callee list do /*traverse the function call tree*/
15: if (f.cached == true) then

16: add fct.VarAList += f.VarAList; /*use the cache*/
17: else

18: BuildFctAccessList(f); /*build the function var access list*/
19: f.cached = true; /*and cache the information*/
20: endif

21: endfor

22: }

input, locates all parallel statements in the model, and ap-
plies Algorithm 2 to all parallel executing instances to collect
their variable access lists. Then it compares the variable ac-
cess lists for each parallel statement, and displays matching
entries (the same variable symbol and InstancePath) with
writing conflicts.

Note that the parallelism in SpecC SLDL is described ex-
plicitly with parallel statements. Therefore, this analysis is
conservative by examining all parallel statements in the de-
sign and thus covers all potential access conflicts (including
false positives).

SpecC-extended Eclipse

Hierarchy View

Text Editor
Parallel Access

Conflict Browser

Non-local Variables View

Figure 3: SpecC-extended Eclipse Platform

In summary, our Eclipse extension supports the designer
in monitoring dependent variables for a behavior or function,
checking potential conflicts among parallel blocks, checking
parallel access conflicts over the entire design, and quickly
making recoding decisions to the variables in question.

5. CASE STUDY: EDGE DETECTOR
As an example application, we use a Canny Edge Detector

to demonstrate the proposed designer-in-the-loop recoding
flow in a close-to-real-world setting [18]. The Canny Edge
Detector is an image processing application which applies
five successive functions to detect edges in an image. Start-
ing from a sequential model of Canny (based on the C refer-
ence code from [3]), we follow the recoding flow (Fig. 1) to
create a parallel system model.

• Decision for Parallelization: Using a profiling, the
functional block gaussian smooth is identified contain-
ing the highest amount of computation (∼50%). Thus,
the application can benefit most if we focus on gaus-
sian smooth. Its source code, listed in Fig. 4(a), shows
that the function first creates a Gaussian kernel used to
blur the image (this task is called ‘Prep’), then blurs
the image horizontally by filtering each pixel using its
neighbors in X-direction (BlurX), and finally blurs the
image vertically by filtering each pixel using its neigh-
bors in Y-direction (BlurY). To reduce communication
among parallel tasks, our parallelization strategy is to
run BlurX on horizontal slices of the image in parallel,
and BlurY on vertical slices the same way.

• Variable Dependency Analysis: There are 15 vari-
ables used in gaussian smooth. Instead of tedious line by
line manual inspection, our variable dependency analy-
sis tool acquires all variable access information instantly,
as shown on the right in Fig. 4(a). The designer can
also view potential parallel access conflicts among paral-
lel task candidates.

• Structure Recoding: To expose parallelism, the de-
signer applies the partitioning and encapsulating recod-
ing functions listed in Fig. 1 to recode gaussian smooth
into 3 SpecC behaviors, namely Prep, BlurX, BlurY. Ac-
cording to the available processing elements, new parallel
statements are created to call multiple BlurX and BlurY
instances. Some manual code is needed to adjust the
loop index in order to take in different range of the in-
put image array.

• Variable Recoding: The 15 variables identified are re-
coded iteratively based on designer’s decisions. For ex-
ample, counter variables r,c,cc are duplicated and local-
ized in BlurX and BlurY. Input data imgin is recoded
into ports and port maps. Some variables have multiple
options of recoding. For example, imgin and temporary
image tempim can be partitioned to separate processing
elements to reduce communication load and memory us-
age. Alternatively, imgin and tempim can be accessed as
a whole, if we assume shared memory. In the latter case,
the designer can choose to ignore the (false) read and
write conflicts for tempim among parallel tasks because
these accesses are actually to non-overlapping regions.

The recoded models then serves as input to the ESL de-
sign flow. Here the recoded model shown in Fig. 4(b) for
4 processing elements speeds up the simulation by 1.6X on
a quad-core host, and it has also been refined to a bus-
functional TLM model using SCE tool suite [12] for design
space exploration.

6. EXPERIMENTS AND RESULTS
We evaluate the designer-in-the-loop recoding approach

in Eclipse on parallel SpecC models of 5 embedded applica-
tions. These models are developed in-house based on stan-
dard reference code.

6.1 Parallel Access Conflict Analysis on Em-
bedded Applications

Table 1 summarizes the results of our Parallel Access Con-
flict Analysis. All models except JPEG encoder show poten-
tial parallel access conflicts. The designer needs to decide



gaussian_smooth (unsigned char *imgin, int rows,

int cols, float sigma, short int *smoothedimg)

{ int r, c, rr, cc, windowsize, center;

float tempim[SIZE], kernel[WINSIZE], dot, sum;

/* Create a 1-dimensional gaussian smoothing kernel */

make_gaussian_kernel(sigma, kernel, &windowsize);

center = windowsize / 2;

/* Blur in the x - direction */

for(r=0;r<rows;r++){

for(c=0;c<cols;c++){

dot = 0.0;

sum = 0.0;

for(cc=(-center);cc<=center;cc++){

if(((c+cc) >= 0) && ((c+cc) < cols)){

dot += (float)imgin[r*cols+(c+cc)] * kernel[center+cc];

sum += kernel[center+cc];}}

tempim[r*cols+c] = dot/sum;

}}

/* Blur in the y - direction */

for(c=0;c<cols;c++){

for(r=0;r<rows;r++){

sum = 0.0;

dot = 0.0;

for(rr=(-center);rr<=center;rr++){

if(((r+rr) >= 0) && ((r+rr) < rows)){

dot += tempim[(r+rr)*cols+c] * kernel[center+rr];

sum += kernel[center+rr]; }}

smoothedimg[r*cols+c] =

(short int)(dot*FACTOR/sum + 0.5); }}

}

behavior Prep

Reads: sigma, imgin,

windowsize

Writes: center

RW: kernel

behavior BlurX

Reads: cols, rows, kernel,

image, center

Writes: tempim

RW: r, c ,cc, dot, sum

behavior BlurY

Reads: cols, rows, kernel,

image, center, tempim

Writes: smoothedim

RW: r, c ,rr, dot, sum

(a) gaussian smooth source code

Prep

BlurX BlurX BlurX BlurX

BlurY BlurY BlurY BlurY

(b) recoded structure

Figure 4: Recoded gaussian smooth module

whether the data sharing is indeed safe or not. After exam-
ining the reported variable lists, we found that the small-
size models (Canny, JPEG and MP3) are already safe from
parallel access conflicts, but medium/large models (GSM
vocoder and H.264 decoder) actually contain dangerous vari-
ables which need to be recoded. Note that these reported
conflicts did not show any problems during simulation, but
would create errors in the real implementation. Thus, the
proposed tool prevented a costly failure in the final imple-
mentation.

A dynamic race condition analysis method is presented
in [8]. If we compare the conflicting variables reported for
the same applications, higher numbers are reported in this
work than those in [8] (subtracting the protected channel
variables). This is because our static analysis covers the
variables which are not in the execution path of the dy-
namic method. More importantly, the method in this work
is conservative guaranteeing that all possible conflicts are
included (including some false positives).

Table 1 also shows that the preprocessing (Phase 1 and
Phase 2) and analysis (Phase 3 and list comparison) are
sufficiently fast for the user. Results are reported instantly,
except for the case of the H.264 decoder where the analysis
needs less than 2.5 seconds on our 3.0 GHz workstation.

6.2 Classroom Experiment using Canny Edge
Detector

To evaluate the effectiveness of the proposed design flow in
a close-to-real-world setting, we have assigned the recoding
task of the Canny Edge Detector described in Section 5 to
a class of 68 graduate students [11].

6.2.1 Setup

Students in the class were instructed on embedded sys-

tem design methods and trained in SpecC SLDL modeling
before the experiment. Then each student was assigned the
task to expose parallelism in a sequential model of canny.
We offered the SpecC-extended Eclipse as an optional tool
to them and provided them the corresponding instructions.
The students were free to use any of their preferred editors as
alternatives. Note that the SpecC-extend Eclipse contains
all features described in Section 4 except Parallel Access
Conflict Brower which was not available to the students at
that time.

Meanwhile, we conducted an anonymous survey asking
the students to report the tool they had used and their time
needed to complete the assignment. If they reported having
used our SpecC-extended Eclipse for parts of the assignment,
we further asked for ratings on a scale of 1(‘did not use’) to 5
(‘very useful’) about the usefulness of the tool’s features. All
students were given one week to do the assignment. After
they finished, the course instructor graded their submissions
by verifying the parallel simulation results against a golden
model.

6.2.2 Results

After evaluating the survey, we found that not all stu-
dents participated. 22 of them did not leave valid responses.
For those who participated, 23 students used the SpecC-
extended Eclipse, the remaining 23 students used other ed-
itors, such as vi, emacs and gedit. For the reason why some
students chose not to use SpecC-extended Eclipse, 39% re-
ported in the survey that their network connection was too
slow or unstable (the tool was only accessible remotely), 9%
stated that they do not like to use IDE or GUI, and others
did not state any reason. According to the survey results,
we classify the students into groups of ‘Eclipse users’, ‘non-
Eclipse users’ and ‘hybrid users’ (for students who reported
having used both Eclipse and other editors).

The reported working time and successful simulation from
the instructor for all 3 types of users are summarized in Ta-
ble 2. These not only indicate that Eclipse users spent 22%
less time than non-Eclipse users on average, but also show
that all students using SpecC-extended Eclipse produced
successful models, while only 60.87% of non-Eclipse users
did so. Thus, Eclipse usage reduced the recoding time sig-
nificantly and improved the quality of the design.

non-Eclipse Eclipse hybrid
Number of 23 18 5
Students
Average Working 281.30 219.39 227.40
Time [minutes]
Successful Model 60.87% 100.00% 100.00%
Simulation

Table 2: Working Time and Successful Simulation

Students who have used SpecC-extended Eclipse also pro-
vided satisfaction ratings of its features. Note that the stu-
dent used the features of Hierarchy View and Non-local vari-
ables View for dependency and parallel access conflict anal-
ysis during model development. The results are summarized
in Fig. 5. Although Hierarchy View received much higher
scores than Non-local variables View, overall, 95% of stu-
dents consider both features ‘somewhat useful’, ‘useful’ or



Table 1: Experimental results on Parallel Access Conflict Analysis for embedded applications.
Application Lines Max. # of Reported Resolved Preprocessing Analysis

of Code Active Threads Conflicts Conflicts Time [sec] Time [sec]
Edge Detector 1k 6 2 2 array accessed without overlap, safe 0.002 0.006
JPEG Encoder 2.5k 7 0 N/A 0.004 0.006
MP3 Decoder 7k 5 1 1 debugging value, safe 0.029 0.100
GSM Vocoder 16k 3 2 1 global value used to indicate overflow, safe 0.024 0.018

1 duplicated in parallel modules, resolved
H.264 45 store values constant to each frame, safe
Video 40k 8 50 1 structure accessed without overlap, safe 0.210 2.442

Decoder 1 debugging value, temporarily used only
3 localized to class scope, resolved

‘very useful’.
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Figure 5: Survey Ratings of SpecC-extended Eclipse
Features

7. CONCLUSIONS
In this paper, we proposed a designer-in-the-loop recod-

ing flow to transform original C code into parallel executable
ESL specification models. Our goal is to free the designers
from manual code transformations and error-prone depen-
dency analysis so that a clean and safe ESL model can be
efficiently built.

Our static analysis and automated recoding functions sup-
porting SpecC SLDL are integrated in Eclipse. Experiments
with several embedded applications show that the paral-
lel access conflict analysis is fast and effective. We also
evaluated the proposed design flow with a class of gradu-
ate students. The results show that the proposed approach
increases productivity significantly and avoids mistakes in
system modeling.

In the future, we plan to improve and extend the designer-
in-the-loop flow with additional recoding functions and fur-
ther integration with other features of the Eclipse platform.
We plan to reduce the false positives reported by the parallel
access conflict analysis by analyzing synchronization mech-
anisms in the model. We also plan to apply the recoding
methodology to SystemC.
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