
Towards a Rocket Chip Based Implementation of the RISC-V GPC
Architecture
Lars Luchterhandta, Tom Nelliusa, Robert Becka, Rainer Dömerb, Pascal Kneupera, Wolfgang Muellera, and Babak
Sadiyea

aPaderborn University/Heinz Nixdorf Institute, Paderborn, Germany
Email: {larluc,beckr,tnellius}@mail.upb.de, {pkneuper,wmueller,babaks}@hni.upb.de

bUniversity of California, Irvine, USA
Email: doemer@uci.edu

Abstract

RISC-V has received worldwide acceptance in the industry and by the academic community. As of today, multiple
RISC-V applications and variants are under investigation for embedded IoT systems, from resource-limited single-core
processors up to multi-core systems for High-Performance Computing (HPC). Recently, the Grid of Processing Cells
(GPC) platform has been proposed as a scalable parallel grid-oriented network of processor cores with local memories.
This paper describes a prototype design of the GPC platform for hardware implementation at Register-Transfer Level
(RTL) based on modified RISC-V Rocket processors with scratchpad memories. It introduces a scalable Chisel-based
implementation of the modified Rocket cores with RTL generation and a functional test using Verilator simulation. This
work also includes the adaptation of the Chipyard software toolchain to extend the compiler to multi-core grids with
different local address spaces.

1 Introduction

The open standard RISC-V instruction set architecture
(ISA) has received worldwide acceptance as a viable op-
tion besides ARM-based systems. As of today, many im-
plementations and variants are under investigation cover-
ing multiple application areas, like IoT [23], AI acceler-
ation [13], and High-Performance Computing (HPC) [5].
At the same time, open-source RISC-V hardware models,
design tools, and toolchains have been introduced, includ-
ing PULP [22], OpenTitan [18], and Chipyard [8]. As
a result, different RISC-V architectures covering single-
core and multi-core platforms became available, such as
PULPissimo, OpenPULP, and Hero, just to mention a few
examples from the PULP platform [22].
Towards many-core architectures, the Grid of Processing
Cells (GPC) platform has been proposed [9]. Its scalability
has been demonstrated at the system level by the use of
SystemC TLM-2.0 simulation [30].
This paper introduces a scalable and synthesizable GPC
prototype based on the Rocket Chip system with RTL
generation and simulation in the context of the Chipyard
framework [8]. In contrast to the high-level GPC speci-
fication [9], we present here a scalable Chisel-based im-
plementation for RTL synthesis of N modified RocketTiles
using the Rocket Chip generator for Verilog generation
[3]. To adapt RocketTiles to grid processing cells with
local memories, we replaced the local data cache of each
RocketTile with a scratchpad memory, linked them via the
TileLink on-chip network, and modified the bootloader ac-
cordingly. We modified the Chipyard toolchain for multi-

core software compilation and extended the RISC-V Fron-
tend Server (FESVR) to load software to the scratchpad
memories during the RTL simulation of the Verilog mod-
els. Our Rocket Chip based GPC prototype was function-
ally tested by the generation and simulation of a design
with 4 RocketTiles, each executing a Hello-World program
in parallel.
The remainder of this paper is structured as follows. Af-
ter the related work in Section 2, a short introduction to
the principles of the GPC platform is given in Section 3.
Next, Section 4 presents the tool flow using the Chipyard
framework, the Rocket Chip generator, and the Verilator.
Section 5 introduces the implementation of an early GPC
prototype based on Rocket Chip with modifications to the
bootloader and software compilation. The required modi-
fications to the FESVR and the simulation of a simple ex-
ample are presented in Section 6. Finally, Section 7 closes
with a summary and conclusion, followed by future work.

2 Related Work

The well-known memory bottleneck describes the traffic
congestion of data and instruction streams through a single
memory bus and has already been observed in the classic
von-Neumann computer architecture [16, 12]. While to-
day’s computers are typically organized as symmetric mul-
tiprocessors (SMPs) [20] and feature multiple (or many)
processing cores on a chip, SMPs still use a single shared
interconnect to the main memory, which hinders true scal-
ability.
To avoid the memory bottleneck, alternative many-core ar-

chitectures have been proposed and built in research envi-
ronments. One example is the Raw Processor [26], which
features a 4x4 tile architecture with multiple buses and sep-
arate memories. The architecture is scalable with increas-
ing silicon density but it is limited to application-specific
resource allocation, mapping, and data flow.
Another example is the many-core Tile Processor [31]
by Tilera. Variants offer 8x8 cores (TILE64 [27] and
TILEPro64 [28]) or 100 cores [7]. In all examples, each
tile consists of a general-purpose processor with a cache
and a router for inter-processor and I/O device communi-
cation.
Intel has implemented the Polaris research chip with a
network-on-chip (NoC) architecture with 80 cores con-
nected by a mesh network [29], which reportedly features
sustained performance of 1.28 tera-FLOPS [21]. Another
product is the Single-Chip Cloud Computer whose com-
munication structures resemble a data center [11]. Here,
each tile in the 4x6 mesh network contains two Pen-
tium cores and a router. Intel has also fabricated many-
core processors for use as co-processors in servers [25].
These Xeon Phi chips contain 60 physical cores with bi-
directional ring interconnect, where each node is a 4-way
hyper-threaded x86 processor. Unfortunately, the high par-
allelism suffers severely from the limited bandwidth to the
external memory [15].
Multiple separate memories have also been investigated
for many-core architectures. Examples include the Kilo-
Core processor array [6], which features 1000 independent
processors and 12 memory modules on a single chip, and
Epiphany-V [17], which uses a cache-less memory model.

3 Grid of Processing Cells (GPC)

Traditional single-, multi-, and many-core computer ar-
chitectures suffer from the memory bottleneck to a single
shared main memory which can delay many-core proces-
sors for thousands of cycles due to bus contention despite
sophisticated multi-level cache hierarchies [15]. As an al-
ternative scalable computer organization, tiled network-
on-chip architectures have been proposed with separate
local memories. This work follows the idea of a Grid of
Processing Cells (GPC) [9] where pairs of processors and
memories are arranged on-chip in a two-dimensional ar-
ray with only local interconnect. In essence, the typical
use of an expensive multi-level cache hierarchy is here re-
placed by many on-chip memories, similar to the scratch-
pad memory (SPM) approach commonly used in embed-
ded computer systems [19, 4].
The checkerboard variant of a GPC is shown in Figure 1.
Processor cores Cyx and local memories Myx are paired as
cells and arranged in an alternating pattern so that every
processor has access to four neighboring memories. Cores
on the edges of the chip have access to off-chip memories
or memory-mapped I/O devices.
Each cell in the grid consists of a fully equipped general-
purpose processor, such as a RISC-V core, and its own lo-
cal memory of substantial size and high speed (SRAM).
Conceptually, the checkerboard GPC communication can

C01

M11 C11

M01C00

M10 C10

M00

C21

M31 C31

M21C20

M30 C30

M20

C0x

M1x C1x

M0xC02

M12 C12

M02

C2x

M3x C3x

M2xC22

M32 C32

M22

I/O

I/OI/O

I/O

Cy1 My1Cy0 My0 Cyx MyxCy2 My2

Figure 1 Checkerboard Grid of Processing Cells (GPC)

be established by a priority-based multiplexing intercon-
nect within each cell, as shown in Figure 2. Here we
use SystemC TLM-2.0 [14] initiator and target sockets ar-
ranged in multiplexer and de-multiplexer fashion to con-
nect processors (initiators) with their neighboring mem-
ories (targets). To resolve concurrent access conflicts,
priority-based arbitration can be implemented, giving each
processor first priority access to its own local memory, and
lower priority to access the memories in neighbor cells.

CoreMemory

Figure 2 Checkerboard tile with SystemC TLM-2.0 in-
terconnect

The checkerboard GPC has proven to be functional and
scalable in system-level simulation [30]. Several embed-
ded applications have been successfully mapped onto the
GPC platform in 4×2 and 4×4 configurations, including a
Canny edge detector and APNG encoder [10]. While high-
level simulation with SystemC TLM-2.0 shows promising
and scalable results, we now design and evaluate a detailed
model in cycle-accurate Verilog.

4 Chipyard Based Tool Flow

This section introduces the Chipyard framework and the
tools we used to design and simulate a RISC-V based Sys-
tem on Chip (SoC) prototype of the GPC platform.

4.1 Chipyard Framework
Chipyard is an open-source framework for the develop-
ment, RTL simulation, FPGA prototyping, and VLSI im-
plementation of RISC-V based SoCs, which has been in-
troduced by UC Berkeley [1]. As such, Chipyard can be
considered an all-in-one solution for RISC-V based SoC
design, simulation, and synthesis [8].
Chipyard comes with the hardware construction language

RocketTile

Rocket PTW

L1I L1D

TileBus

SystemBus

FrontBus

AXI to
TileLink

L2
Bank

L2
Bank

MemoryBus

TileLink
to AXI

ControlBus

BootROM PLIC CLINT Debug
Unit

PeripheryBus

TileLink
to AXI

Other
Device

AXI
Master

AXI
Mem

AXI
Slave

JTAG

Figure 3 Typical Rocket Chip system based on [8]

Chisel [3] from which Verilog Hardware Description Lan-
guage (HDL) code for all parts of an SoC, including pro-
cessor cores, memory systems, and peripherals, can be
generated. In our design, we applied a tool flow that gen-
erates Verilog RTL code using the Rocket Chip genera-
tor, which can then be simulated by Verilator. Finally, we
adapted the Chipyard compiler toolchain to build a soft-
ware application for the generated SoC.
The remainder of this section provides a brief introduction
to the Rocket Chip generator followed by a description of
the basic principles of the Verilator simulation as well as
the software toolchain.

4.2 Rocket Chip Generator
The Rocket Chip generator is an SoC generator, written
in the hardware configuration language Chisel [8, 2]. It
generates scalable Rocket Chip systems and is the basis of
the Chipyard framework. Figure 3 shows a typical Rocket
Chip system with a single Rocket core. The Rocket core
is an in-order RISC-V processor core with a five-stage
pipeline. The core is embedded in the RocketTile, which
connects the core to the first-level data and instruction
caches, a page-table walker, and the TileBus connected to
the SystemBus. The SystemBus is linked to the FrontBus,
PeripheryBus, and ControlBus. Both the PeripheryBus
and SystemBus allow memory-mapped access to attached
peripherals. The bootloader is located in the BootROM
attached to the ControlBus. On startup, all cores exe-
cute the bootloader instructions from the BootROM. Be-
sides the BootROM, a platform-level (PLIC) and core-local
(CLINT) interrupt controller and a Debug Unit are attached
to the ControlBus. The Debug Unit allows debugging of
the system via a JTAG interface and is attached to the
FrontBus. Optional external peripheral devices can be at-

FESVR

Host

HTIF : TSI

Test Harness

Simulation

Serial
AdapterTSI Protocol

TileLink
Serializer

Serialized
TileLink

Design Under Test (DUT)

TileLink
Deserializer

TileLink
Messages

Figure 4 Communication with the DUT based on [8]

tached to the PeripheryBus. External main memory can be
attached to the MemoryBus, which can then be accessed
via the second-level caches through the SystemBus. All
buses in the Rocket Chip system are implemented using
Berkeley’s TileLink on-chip network protocol [24].

4.3 Verilator Simulator
Verilator is a cycle-accurate open-source Verilog simula-
tor with waveform export in VCD format, which is used
to conduct RTL simulations of the generated SoC models
in Chipyard. The Verilator translates the generated Verilog
code into optimized C++ code, which is then further com-
piled into a binary executable that conducts the actual sim-
ulation. When starting the simulation of the Rocket Chip
system, the binary Executable and Linkable Format (ELF)
file of the cross-compiled software gets loaded into the
scratchpad memories from where the Rocket cores then
fetch, decode, and execute the instructions.
For simulation, as shown in Figure 4, the Design under
Test (DUT) and the host communicate via the Frontend
Server (FESVR), a C++ library using the Tethered Serial
Interface (TSI) protocol [8]. The FESVR is used to load the
software binary into the DUT memory. It also intercepts
and handles system calls from the simulated software, e.g.,
inputs/outputs from an executed program to the console of
the simulator. In the test harness, a Serial Adapter module
converts the TSI commands into TileLink requests. Those
TileLink requests are serialized and forwarded to the DUT.
In the DUT, the serialized TileLink requests are deserial-
ized and routed via the FrontBus [8].

5 GPC Prototype with Rocket Cores

Our design of a GPC prototype in Chipyard required sev-
eral modifications of the Rocket Chip system, which we
present in this section.

5.1 Platform Architecture
As a starting point we used the standard Rocket Chip sys-
tem shown in Figure 3. Our modification is mainly based
on the reconfiguration and replication of RocketTile mod-
ules so they can become processing cells in the grid. Our
current prototype design with N modified RocketTiles is
shown in Figure 5.
To reduce the complexity, we restricted the Rocket cores

RocketTile 0

Rocket

L1I Scratchpad

TileBus

RocketTile N −1

Rocket

L1I Scratchpad

TileBus

•••

SystemBus

FrontBusControlBus

BootROM PLIC CLINT Debug
Unit

PeripheryBus

UART
JTAG

Figure 5 Modified Rocket Chip system with N Rocket-
Tiles

to the RV32IMA ISA subset and further modified the orig-
inal Rocket Chip system. As the GPC platform uses a local
memory in each processing cell, we replaced the first-level
data cache with a scratchpad memory to become the lo-
cal memory of the cell. Furthermore, we striped off other
memory structures, which are not needed in the GPC plat-
form, including the second-level cache, the external mem-
ory, the memory bus, and all AXI interfaces. Since we fo-
cus on bare-metal applications, we removed the page-table
walker as well. With the modified RocketTiles, the con-
figurable Rocket Chip generator allows the generation of
an arbitrary number of processing cells. The Rocket Chip
system example in Figure 5 has N processing cells, imple-
mented by RocketTiles attached to the SystemBus, each
with a local scratchpad memory. For serial output, the final
architecture also includes a UART interface attached to the
PeripheryBus.
As proposed by the GPC approach [9], we implement each
local memory as scratchpad memory, which holds the com-
plete text and data sections of the software to be executed
by the core of the processing cell. To demonstrate the
memory addressing scheme, an excerpt of the memory map
of a configuration with N = 4 RocketTiles is shown in Ta-
ble 1. Each scratchpad memory is configured to the size of
32KiB to fit small demonstration programs. The address
space of the scratchpad memory of the first RocketTile
ranges from address 0x 8000 0000 to 0x 8000 8000 exclu-
sively. All address spaces of the scratchpad memories of
other RocketTiles are aligned without space between and
ordered by the index n of the corresponding RocketTile.
Thus, the address space of the scratchpad memory of the
RocketTile with index 0 ≤ n ≤ N −1 ranges

from (0x80000000)+n · (0x8000)
to (0x80000000)+(n+1) · (0x8000).

The offset of 0x8000 corresponds to the memory size of
32KiB per scratchpad. By default, every access to memory
apart from the own scratchpad of a core, e.g., when reading
from the BootROM, is handled via TileLink. Therefore,
a request is sent from the TileBus of the corresponding
RocketTile to the SystemBus. The SystemBus sends the

TileLink request to its destination based on the requested
memory address. Thereby, in the current configuration, ev-
ery Rocket core can access the scratchpad memories of all
other cores. Depending on the specific GPC architecture,
e.g., the checkerboard GPC, the access will be restricted
to neighboring memories accordingly. However, in gen-
eral, using the shared SystemBus to access neighboring
scratchpads has to be avoided as it may introduce a bot-
tleneck. Therefore, as proposed by the introduced GPC ar-
chitecture, local interconnects for memory access between
neighboring processing cells will be implemented in fu-
ture designs. Due to the modular TileLink on-chip network
of the Rocket Chip system, the routing of memory access
requests can be customized easily. Thus, all GPC-related
modifications to the memory infrastructure of a process-
ing cell can be achieved by modifying the TileLink net-
work. By implementing these additional interconnects, the
checkerboard GPC and other variants [9] can be realized.

Base Top Device Size

.

0x 0000 4000 0x 0000 5000 BootAddrReg 4KiB
0x 0001 0000 0x 0002 0000 BootROM 64KiB
.

0x 0200 0000 0x 0201 0000 CLINT
0x 0c00 0000 0x 1000 0000 PLIC
.

0x 5400 0000 0x 5400 1000 UART
0x 8000 0000 0x 8000 8000 Scratchpad 0 32KiB
0x 8000 8000 0x 8001 0000 Scratchpad 1 32KiB
0x 8001 0000 0x 8001 8000 Scratchpad 2 32KiB
0x 8001 8000 0x 8002 0000 Scratchpad 3 32KiB

Table 1 Memory map of the modified Rocket Chip sys-
tem with N = 4 RocketTiles

5.2 Bootloader Modification
On startup, all Rocket cores boot from the same BootROM
at address 0x1 0000. The default bootloader, which re-
sides in the BootROM, would then jump to address
0x 8000 0000. As every core executes those bootloader in-
structions, all cores would jump to the scratchpad memory
address of the first RocketTile by default. However, this
behavior would only be desired for multi-threaded shared
memory applications. For the GPC platform, each process-
ing cell is supposed to execute instructions from its own
local memory, which requires modifications to the default
bootloader as shown in Listing 1. Lines 7 to 14 show the
required modification of the bootloader. The code gener-
ates an offset depending on the hardware thread (hart) id of
the individual core, which can be read from the mhartid
Control and Status Register (CSR) of each core. The hart
id is then loaded into the t0 register (line 7) and the off-
set between the scratchpads into the t1 register (line 8).
The register a0 already contains the address of the first

scratchpad. A loop decrements t1 until it reaches zero.
Each iteration of the loop adds the offset stored in t1 to
a0. After the last iteration, the a0 register of each core
contains the address of the respective scratchpad memory.
That address is then written into the Machine Exception
Program Counter (MPEC) CSR (line 15). When the mret-
instruction is executed (line 20), the core jumps to the ad-
dress stored in the MPEC CSR.

1 #define BOOTADDR_REG 0x4000
2 #define BOOTADDR_OFFSET 0x8000
3 ...
4 li a0, BOOTADDR_REG
5 lw a0, 0(a0)
6 ...
7 csrr t0, mhartid
8 li t1, BOOTADDR_OFFSET
9 beqz t0, 2f

10 1:
11 add a0, a0, t1
12 addi t0, t0, -1
13 bnez t0, 1b
14 2:
15 csrw mepc, a0
16 csrr a0, mhartid
17 la a1, _dtb
18 li a2, 0x80
19 csrc mstatus, a2
20 mret

Listing 1 Modification to the bootloader assembly code

5.3 Compilation and Execution of Bare-
Metal Software

To build multi-core bare-metal RISC-V applications that
can be executed by the generated SoC, we extended the
Chipyard framework by a bare-metal software environ-
ment. The environment comes with a Makefile for the
compilation of applications, the assembly code to set up
the C runtime, a linker script, and libraries to commu-
nicate with the FESVR. As the Chipyard framework
currently only includes a 64-bit RISC-V cross-compiler
toolchain, we configured a custom compiler toolchain to
cross-compile programs for our targeted RV32IMA 32-bit
ISA.
To conduct a functional test of the GPC prototype and the
software environment, we implemented a simple Hello-
World C program, as shown in Listing 2. The C code of
each core is enclosed by the thread_entry function. The
thread_entry function is called with the individual hart
id and the total number of harts as arguments after setting
up the C run-time environment. The example uses a single
statement, which prints the hart id of the core and the total

number of cores. The compiled Hello-World program is
loaded into the scratchpad memory of each RocketTile, as
outlined in the following section.

1 void thread_entry(int cid, int nc)
2 {
3 printf("Hello from core %d of %d!\n",
4 cid, nc);
5 exit(0);
6 }

Listing 2 Multi-core Hello-World C program

6 GPC Prototype Simulation

By default, the simulator built with the Verilator simulator
only supports loading one ELF file via the FESVR. The
ELF file contains the binary executable and the base mem-
ory address where to load the data. That address is spec-
ified in the linker script, which is used by the linker. To
load the program to the first scratchpad memory, the base
address is set to 0x 8000 0000 by default.
To load an arbitrary number of ELF files to any given ad-
dress, we extended the FESVR by adding an individual off-
set to the base address embedded in each ELF file. Hereby
we support both, the loading of different ELF files and the
loading of the same ELF file to different addresses.
The syntax of this multiload feature is shown in List-
ing 3. The load-count argument specifies how many
times the ELF file located at elf-path is loaded into
the memory. The first ELF file is loaded by adding the
base-offset to the base address of the ELF file. Each fol-
lowing load increments the offset by the offset-per-elf
argument. As a result, the n-th load of the ELF file is done
by adding the offset

(base-offset)+n · (offset-per-elf)

to the base address.

1 ./simulator-build
multiload=<load-count>,<base-offset>,
<offset-per-elf>,<elf-path>

↪→

↪→

Listing 3 Syntax of the multiload command

As the introduced Hello-World program calls the printf
function, the FESVR has to handle the corresponding sys-
tem call. By default, the FESVR can only handle system
calls of one core. For a multi-core simulation, we modified
the FESVR to handle system calls of all cores separately.
For the RTL simulation of our Rocket Chip based GPC
prototype and the modified FESVR, we configured a model
with N = 4 RocketTiles and generated Verilog code, which
was finally simulated by the Verilator. We cross-compiled

the Hello-World example and loaded it to the scratchpad
memories of the 4 cores in the simulation.
Listing 4 shows the console output during the simulation.
As specified by the multiload arguments (line 1), the
ELF file hello is loaded N = 4 times by adding the off-
set

0x0+n ·0x8000

to the n-th load with 0 ≤ n ≤ 3. The progress of loading the
ELF file to the memories is shown in lines 4 to 7. After the
last load, the Rocket cores start to execute the instructions
of the bootloader. The modified bootloader causes each
core to jump to its own scratchpad memory. When execut-
ing the Hello-World program, each core successfully prints
its hart id and the total number of harts in the system (lines
8-11) as it is defined in the corresponding Hello-World pro-
gram.

1 $./simulator-QuadGPCTinyRocketConfig
multiload=4,0,0x8000,./hello↪→

2 Listening on port 33501
3 [UART] UART0 is here (stdin/stdout).
4 Loading hello with offset 0x0 done
5 Loading hello with offset 0x8000 done
6 Loading hello with offset 0x10000 done
7 Loading hello with offset 0x18000 done
8 Hello from core 1 of 4!
9 Hello from core 2 of 4!

10 Hello from core 3 of 4!
11 Hello from core 0 of 4!

Listing 4 Output of the Verilator RTL simulation with
N = 4 RocketTiles executing the Hello-World program

7 Summary and Conclusion

In this work, we have introduced an early Rocket Chip
based prototype of the GPC platform using the Chipyard
framework. This Chisel-based implementation allows gen-
erating models with an arbitrary number of processing cells
for RTL simulation and synthesis. The processing cells
are represented by modified RocketTiles with scratchpad
memory connected via TileLink. For the Verilator sim-
ulation, we have extended the Chipyard toolchain by a
bare-metal software environment to cross-compile C pro-
grams for a multi-core RV32IMA 32-bit RISC-V architec-
ture. The modified RISC-V FESVR automatically loads
the compiled software application to the individual scratch-
pad memories of the cores.
To validate our approach, we have configured a GPC pro-
totype with 4 RISC-V processing cells and generated the
RTL model with the Rocket Chip generator. Using the gen-
erated Verilog model, we have performed an RTL simula-
tion with the Verilator simulator. A simple Hello-World

application was compiled and successfully executed by all
4 RISC-V cores.
As a next step, we will focus on aligning the communica-
tion and memory architecture of our RTL GPC design with
the GPC platform given in [9]. This mainly concerns di-
rect memory access to neighboring GPC cells via TileLink
to avoid the SystemBus bottleneck and different strategies
for synchronization of communication between processing
cells. In addition, we plan to introduce a virtual address
space for each core to avoid handling the different physical
address spaces of particular processing cells in software.
At last, we will investigate FPGA synthesis of our Rocket
Chip based GPC to build a first hardware-based implemen-
tation that can execute GPC applications in real time. We
also plan to test the scalability and throughput on an FPGA
cluster with different applications.

Acknowledgements
The work described herein is partly funded by the German
Bundesministerium für Bildung und Forschung (BMBF)
through the Scale4Edge project (16ME0133). The authors
would also like to thank Bastian Koppelmann for his valu-
able support.

References

[1] Alon Amid et al. “Chipyard: Integrated Design,
Simulation, and Implementation Framework for
Custom SoCs”. In: IEEE Micro 40.4 (2020), pp. 10–
21. ISSN: 1937-4143. DOI: 10.1109/MM.2020.
2996616.

[2] Krste Asanović et al. The Rocket Chip Generator.
Tech. rep. UCB/EECS-2016-17. EECS Department,
University of California, Berkeley, Apr. 2016. URL:
http : / / www2 . eecs . berkeley . edu / Pubs /
TechRpts/2016/EECS-2016-17.html.

[3] Jonathan Bachrach et al. “Chisel: Constructing
hardware in a Scala embedded language”. In:
DAC Design Automation Conference 2012. 2012,
pp. 1212–1221. DOI: 10 . 1145 / 2228360 .
2228584.

[4] Rajeshwari Banakar et al. “Scratchpad Memory: A
Design Alternative for Cache On-chip memory in
Embedded Systems”. In: Proceedings of the Inter-
national Symposium on Hardware-Software Code-
sign (CODES). ACM, 2002, pp. 73–78.

[5] Andrea Bartolini et al. “Monte Cimone: Paving the
Road for the First Generation of RISC-V High-
Performance Computers”. In: 2022 IEEE 35th In-
ternational System-on-Chip Conference (SOCC).
2022, pp. 1–6. DOI: 10.1109/SOCC56010.2022.
9908096.

[6] Brent Bohnenstiehl et al. “KiloCore: A 32-nm 1000-
Processor Computational Array”. In: IEEE Journal
of Solid-State Circuits 52.4 (2017), pp. 891–902.
DOI: 10.1109/JSSC.2016.2638459.

https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/SOCC56010.2022.9908096
https://doi.org/10.1109/SOCC56010.2022.9908096
https://doi.org/10.1109/JSSC.2016.2638459

[7] Charlie Demerjian. A look at the 100-core Tilera Gx.
https://www.semiaccurate.com/2009/10/
29/look-100-core-tilera-gx/. [Online; ac-
cessed 30-May-2022]. Oct. 2009.

[8] Chipyard Documentation. Release 1.8.1. Oct. 2022.
URL: https://chipyard.readthedocs.io/_/
downloads/en/1.8.1/pdf/.

[9] Rainer Dömer. A Grid of Processing Cells (GPC)
with Local Memories. Tech. rep. CECS-TR-22-01.
UCI: Center for Embedded and Cyber-physical Sys-
tems, Apr. 2022.

[10] Vivek Govindasamy, Emad Arasteh, and Rainer
Dömer. “Minimizing Memory Contention in an
APNG Encoder using a Grid of Processing Cells”.
In: Proceedings of the International Embedded
Systems Symposium (IESS). Lippstadt, Germany:
Springer, Nov. 2022.

[11] Jim Held. “”Single-chip Cloud Computer”, an
IA Tera-scale Research Processor”. In: Euro-Par
2010 Parallel Processing Workshops. Ed. by Mario
R. Guarracino et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 85–85. ISBN: 978-3-
642-21878-1.

[12] John L. Hennessy and David A. Patterson. Com-
puter Architecture, Fifth Edition: A Quantita-
tive Approach. 5th. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011. ISBN:
012383872X.

[13] Pouya Houshmand et al. “DIANA: An End-to-End
Hybrid DIgital and ANAlog Neural Network SoC
for the Edge”. In: IEEE Journal of Solid-State Cir-
cuits 58.1 (2023), pp. 203–215. DOI: 10 . 1109 /
JSSC.2022.3214064.

[14] IEEE Computer Society. IEEE Standard 1666-2011
for Standard SystemC Language Reference Manual.
IEEE, New York, USA, 2011.

[15] Guantao Liu et al. “Optimizing Thread-to-Core
Mapping on Manycore Platforms with Distributed
Tag Directories”. In: Proceedings of the Asia and
South Pacific Design Automation Conference (ASP-
DAC). Tokyo, Japan, Jan. 2015.

[16] John von Neumann. First Draft of a Report on the
EDVAC. Tech. rep. University of Pennsylvania, June
1945.

[17] Andreas Olofsson. “Epiphany-v: A 1024 proces-
sor 64-bit risc system-on-chip”. In: arXiv preprint
arXiv:1610.01832 (2016).

[18] OpenTitan. lowRISC. Nov. 2022. URL: https://
docs.opentitan.org.

[19] Preeti R. Panda, Nikil D. Dutt, and Alexandru Nico-
lau. “Efficient utilization of scratch-pad memory
in embedded processor applications”. In: Proceed-
ings of the European Design Automation Confer-
ence (Euro-DAC). 1997, pp. 7–11. DOI: 10.1109/
EDTC.1997.582323.

[20] David A. Patterson and John L. Hennessy. Computer
Organization and Design - The Hardware / Software
Interface (Revised 4th Edition). The Morgan Kauf-
mann Series in Computer Architecture and Design.
Academic Press, 2012. ISBN: 978-0-12-374750-1.
URL: http : / / www . elsevierdirect . com /
product.jsp?isbn=9780123747501.

[21] Li-Shiuan Peh, Stephen W. Keckler, and Sriram
Vangal. “On-Chip Networks for Multicore Sys-
tems”. In: Multicore Processors and Systems. Ed. by
Stephen W. Keckler, Kunle Olukotun, and H. Peter
Hofstee. Boston, MA: Springer US, 2009, pp. 35–
71. ISBN: 978-1-4419-0263-4. DOI: 10.1007/978-
1-4419-0263-4_2. URL: https://doi.org/10.
1007/978-1-4419-0263-4_2.

[22] Pasquale Davide Schiavone et al. “Quentin: an
Ultra-Low-Power PULPissimo SoC in 22nm FDX”.
In: 2018 IEEE SOI-3D-Subthreshold Microelectron-
ics Technology Unified Conference (S3S). 2018,
pp. 1–3. DOI: 10.1109/S3S.2018.8640145.

[23] Ronaldo Serrano et al. “A Low-Power Low-Area
SoC based in RISC-V Processor for IoT Appli-
cations”. In: 2021 18th International SoC Design
Conference (ISOCC). 2021, pp. 375–376. DOI: 10.
1109/ISOCC53507.2021.9613880.

[24] SiFive TileLink Specification. Version 1.8.1. SiFive
Inc. Jan. 2020. URL: https : / / sifive . cdn .
prismic.io/sifive/7bef6f5c-ed3a-4712-
866a-1a2e0c6b7b13_tilelink_spec_1.8.1.
pdf.

[25] Avinash Sodani et al. “Knights Landing: Second-
Generation Intel Xeon Phi Product”. In: IEEE Micro
36.2 (2016), pp. 34–46. DOI: 10.1109/MM.2016.
25.

[26] Michael Bedford Taylor et al. “The Raw Processor:
A Composeable 32-Bit Fabric for Embedded and
General Purpose Computing”. In: 2001.

[27] Tilera. Manycore without Boundaries: TILE64 Pro-
cessor. http://www.tilera.com/products/
processors/TILE64. [Online; accessed 30-May-
2022].

[28] Tilera. Manycore without Boundaries: TILEPro64
Processor. http : / / www . tilera . com /
products/processors/TILEPRO64. [Online; ac-
cessed 30-May-2022].

[29] Sriram Vangal et al. “An 80-Tile 1.28 TFLOPS
Network-on-Chip in 65nm CMOS”. In: 2007 IEEE
International Solid-State Circuits Conference. Di-
gest of Technical Papers. 2007, pp. 98–589. DOI:
10.1109/ISSCC.2007.373606.

[30] Yutong Wang, Arya Daroui, and Rainer Dömer.
“Demonstrating Scalability of the Checkerboard
GPC with SystemC TLM-2.0”. In: Proceedings of
the International Embedded Systems Symposium
(IESS). Lippstadt, Germany: Springer, Nov. 2022.

[31] David Wentzlaff et al. “On-Chip Interconnection
Architecture of the Tile Processor”. In: IEEE Micro
27.5 (2007), pp. 15–31. DOI: 10.1109/MM.2007.
4378780.

https://www.semiaccurate.com/2009/10/29/look-100-core-tilera-gx/
https://www.semiaccurate.com/2009/10/29/look-100-core-tilera-gx/
https://chipyard.readthedocs.io/_/downloads/en/1.8.1/pdf/
https://chipyard.readthedocs.io/_/downloads/en/1.8.1/pdf/
https://doi.org/10.1109/JSSC.2022.3214064
https://doi.org/10.1109/JSSC.2022.3214064
https://docs.opentitan.org
https://docs.opentitan.org
https://doi.org/10.1109/EDTC.1997.582323
https://doi.org/10.1109/EDTC.1997.582323
http://www.elsevierdirect.com/product.jsp?isbn=9780123747501
http://www.elsevierdirect.com/product.jsp?isbn=9780123747501
https://doi.org/10.1007/978-1-4419-0263-4_2
https://doi.org/10.1007/978-1-4419-0263-4_2
https://doi.org/10.1007/978-1-4419-0263-4_2
https://doi.org/10.1007/978-1-4419-0263-4_2
https://doi.org/10.1109/S3S.2018.8640145
https://doi.org/10.1109/ISOCC53507.2021.9613880
https://doi.org/10.1109/ISOCC53507.2021.9613880
https://sifive.cdn.prismic.io/sifive/7bef6f5c-ed3a-4712-866a-1a2e0c6b7b13_tilelink_spec_1.8.1.pdf
https://sifive.cdn.prismic.io/sifive/7bef6f5c-ed3a-4712-866a-1a2e0c6b7b13_tilelink_spec_1.8.1.pdf
https://sifive.cdn.prismic.io/sifive/7bef6f5c-ed3a-4712-866a-1a2e0c6b7b13_tilelink_spec_1.8.1.pdf
https://sifive.cdn.prismic.io/sifive/7bef6f5c-ed3a-4712-866a-1a2e0c6b7b13_tilelink_spec_1.8.1.pdf
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1109/MM.2016.25
http://www.tilera.com/products/processors/TILE64
http://www.tilera.com/products/processors/TILE64
http://www.tilera.com/products/processors/TILEPRO64
http://www.tilera.com/products/processors/TILEPRO64
https://doi.org/10.1109/ISSCC.2007.373606
https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1109/MM.2007.4378780

	Introduction
	Related Work
	Grid of Processing Cells (GPC)
	Chipyard Based Tool Flow
	Chipyard Framework
	Rocket Chip Generator
	Verilator Simulator

	GPC Prototype with Rocket Cores
	Platform Architecture
	Bootloader Modification
	Compilation and Execution of Bare-Metal Software

	GPC Prototype Simulation
	Summary and Conclusion

