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Abstract

There are currently multiple investigations of various RISC-V architectures for different applications from single-core
based edge processors to powerful multi-core systems for High-Performance Computing (HPC). We have recently in-
troduced a many-core GPC (Grid of Processing Cell) architecture based on configurable modified RISC-V RocketTiles
with local memories and systembus communication, which was demonstrated and evaluated using RTL simulation by
simple distributed software programs [17]. In this work, we have refined and extended our development by two commu-
nication schemes for direct intercell processor communication between neighboring cells: via (i) shared memory and via
(ii) RISC-V Control and Status Registers (CSRs). Both alternatives are implemented on an AMD VCU108 FPGA and
as chip layouts based on SkyWater 130 nm CMOS technology. The performance is evaluated by a distributed systolic
matrix multiplication algorithm with different grid sizes.

1 Introduction

The open standard RISC-V instruction set architecture
(ISA) has received worldwide acceptance as a viable
commercial alternative for microprocessor-based systems.
Many implementations and variants are currently under in-
vestigation covering multiple application areas, like IoT
[23], AI acceleration [14], and High-Performance Comput-
ing (HPC) [5]. Meanwhile, multiple open-source RISC-
V hardware models, design tools, and toolchains have
been introduced for RISC-V development, like PULP [22],
OpenTitan [19], and Chipyard [8]. Also, different RISC-V
single-core and multi-core architectures with various SoCs
have been introduced since then, like PULPino, PULPis-
simo, OpenPULP, and Hero [22], just to mention a few
examples from the PULP platform.
Towards many-core architectures, the Grid of Processing
Cells (GPC) platform has been proposed [9]. Its scala-
bility with different applications has been demonstrated
at the system level [28] and instruction-set level [12]. In
prior work [17], we have introduced a first scalable Chisel-
based [3] GPC prototype in the context of the Chipyard
framework [8]. Our Chisel implementation modified the
given RocketTile for grid processing cell configurations to
generate arbitrary sizes of GPC mesh and torus structures.
We introduced an architecture that replaced the local data
cache of the RocketTile with a local scratchpad memory
and linked the tiles to the TileLink network of the system-
bus, for IO, BootROM, and intercell communication [17].
In this paper, we refine the purely systembus-based com-
munication structure of the RocketTiles and introduce ad-

ditional TileLink interconnects to directly access the Data
Tightly Integrated Memory (DTIM) of neighboring cells
and to avoid non-scalable systembus communication. For
intercell communication, we present two different hand-
shake alternatives. Our software-based solution synchro-
nizes the communication via shared memory, while the
hardware-based alternative uses custom RISC-V Control
and Status Registers (CSR). We compare the resource and
area utilization of both alternatives with different grid sizes
for FPGA and chip layouts. Our FPGA synthesis utilizes
VIVADO with an AMD VCU108 FPGA board. Our new
chip layouts are implemented using Cadence Genus/In-
novus based on SkyWater 130 nm CMOS technology. Both
handshake solutions are evaluated by a software program
of a systolic matrix multiplication. We compare the bare
metal execution of distributed software binaries on differ-
ent GPC configurations by Verilator simulations.
Building upon our previous research presented in [17], this
paper establishes a foundation by revisiting some key con-
cepts in the first sections. Following a brief discussion of
related work in Section 2, we provide a short introduc-
tion to the GPC platform in Section 3. Section 4 presents
an overview of the Chipyard framework, Rocket Chip ar-
chitecture, TileLink communication, and the Tightly Inte-
grated Memory (TIM) interface. Our processing cell archi-
tecture with different interconnects is introduced in Sec-
tion 5, while the FPGA and chip implementations are de-
scribed in Section 6. The evaluation of a distributed soft-
ware program on various grid sizes is then presented in
Section 7, before closing with a summary and conclusion
in Section 8.



2 Related Work

With the advent of multi-core and multi-processor archi-
tectures, a multitude of parallel processing platforms have
been proposed and implemented. Following Flynn’s tax-
onomy [10], different systems are distinguished by their
instruction and data streams. In contrast to traditional
uni-processor systems with single instruction single data
(SISD) streams, modern architectures process multiple in-
struction and/or multiple data streams in parallel, termed
as SIMD, MISD, or MIMD, respectively. Today, SIMD
processor architectures are dominant and well supported
as we can find them also directly supported by RISC-V
P standard extensions. In this work, we are interested
in MIMD machines, which promise the highest perfor-
mance and flexibility. MIMD architectures come with ei-
ther shared or distributed memories, and often with config-
urable data access structures.
The Grid of Processing Cells (GPC) architecture [9] that
we implement in this work classifies as a MIMD machine
with distributed memory (also known as massively parallel
processors in the past). Recent examples of such many-
core architectures include the scalable Raw Processor [26],
which features a 4x4 tile architecture with multiple buses
and separate memories, and the Tile Processor [31] which
features up to 100 cores [7].
Products from Intel include the Polaris research chip with a
network-on-chip (NoC) architecture of 80 cores connected
by a mesh network [27], the Single-Chip Cloud Com-
puter whose communication structures resemble a data
center [13], and co-processors for use in servers [25], such
as the Xeon Phi series with 60 physical cores and a bi-
directional ring interconnect, where each node is a 4-way
hyper-threaded x86 processor. Unfortunately, the high par-
allelism in these systems often suffers from limited band-
width to a shared external memory [16].
Multiple separate memories have also been investigated
for many-core architectures. Examples include the Kilo-
Core processor array [6], which features 1000 independent
processors and 12 memory modules on a single chip, and
Epiphany-V [18], which uses a cache-less memory model.

3 Grid of Processing Cells (GPC)

Traditional single-, multi- and many-core computer archi-
tectures suffer from the memory bottleneck to a single
shared main memory which can delay many-core proces-
sors for thousands of cycles due to bus contention despite
sophisticated multi-level cache hierarchies [16]. As an al-
ternative scalable computer organization, tiled network-
on-chip architectures have been proposed with separate lo-
cal memories.
This work implements the idea of a Grid of Processing
Cells (GPC) [9] where pairs of processors and memories
are arranged on-chip in a two-dimensional array with only
local interconnect. The typical use of an expensive multi-
level cache hierarchy is here replaced by many on-chip
memories, similar to scratchpad memories found in em-
bedded computer systems [20, 4].
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Figure 1 Checkerboard Grid of Processing Cells (GPC)
[17]

The checkerboard variant of a GPC is shown in Figure 1.
Processor cores Cyx and local memories Myx are paired as
cells and arranged in an alternating pattern so that every
processor has access to four neighboring memories. Cores
on the edges of the chip have access to off-chip memories
or memory-mapped I/O devices. Each cell in the grid con-
sists of a fully equipped general-purpose processor, such
as a RISC-V core, and its own local memory of substantial
size and high speed (SRAM).
Conceptually, the checkerboard GPC communication can
be established by a priority-based multiplexing intercon-
nect within each cell, as shown in Figure 2. The illus-
tration uses SystemC TLM-2.0 [15] initiator and target
sockets arranged in multiplexer and de-multiplexer fash-
ion to connect processors (initiators) with their neighboring
memories (targets). To resolve concurrent access conflicts,
priority-based arbitration is implemented, giving each pro-
cessor first priority access to its own local memory, and
lower priority to access the memories in neighbor cells.

CoreMemory

Figure 2 Checkerboard tile with SystemC TLM-2.0 in-
terconnect [17]

The checkerboard GPC has proven to be functional and
scalable in system-level [28] and instruction-level [12]
simulation. Several embedded applications have been suc-
cessfully mapped onto the GPC platform various configu-
rations, including a Canny edge detector, APNG encoder
[11], and a GoogleNet image classification Convolutional
Neural Network (CNN) [21]. While high-level simula-
tion with SystemC TLM-2.0 shows promising and scalable
results, we now design and evaluate a detailed model in
cycle-accurate Verilog. We then synthesize this model to
an FPGA prototype and finally as an actual chip layout.



4 Chipyard and Rocket Chip

Chipyard, developed by UC Berkeley [2] [8], is an open-
source framework designed for the development, RTL sim-
ulation, FPGA prototyping, and VLSI implementation of
RISC-V based SoCs. It utilizes the hardware construction
language Chisel [3] to generate Verilog Hardware Descrip-
tion Language (HDL) code for various components within
an SoC, such as processor cores, memory systems, and pe-
ripherals.
The Verilator simulator can simulate the generated Ver-
ilog code on a host computer which includes a compiler
toolchain for the RISC-V ISA. Alternatively, the RTL can
also be simulated on an FPGA for high-speed execution
(FireSim). After simulation, the Verilog RTL is synthe-
sized for FPGAs or it can be transferred to a chip layout by
commercial tools from Synopsys and Cadence. In our de-
sign, we applied the following flows: Verilog generation,
host simulation, FPGA simulation, FPGA synthesis, and
layout generation for Sky130 130 nm CMOS technology.

4.1 Rocket Core
The Rocket Chip generator comes with a RocketTile and
several SoC components which are written in the hard-
ware construction language Chisel [3]. It can generate
five-stage, in-order RISC-V processor cores called Rocket
Core, which are embedded in a RocketTile. In the tile,
the core is connected to the first-level data and instruction
caches, a page-table walker, and the TileBus. The TileBus
is linked to the SystemBus and connects via other buses to
the other components like UART, BootROM, and Debug
Unit.

4.2 TileLink Communication
Rocket Chip buses are typically implemented by TileLink
hierarchical interconnect networks, which make use of di-
rected acyclic graphs to guarantee deadlock-free communi-
cation [24]. Each point-to-point connection within the net-
work is established by a link. Each link connects a client
node of one module to a manager node of another mod-
ule with only one path between the two nodes. Each link
has two or more parallel channels depending on the con-
formance level (see Figure 3).
TileLink comes with three conformance levels [24]:

Module Module
Agent Agent

Client Manager

Channel A

Channel B

Channel C

Channel D

Channel E

Figure 3 Links between Client and Manager module [24]

TileLink Uncached Lightweight (TL-UL), for simple,
single-word Get and Put operations. TileLink Uncached
Heavyweight (TL-UH), which adds features like atomic
operations, burst access, and hints. TL-UL and TL-UH
only require two of the five channels, channel A for re-
quests from client to manager and channel D for the
response. TileLink Cached (TL-C) introduces coherent
caching, which requires the other three channels B, C, and
E as shown in Figure 3.
Each module can contain multiple manager and client
nodes for different purposes. Channels are unidirectional
and carry TileLink messages while the communication it-
self is implemented via TileLink operations. Operations
consist of several messages that propagate through the net-
work in order to fulfill the operation. A TileLink operation
is always issued by a client that sends messages to the man-
ager node. The manager processes the received messages
either by redirecting them to a client node of the same mod-
ule or by answering them, if possible.
Rocket Chip implements buses as TileLink crossbars, like
the SystemBus and the ControlBus. Crossbars have man-
ager nodes that client nodes of higher hierarchies can link
to. Internally, a crossbar is responsible for routing requests
by forwarding an operation to the manager by a client node.
Additionally, inside each Rocket tile, there is a collec-
tion of crossbars collectively named TileBus with a master
crossbar and a slave crossbar.

4.3 Tightly Integrated Memory (TIM)
Rocket Chip systems implement the on-chip memory in-
side the data and instruction caches and scratchpad memo-
ries as Tightly Integrated Memories (TIM). They are called
Data Tightly Integrated Memory (DTIM) or Instruction
Tightly Integrated Memory (ITIM) due to their application
for data or instruction storage, respectively.
Rocket Chip uses DTIM and ITIM adapters to translate
the low latency protocol to TileLink messages, e.g., to
connect scratchpad memory to the SystemBus. Multiple
DTIM ports connected to a single DTIM are managed with
a priority-based arbitration policy.
If an adapter with high priority is accessing data, the op-
erations from lower-priority adapters are stalled until all
higher-priority operations are handled, which poses the
risk of starvation. However, it is possible to use differ-
ent predefined arbitration policies, like round robin, which
may process single requests from each requester in each
round of requests.

5 Rocket Chip Based Grid of Pro-
cessing Cells

Our GPC design required several modifications of the
Rocket Chip architecture which is based on RocketTiles as
single scalable processing cells with the final goal of com-
bining them to arbitrary grid structures. We first give an
overview of the configurability of our GPC cells. There-
after, we present details of the individual processing cells
and their interconnects.



In a first step, we modified a standard RocketTile for lo-
cal memory cell processing. In the second step, we refined
their local and global TileLink/DTIM intercell communi-
cation structure to directly connect to neighboring cells and
introduced a virtual memory scheme for intercell commu-
nication.

5.1 GPC Configurations
Our Rocket Chip based implementation supports the con-
figuration of arbitrary n-dimensional structures of RISC-V
processing cells. The upper limit of the structure is cur-
rently only given by 32 communicating neighboring cells
which is due to the size of an internal register. However,
this is not a limitation of the basic concepts of the here pre-
sented approach. The GPC configuration needs to be de-
fined in the Chisel implementation and thus be determined
before the generation and synthesis of the hardware.
Though many different arbitrary cell structures are pos-
sible, we have limited our investigations to 2- and 3-
dimensional grid structures so far. Figure 4 shows the
example of a two-dimensional generic grid of processing
cells connected to a torus of size w× h. In this configura-
tion, each Rocket core has access to the five address spaces
shown in Table 1. The tiles located at the edges of the grid
can be configured with additional torus connection to the
tiles on the opposite side. Based on the hardware thread
id (hartid), the relative position of a tile in the grid can be
determined by the software.
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Figure 4 A GPC architecture with width w, height h, and
optional torus connections

5.2 RocketTile Modifications
We restricted the Rocket cores to the RV32IMA ISA sub-
set to reduce the cores complexity. To represent the local
memory of each cell, we replaced the first-level data cache
with a scratchpad memory. As other memory components
are not needed, we removed the second-level cache, the ex-

ternal memory, the memory bus, the page table walker, and
all AXI interfaces.
The size and starting address for the scratchpads are con-
figurable. In our work, the scratchpad size is configured
to 32KiB which is sufficient for small demonstration pro-
grams. All RocketTile scratchpad memories are mapped
without any gaps starting from 0x 8000 0000 and sorted by
their hartid. Thus, the local memory of a RocketTile n is
mapped

from (0x80000000)+n · (0x8000)
to (0x80000000)+(n+1) · (0x8000)−1.

In a standard Rocket Chip multi-core SoC, memory ac-
cesses of each tile is handled via TileLink over the
shared SystemBus. This includes access to the BootROM,
memory-mapped devices, the own local memory, and
memories of other Tiles. For many-core SoCs with local
memory, this leads to a huge congestion of the SystemBus.
To overcome the SystemBus bottleneck when accessing a
local RocketTile scratchpad, we introduced an additional
DTIM adapter for each RocketTile that connects the in-
struction cache directly to the scratchpad within the tile.
Thus, the instruction cache only requires SystemBus ac-
cess if instructions are not located in the scratchpad of the
tile, e.g., as part of the BootROM attached to the System-
Bus.
Additionally, the GPC platform requires direct access from
each tile to the memory of neighboring tiles. However, as
the neighboring relation should be highly configurable at
synthesis, this requires special individual local configura-
tion to neighboring cells. Therefore, each connection from
a source tile to access the memory of a neighboring desti-
nation tile is implemented by one additional DTIM adapter
in the destination tile, connected to the scratchpad memory
of the destination tile. The source tiles can be connected
to those DTIM adapters via TileLink and can thus access
the neighboring scratchpad memories (see Figure 5). As
access to a single scratchpad may be requested from multi-
ple sources, there has to be an arbiter to manage those ac-
cesses. Currently, the arbiter is configured to use a priority-
based arbitration policy. Here, the local core has the high-
est priority to the local scratchpad, followed by the DTIM
adapter of the local instruction cache and the other neigh-
bors.

5.3 Virtual Memory
To abstract from the system-wide physical addresses of the
scratchpad of a tile, we introduced a virtual local address-
ing scheme for the core of each tile, which maps the ad-
dress space of the neighboring scratchpad memories into a
virtual address space of each tile. Thereby, from a core’s
perspective, its own local scratchpad memory is located at
a fixed virtual address. The scratchpad memories of the
core’s configured neighbors are mapped consecutively in
its virtual address space as shown in Table 1. As all cores
apply this virtual addressing scheme, all cores refer to their
own scratchpad with the same virtual address range. The
scratchpad memories of neighboring tiles can be accessed
by the relative position to their own tile without knowing
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about their system-wide physical address space. This al-
lows a programmer to write programs without knowledge
about the physical memory address of each core in the grid.

Base Top Device Size

0x 8000 0000 0x 8000 7FFF Local Tile 32KiB
0x 8000 8000 0x 8000 FFFF Neighbor 0 32KiB
0x 8001 0000 0x 8001 7FFF Neighbor 1 32KiB
0x 8001 8000 0x 8001 FFFF Neighbor 2 32KiB
0x 8002 0000 0x 8002 7FFF Neighbor 3 32KiB

Table 1 Local virtual memory map of each core in a GPC
System with N = 4 neighbors

In standard Rocket Chip designs, a Translation Lookaside
Buffer (TLB) is connected to the core in each tile. This
TLB has the purpose of caching recent translations from
virtual to physical memory addresses. In our design, there
is currently no need for using a fully featured TLB. How-
ever, the TLB is still responsible for blocking access to in-
valid or protected addresses by granting or denying address
requests from the core. To allow access to the introduced
virtual addresses, the logic functions responsible for check-
ing the validity of addresses inside of the TLB had to be
extended. To access a core’s own scratchpad memory via a
virtual address, the hit function as part of the data cache
had to be modified to indicate a hit to a core’s scratch-
pad for addresses in the virtual address range instead of the
physical address range. Since the SystemBus still needs to
access each scratchpad memory by its physical address, the
DTIM adapter that attaches the SystemBus to a scratchpad
is used to map from the physical address to the virtual ad-
dress which causes the hit function to indicate a hit to the
scratchpad.
To access the scratchpad memories of neighboring tiles,
additional DTIM adapters are used to establish TileLink

connections to the neighboring scratchpad memories.
Those DTIM adapters are extended by logic functions to
map from the desired virtual address to the destination ad-
dress of the neighboring scratchpad. As each individual tile
has to offer scratchpad access to different neighboring tiles,
there has to be an arbitration policy to manage multiple ac-
cesses. The current arbitration policy for local scratchpad
access is priority-based. However, the individual scheme
may depend on the GPC configuration and is subject to
future investigations, e.g., to extend it to round-robin and
others.
Each RocketTile has at least three DTIM ports connected
to its own scratchpad memory. One for the core itself,
one for the SystemBus used for loading and debugging,
and one for fetching instructions by the instruction cache.
While the core has a port for direct scratchpad memory ac-
cess, the SystemBus and instruction cache are connected
using DTIM adapters. Therefore, there are 2+N DTIM
adapters attached to each scratchpad memory in our GPC
approach as shown in Figure 5, where N is the number of
neighbors requiring access to the scratchpad.

5.4 Processing Cell Interconnects
A basic example of a simple 1×2 grid structure with two
interconnected tiles is shown in Figure 6. Both tiles have
an additional DTIM adapter for the neighboring tile to ac-
cess the local scratchpad memory. The breakthroughs from
RocketTile 0 to RocketTile 1 and vice versa are imple-
mented as a TileLink connection from one RocketTile via
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Figure 6 Two RocketTiles with mutual scratchpad access



a TileLink buffer to the additional DTIM adapter of the
RocketTile neighbor. These DTIM adapters scale with the
number of neighbors they need to connect to. The TileLink
buffers are required to avoid combinational loops in the
design and cause a one-cycle delay to the TileLink trans-
action. Thereby, a Rocket core can access the scratch-
pad memory of a neighbor by adding an additional DTIM
adapter along with a TileLink connection.
The request of a core to one of its neighboring scratchpads
via the virtual memory address range is first sent from the
core to its data cache. As this virtual destination address
does not cause the own scratchpad to indicate a hit, the
request is forwarded from the data cache via TileLink to
the DTIM adapter in the neighboring tile, for the virtual
address. Inside this DTIM adapter, the requested virtual
address is mapped to the address range served by the desti-
nation scratchpad memory. This request is then served by
the destination scratchpad memory and the corresponding
response is forwarded back to the requesting core.

5.5 Handshake-Based Communication
To communicate via neighboring scratchpad memories, we
established a handshake-based communication scheme1.
Thereby, the access is forced to happen synchronously with
both the sender and receiver being actively involved.

5.5.1 General Principles
This handshake is performed by ready and valid indica-
tors, similar to ARM’s AXI interface [1]. The handshake
procedure is given by the sequence diagram in Figure 7.
For the transfer to occur, both cores have to actively wait
for a handshake from the respective communication part-
ner. When a sender (Tile A) initializes the transfer to a
receiver (Tile B), the sender has to wait for the receiver to
be ready. Once Tile B confirms with a ready signal, Tile A
can write the data to the shared memory in its own scratch-
pad, after which the valid signal is raised. The valid signal
confirms to Tile B that data are available for reading. After
reading, Tile B clears the ready signal and waits until Tile
A resets the valid signal, which completes the procedure
for Tile B. Tile A completes the procedure when receiving
the reset of the ready signal, which is answered by resetting
the valid signal.

5.5.2 Software Solution
For a software-based handshake synchronization for
neighboring cell communication, we defined an additional
share section in the linker script of our bare-metal en-
vironment which can be accessed by a fixed offset to the
memory base address. Data transfer is established by a
share struct with valid, ready, and data components.To
use this data transfer in applications, we developed a small
software library. The library provides send and receive
functions along the synchronization scheme given at the
beginning of this section.

1Here communication is tightly synchronized, in contrast to a looser
push-pop buffer protocol proposed in [21].
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wait for ready=1

wait for valid=1

wait for ready=0

wait for valid=0

set ready=1

write data
set valid=1

read data
set ready=0

set valid=0

Figure 7 Handshake between sender and receiver

5.5.3 Hardware Solution
In the software approach, polling the ready and valid
flags of other tiles in a loop results in extensive TileLink
communication, long delays, and stall cycles. This can be
avoided by the use of 1-bit communication lines that di-
rectly map to a CSR (Control and Status Register) with ex-
plicit signal lines to perform the handshake. When enabled,
two 1-bit connections with opposite directions are gener-
ated along with each outgoing TileLink edge as shown in
Figure 8. Here, each tile has four additional CSRs. The
selfready and selfvalid CSRs can be read and written
while the otherready and othervalid CSRs can only be
read. Only one bit in each of these four CSRs is wired to its

Tile A Tile B

Sender Receiver

Receiver Sender

otherready
CSR 0x402[x]

selfready
CSR 0x400[y]

othervalid
CSR 0x403[x]

selfvalid
CSR 0x401[y]

selfvalid
CSR 0x401[x]

othervalid
CSR 0x403[y]

selfready
CSR 0x400[x]

otherready
CSR 0x402[y]

TL access

Valid (0/1)

Ready (0/1)

TL access

Ready (0/1)

Valid (0/1)

Figure 8 Additional ready and valid lines for handshakes



counterpart in the neighboring tile. The position of those
bits is chosen according to the arrangement of neighboring
cells and the virtual memory map per cell. So in Figure 8,
Tile A uses the bit with index x in all four registers to ac-
cess the signals wired to Tile B, where x corresponds to the
relative position of Tile B to Tile A. In return, Tile B refers
to the bits wired to Tile A with index y. Because of this
mapping, the current limit for the number of neighbors for
each tile is 32 when the Control and Status Register (CSR)
connections are used. However, this could be extended by
using additional CSRs. Next to each of the four CSRs, the
addresses of the CSRs are indicated, starting from 0x400.
The RISC-V ISA provides instructions to atomically read
and set individual bits of CSR registers [29]. As these
CSRs can be read and set in one instruction cycle while
the signal lines do not use buffers in between, the changes
occur at the respective neighbors immediately. Thereby,
the repeated sampling of the ready and valid signals can
be done instantly and without TileLink and its overhead
while sending and receiving the data itself is still done
via TileLink. In our studies, this improvement reduces
the best-case communication time by roughly 12 cycles.
However, this is just a first solution and requires further in-
vestigations in this context as the data transfer rate can be
additionally improved by the use of scalable application-
specific communication buffers between tiles.

6 Hardware Implementations

We applied different Chipyard flows to verify and generate
hardware. For hardware generation, we have configured
grids with 2×2 up to 8×8 cells to compare the impact of
the different grid sizes and design configurations.
From Chisel we first translated RTL Verilog code via FIR-
RTL for Verilator simulation and for FPGA accerelated
FireSim simulation. Thereafter, we applied the Chipyard
FPGA prototyping flow which synthesizes Verilog code for
FPGA boards using AMD Vivado and we applied the VLSI
design flow using Cadence Genus and Innovus.

6.1 FPGA Implementation
The Chipyard FPGA flow with AMD Vivado required
some extension to scale with larger GPC architectures.
We thus extended the Chipyard FPGA prototyping support
for the AMD Virtex VCU108 and the AMD Virtex VC707
FPGA board. We further implemented JTAG shells to up-
load and debug software on the FPGA boards which are
connected to accessible GPIO port pins of the individual
board. The software was finally loaded to the scratchpads
via a JTAG debugger.
We synthesized different NxN grid configurations with
CSR handshakes enabled and torus connections disabled
to compare their Lookup-Table (LUT) utilizations. The re-
sults which synthesized at 100MHz on a AMD VCU108
are given in Figure 9.
Each bar represents a different grid configuration. The
SoC overhead of each design is colored green while the
cores sizes are given in blue. We can see that the size in
LUTs almost linearly increases with the number of cores.
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on AMD VCU108 at 100MHz

The plot in Figure 9 indicates the LUT limitation of the
used FPGA board. Note here that the 8×8 grid configura-
tion takes 84% of the available LUTs on the biggest FPGA
board (VCU108) in our evaluations.
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Figure 10 4×4 grids with #LUTs of different communi-
cation structures on AMD VCU108 at 100MHz

Figure 10 shows the impact of different communication
structures by the example of a 4× 4 processing grid with
four different configurations: (i) 16 single cores without
grid overhead, (ii) 4 × 4 grid with modified RocketTiles
and modified TileLink/TIM communication, (iii) 4×4 grid
with modifications and additional CSRs for handshake sup-
port, and (iv) 4× 4 grid with modifications and CSRs and
additional torus connections. While the overhead per core
only slightly increases when using a 4×4 GPC instead of
16 single cores, the SoC overhead almost doubles. The re-
sults also show that the introduction of handshake CSRs
did not have any significant impact. The additional torus
interconnects just had little impact, as each core at the edge
requires one additional DTIM adapter and two additional
TileLink connections.

6.2 Chip Implementation
The Chipyard VLSI flow was applied with Cadence Genus
for logic synthesis and Innovus for Place & Route using
SkyWater 130 nm technology. We generated GPC config-
urations from 2×2 upto 8×8 grids with CSR handshakes



and synthesized them using Cadence Genus at 50MHz.
Along with our observations from the FPGA studies, we
can see in Figure 11, that the chip area scales linearly
where the system overhead is almost negligible.
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Figure 11 Total area after synthesis using Cadence
Genus

Figure 12 shows the chip area utilization of a single
RockeTile. It shows that about 85% of the chip area goes
into memory which consists of 2×16KiB DCache, a 32 bit
ICache and a tag memory. The RISC-V Rocket core itself
only uses 7.3% and the bus infrastructure and global sys-
tems take up 4.4% of the chip area with just a small portion
of 2.5% for the interconnects and associated logic.
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Figure 12 Average relative area per tile in a grid

Along our FPGA studies with different 4× 4 grid config-
urations in Figure 10, we synthesized 16 single cores and
a 4× 4 grid with CSR handshakes and torus connections.
The result is shown in Figure 13. When comparing the
areas of the four configurations, it can be seen that in con-
trast to the FPGA synthesis the difference is almost negli-
gible. This is caused by the fact, that almost 86% of the
core area goes into memory. The communication struc-
tures with their interconnects have no significant impact
on the total chip area.
Figure 14 shows the Cadence Innovus layout of the 4× 4
grid layout with 16 cores and torus interconnects with a
final area of 36.88mm2. The layout was implemented with
our script for SRAM placement and rotation.
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Figure 14 4×4 GPC chip layout using Cadence Innovus

7 Evaluation

We compiled different C programs to check the func-
tional correctness and evaluated the performance by RTL
Verilator simulations. To load the compiled software to
the local scratchpad memory of the individual grid cells,
we extended the RISC-V Frontend Server (FESVR) [17].
First functional tests implemented simple Hello-World
programs with output via the systembus and simple ex-
changes of data tokens to test the communication of our
mesh and torus structures. In addition to those simple soft-
ware tests, we finally implemented a systolic matrix mul-
tiplication, which takes full advantage of scalable process-
ing structure of our RISC-V grid as shown in Figure 15.
For the systolic matrix multiplication each cell in the grid
computes a partial multiplication result from the data re-
ceived from its upstream neighbors, stores the result lo-
cally, and passes it to the downstream neighbor. Our ex-
periments investigated different N ×N grid configurations
with N = 1, . . . ,8 for which we have generated different
hardware grids for RTL simulation and configured our soft-
ware programs correspondingly.
The performance of the experiments was measured in
terms of cycles by reading the mcycle CSR, which counts
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Figure 15 Systolic multiplication of two N ×N matrices
A and B on a N ×N grid

the elapsed clock cycles [30]. As the mcycle CSR is an
RTL register it can be used as a common base in simu-
lation and in the synthesized FPGA hardware for perfor-
mance measures. The final runtime on the FPGA is given
by scaling it with a 100MHz frequency for the hardware
implementations in our previous section.
The systolic matrix multiplication algorithm is basically a
batch processing application of several matrices where the
values are automatically streamed through the processing
cells. Our experiments took two matrices for the multipli-
cation which we supplied through the systembus. Due to
the structure of the algorithm, the matrices have the same
dimensions as the respective grid.

Size SW Handshake HW Handshake Speedup

2×2 1950 1734 1.12
3×3 4072 3498 1.16
4×4 6402 5846 1.10
5×5 9201 8331 1.10
6×6 11608 10563 1.10
7×7 14434 13488 1.07
8×8 17555 15452 1.14

Table 2 CPU cycles of the systolic matrix multiplication
for different grid sizes

The evaluation results in terms of clock cycles are given
in Table 2, which compares the speedup of the software
handshake (SW) and the hardware handshake implementa-
tion via CSRs. In general, the hardware-based handshake
implementation results in a moderate speedup between 7%
and 16% with an average of 11%. Here, the table does not
indicate a distinct dependence between the grid size and
the respective speedup. As the resulting gain in speedup
comes at a negligible hardware overhead, the hardware-
based handshake offers a significant improvement in per-

formance. In addition, any software-based handshake im-
plementation can still be utilized without significant trade-
offs. However, we still need to further investigate more
efficient hardware communication schemes on larger data
sets.

8 Summary and Conclusion

We have introduced a grid of processing cell architec-
ture based on RISC-V Rocket Chip processor cores using
the Chipyard framework. The highly scalable processing
cells are implemented as modified RocketTiles with local
scratchpad memory and direct TileLink/DTIM intercon-
nects between neighboring cells. The Chisel-based imple-
mentation allows the generation, validation, and evaluation
of various processing cell structures by applying the differ-
ent Chipyard flows: Rocket Chip RTL generation, Verila-
tor RTL simulation, FireSim RTL simulation, FPGA syn-
thesis, and the VLSI flow. The individual GPC grids were
configured in Chisel through parameters from which Ver-
ilog RTL code was generated. The generated Verilog RTL
was then used for Verilator simulation. The software was
compiled and loaded via a frontend server (FESVR), which
was modified to load the individual software binaries to
the distributed local scratchpad memories of the processing
cells. For an alternative RTL simulation, we also applied
FireSim and synthesized our simulator for the Alevo U280
cards of the Noctua2 HPC cluster of Paderborn University.
Comparisons of FireSim vs. Verilator gave speedups from
70.2 to 116.9 at effective target frequencies of 51.8MHz.
As such, FireSim turned out to be a very attractive high-
performant alternative for RTL simulation. Current studies
investigate their scaling to combine singles boards through
optical links to much larger grids.
Our FPGA synthesis with Vivado applied different 2-
dimensional grid configurations running at 100MHz on
various FPGA evaluation boards (Arty7, VC707, VCU108),
which have shown the limits of Arty7 100T boards to 2×2
grids and motivates VCU108 boards for larger grids. Our
VLSI flow generated layouts for SkyWater 130 nm tech-
nology with Cadence Genus and Innovus. First studies in-
dicated areas from 9mm2 for 2×2 grids up to 138mm2 for
8×8 grids with no signification impact of the communica-
tion structures in final chip layouts.
For the validation of the functional correctness of our
approach in the context of the Chipyard framework, we
started with several simple C programs to test the com-
pilation and distribution of software binaries to the indi-
vidual processing cells for different grid sizes in Verilator
simulation and on FPGA. First more detailed performance
studies investigated a scalable systolic matrix multiplica-
tion, which was tested on various sizes up to a 8× 8 grid.
The final comparison demonstrates that the hardware so-
lution with CSR handshakes yields speedups ranging from
7% to 16% compared to the software solution with shared
memories. However, further in-depth investigations are re-
quired with different applications and scalings before gen-
eral conclusions can be drawn. Future work will further
advance our parametrizable GPC RISC-V tiles towards ad-



ditional generic local communication structures and their
combination with shared memory architectures.
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