
Minimizing Memory Contention
in an APNG Encoder Using a Grid

of Processing Cells

Vivek Govindasamy(B), Emad Arasteh, and Rainer Dömer

CECS, University of California, Irvine, USA
{vbgovind,emalekza,doemer}@uci.edu

https://www.cecs.uci.edu/

Abstract. Modern processors experience memory contention when the
speed of their computational units exceeds the rate at which data can
be accessed in memory. This phenomenon is well known as the memory
bottleneck and is a great challenge in computer engineering. In order
to mitigate the memory bottleneck in classic multi-core architectures,
a scalable parallel computing platform called Grid of Processing Cells
(GPC) has been proposed. To evaluate its effectiveness, we model the
GPC using SystemC TLM-2.0, with a focus on memory contention. As
an example, we parallelize an APNG encoder application and map it
to the GPC and compare its performance to traditional shared memory
processors. Our experimental results show improved execution times on
the GPC due to a large decrease in memory contention.

Keywords: Memory Bottleneck · Grid of Processing Cells · SystemC
TLM-2.0

1 Introduction

The increase in processor speeds over the past years has led to increased time
spent in accessing the main memory to retrieve data. As many cores try to
access the shared memory, this leads to contention and delays each core. The
cores suffer from contention and their computations are halted due to sharing of
the same main memory. This memory bottleneck applies to most modern CPUs
which are usually shared memory processors (SMP).

To deal with slow memory access speeds, various solutions are being
researched. The development of hierarchical caches is the main method to address
this issue [1]. Another solution is the Berkeley RISC project, in which many com-
plex instructions were removed because they were rarely used [2], and instead
replaced with more CPU registers which are much faster to access than main
memory [3,4].

In this paper, we model and evaluate SMPs and a scalable alternative called
Grid of Processing Cells (GPC) where processors paired with local memories are

c© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023
S. Henkler et al. (Eds.): IESS 2022, IFIP AICT 669, pp. 101–112, 2023.
https://doi.org/10.1007/978-3-031-34214-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34214-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-34214-1_9


102 V. Govindasamy et al.

arranged in a 2D array [5]. As a specific configuration, the GPC checkerboard
architecture (Fig. 1) is aimed at addressing the memory bottleneck. The cores
and memories are placed one after another, and each core has access to its
own and three neighbour memories, thereby increasing data availability. The
checkerboard contains several variations of a main logical component which is
termed as a cell. Each cell is designed with the idea that it represents a core and
components that are local to that particular core.

In this work we model the GPC architecture in SystemC TLM-2.0 [6] and
map an application to it [7].

1.1 Problem Definition

Our main contribution in this paper is modeling and demonstrating the improve-
ment of the GPC against the classic SMP architectures in terms of execution
time and time spent in main memory access contention when running an APNG
encoder on the different architectures.

MC

MC

MC

MC

MC

MC

MC

MC

Off-chip memory 0

CM CMCM CM

CM CM CMCM

Off-chip memory 3

Stimulus Monitor

O
ff-chip m

em
ory 2O

ff-
ch

ip
 m

em
or

y 
1

Fig. 1. 4-by-4 checkerboard GPC [5].

1.2 Background and Related Work

Over many years the general trend is that processors become faster as designers
increase the clock rate but there is little increase in memory access speed [8].
This is known as the memory wall. To mitigate this problem, there has been a
lot of focus on improving caches [1]. However, even the most advanced caches
suffer from high miss rates if the cache size is too small or if associativity is
increased too much [9]. Caches must also implement cache coherence protocols
in the case of multi-core processors, and they consume significant space on the
chip as well as power. Caches have given rise to Non-Uniform Memory Access
(NUMA) where each core can access near memory faster than distant memory.
With NUMA the time to maintain cache coherency is usually quite high [10]



Minimizing Memory Contention Using GPC 103

and leads to contention as the interconnect is shared for every core. There have
been other works related to addressing the memory wall, for example the Illusion
system [11], which is similar to the GPC architecture. Both have a mapping step,
but in the GPC the memories surrounding each core can be accessed only by
neighbours and there is no NOC to facilitate communication between distant
cores. This limitation makes the GPC truly scalable because there is no NOC
complexity to grow, but puts a burden on application mapping which is restricted
to only local communication.

Modification to the architecture itself is one method of reducing the con-
tention between cores. In the checkerboard GPC contention is reduced drasti-
cally as separate buses are used between the cores. Architectures similar to the
GPC have been proposed in the past, such as the Epiphany-V [12]. While sim-
ilarities are present, such as the fact that both use a cache-less memory model,
the GPC varies in a few aspects: i) The checkerboard architecture uses a different
addressing map where each memory has a different address space, ii) The GPC
has no operating system running on all of the cores, and iii) GPC uses simple
multiplexers-based buses instead of a complex NOC.

Our main objective in this work is to reduce memory contention through
software methods, which primarily lies in the mapping operation. We also con-
firm that memory contention is indeed a major reason for the memory wall, and
provide experimental results showing that the GPC minimizes that.

2 Modeling of the Checkerboard GPC

The checkerboard model [5] consists of cores with local memory which can be
accessed also by their neighbours. The memory size is small and the cores them-
selves only perform computation on small amounts of data at a time. The small
memories are referred to as on-chip memories and are expected to be as fast as
caches in a multi-core computer made of static random-access memory (SRAM).
The off-chip memories are larger but slower, similar to dynamic random-access
memory (DRAM).

Core Module - The core module is the computation component of a cell (Fig. 2)
and represents a complete processor core with in-order or out-of-order execution
but without (or only 1st-level) cache. It contains a single socket connected to the
core multiplexer. It is a SystemC module containing general arithmetic func-
tions. The primary communication is the SystemC blocking transport interface
(b transport) [13] and event synchronization to prevent possible race conditions
when interacting with other cores. Each core contains a main thread which per-
forms the actual computation.

Memory Module - Each core has its own on-chip memory to store its data.
This memory is assumed to be fast as SRAM, but small (up to 128 megabytes).
The memory can only be accessed by the four neighbouring cores similar to a
local scratchpad memory with explicitly managed address space. The off-chip
memories on the edges of the checkerboard are larger (512 megabytes) but have
slower access (DRAM).



104 V. Govindasamy et al.

Core Demultiplexer Module - In order to communicate with the neigh-
bours, an addressing scheme for the checkerboard is required. The global address
space refers to the four off-chip memories on the outside and the local address
space refers to the small memories near the cores. The core demultiplexer routes
addresses to the individual memories. It contains one socket to communicate
with the core and four sockets to connect to the adjacent memory multiplexers.
The core demultiplexer forwards b transport calls from the core after performing
address translation.

Memory Multiplexer Module - The memory multiplexer is connected
to a memory and to adjacent core demultiplexers. Its purpose is to forward
b transport calls from neighboring cores to its memory. The memory multiplexer
permits only one access at a time and performs arbitration. This allows to observe
memory contention. Algorithm 1 provides the algorithm of how the time spent
waiting for memory access is computed [14].

Algorithm 1: Maintaining busy state in b transport inside the core
multiplexer (bus access arbitration with FCFS policy)
initialization: busy until = 0;
busy = busy until - current timestamp;
if busy < 0 then

busy until = current timestamp;
busy = 0;

end
delay = multiplexer delay + busy;
d1 = delay;
socket->b transport(transaction, delay);
d2 = delay;
memory delay = d2 - d1;
busy until += memory delay ;

2.1 Modeling Interconnect Contention

To observe the contention in the traffic of memory transactions, we utilize timing
delays in the SystemC TLM-2.0 blocking transport interface inside our intercon-
nect. To ensure that only one transaction at a time uses each memory, the mem-
ory multiplexer stores its busy status in a state variable and delays competing
transactions accordingly.



Minimizing Memory Contention Using GPC 105

DemuxMux

CoreMemory

Fig. 2. Checkerboard GPC Cell.

As listed in Algorithm 1, we store a
timestamp marking the end of memory
occupation in a variable busy until
which we initialize to zero. When a
transaction arrives, we calculate the
remaining time left until the mem-
ory becomes available again. If busy
is negative, the transaction arrived at
an idle time and busy until is reset.

Before forwarding the transaction
to the memory (b transport), we
update the delay with the sum of
the multiplexer latency and the busy
delay. The transaction then processes in the memory. We observe the
memory delay by taking the time before and after the transaction and update
the busy until state variable accordingly.

In summary, our interconnect modeling accurately performs arbitration with
first-come-first-serve policy and tracks the busy state of memory transactions.
Aware of contention, our model enables accurate observation of any congestion
in memory traffic.

3 Parallelized APNG Encoder Application

To test the performance of the checkerboard GPC, we need a suitable application
which can be run in parallel. We choose an Animated Portable Network Graph-
ics (APNG) encoder [15] which basically is a PNG encoder that concatenates
generated PNG images with additional information such as the frame rate. PNG
encoders have two main components which perform the actual image compres-
sion, the filters and the DEFLATE algorithm [16]. Filters are of five types (None,
Sub, Up, Avg, Paeth) and are used to reduce pixel values. The reduced pixel
values require less number of bits to transmit, providing some compression. The
filtered values are sent in to the DEFLATE algorithm, which uses a combination
of Lempel-Ziv-Storer-Szymanski (LZSS) and Huffman encoding to perform loss-
less compression. DEFLATE works better on values which are highly correlated
to each other, which filtering provides [17].

Our SystemC TLM-2.0 APNG encoder consists of eight modules, namely the
Color Splitter, Subtract Filter, Up Filter, Average Filter, Paeth Filter, Compara-
tor, Compressor and APNG Encoder. The Color Splitter separates input data
into individual color streams coming from the Stimulus of the encoder. The
filters perform different mathematical computations which correlate pixel data,
improving the compression provided by DEFLATE. The Comparator chooses the
best filtered output to send to the Compressor. The Compressor uses DEFLATE
to output a compressed row which is sent to the APNG Encoder module and
the Monitor which writes the compressed data to a file. The APNG Encoder
module generates additional information needed to create an APNG file which



106 V. Govindasamy et al.

is written in the Monitor module. Our model performs the encoding row wise,
with parallel filters.

3.1 Backannotation of Delays

In order to evaluate performance, we need to reflect timing in the model. We
estimate the computation delay of the major APNG functions by measuring
their execution time on a reference platform. Since we are mainly interested in
the relative timing of major blocks in the application, we simply run the APNG
encoder on a computer (2.4 GHz CPU i5-1135G7) and measure the delays with
the gprof Linux profiler. The observed delays are listed in Table 1. We note
that the filtering operations are most time-consuming in the encoder. Thus, we
parallelize the filters in our model. We back-annotate the measured computation
delays into the APNG SystemC model and scale them proportionally to the
image size.

Table 1. APNG computation delays

Module Name Total time Time per frame Time per pixel

Color Splitter 4 s 0.133 s 11 ns

Subtract Filter 30 s 1.000 s 82 ns

Up Filter 33 s 1.100 s 88 ns

Average Filter 50 s 1.667 s 137 ns

Paeth Filter 102 s 3.400 s 274 ns

Comparator 8 s 0.267 s 21 ns

Compressor 14 s 0.467s 38 ns

APNG Encoder 1 s 0.033s 3 ns

Every memory access by the cores
results in a communication delay. In
reality, not every memory access takes
the same amount of time as some
accesses will be to the cache and oth-
ers to the main memory. However, we
have not modeled caches in our SMP
and single core models. Therefore, for
fairness purposes we consider every
memory access and multiplexer switch to be 10ns uniformly, regardless of on-
chip or off-chip memory. This is still an effective measure of performance because
the SMP models must perform main memory accesses frequently so that they
can communicate the filtered rows to the other cores which use it, and caches
are not of much use here.

Another important metric is the contention time, which is how much time
each core spends waiting for access to the main memory, as described with
Algorithm 1.

4 Mapping APNG on the Checkerboard

To evaluate the effectiveness of the checkerboard architecture we map the APNG
encoder application on it. Since not all of the memories are available to each core,
it is sometimes necessary to forward data through cores. Forwarding increases the
communication time for each cell. To reduce the lost time incurred by forwarding,
it is better to use data by an adjacent core.

4.1 Checkerboard Mappings

Two checkerboard mappings have been implemented, a simpler initial mapping
where individual filtering on the three colors is performed on the same core, and



Minimizing Memory Contention Using GPC 107

an improved mapping which splits the colors between cores to filter. In the initial
mapping nine cores are involved in encoding with three cores forwarding data.
The improved mapping has every core utilized in APNG encoding.

Initial Checkerboard Mapping. The main idea behind the initial mapping
is to avoid the use of excessive forwarding (Fig. 3 (a)). For instance, the Subtract
filter receives the red, green, and blue values from the Color Splitter. Next, it
performs the computation and sends both the filtered values and the unfiltered
values to the Up filter. The Up filter performs its own computation and sends the
filtered Sub, Up and unfiltered values to the Paeth filter. The Paeth filter then
computes the Paeth filtered output, and sends it to the Comparator while also
forwarding both outputs from the Up filter and Sub filter. The same process is
performed in the Average filter route. At the Comparator the least sum filtered
row is chosen and sent to the Compressor. The compressed output is forwarded
through neighboring cells to the right and written to the output file using the
monitor. It is also sent to the APNG Encoder module for APNG encoding and
forwards it to the second monitor thread.

Fig. 3. (a) An initial checkerboard mapping which attempts to minimize communica-
tion between modules. (b) An improved checkerboard mapping which splits the com-
putational load more evenly.

Improved Checkerboard Mapping. While the initial mapping works, it
could be further improved by splitting the filtering work of each core to three
cores with each core filtering a different color component (Fig. 3 (b)). This is
because some filters, such as the Paeth filter, take too much time to compute.
Since there are sixteen cores available, it is possible to map every core to one
module. This mapping is expected to be faster.

5 Experimental Results

We now compare five different SystemC models. The models are 1) Initial
checkerboard (Fig. 3 (a)), 2) Improved checkerboard (Fig. 3 (b)), 3) Single core



108 V. Govindasamy et al.

(Fig. 4 (a)), 4) 8 core SMP (Fig. 4 (b)), and 5) 16 core SMP (Fig. 4 (c)). These
models are evaluated on the basis of their execution times and amount of con-
tention.

5.1 Models for Comparison

For comparison, we implement a single core and also two SMP models in Sys-
temC. These models use a single memory with a memory multiplexer connecting
the cores to the memory. The single core model performs all computations in the
same core (Fig. 4 (a)). The shared memory models work similar to the checker-
board architecture, using the same communication functions to transfer pixel
data between cores, but have a greater amount of contention.

The SMP with 8 cores performs the filtering operation on the different color
channels in the same core (Fig. 4 (b)). Doubling the number of cores provides
a 16 core model in which the cores perform less work but communication is
increased per unit time leading to higher contention (Fig. 4 (c)).

Fig. 4. Models for comparison, (a) single core architecture, (b) 8 core SMP where
threads run in parallel, (c) 16 core SMP with shared memory.

5.2 Measurement of Delays

To measure delays, we create global variables of type sc time called Computa-
tion Time, Read Time, Write Time and Contention Time. These variables pro-
vide an accurate value of how the time in each SystemC model is spent, and are
present in every model. The Computation Time (Comp Time) is the summation
of time spent by every core on the times listed in Table 1.

Read Time and Write Time keep track of the total time spent by the model
accessing the memory. Added together they reflect the Memory Access Time or
the MA Time.



Minimizing Memory Contention Using GPC 109

Lastly, the Contention Time (Cont Time) is the total time spent by every
core waiting to access the memory. This time can easily exceed the execution
time of the model if there are a lot of cores attempting to access the memory
at the same time, as each core will be waiting to access the memory and all of
these times add up to the Contention Time.

5.3 Simulated Time Results

With the three types of delays back-annotated, we obtain measurements on the
five SystemC models. Table 2 shows the variation in model timings as the clock
rate is gradually increased, thereby decreasing computation time per module and
increasing the frequency of memory access requests. The five SystemC models

Table 2. Table for simulated timing results

Model Name Exec Time (Speedup) Comp Time MA Time Cont Time

Clock rate of 0.25GHz

Single Core 714.617 s (1x) 707.231 s 4.619 s 6.791 s

SMP with 8 Cores 326.703 s (1x) 18.518 s 27.130 s

SMP with 16 Cores 131.946 s (1x) 18.525 s 29.992 s

Initial Checkerboard 334.866 s (1x) 27.291 s 1.388 s

Improved Checkerboard 122.943 s (1x) 28.296 s 1.130 s

Clock rate of 0.5GHz

Single Core 361.818 s (1.98x) 353.615 s 4.619 s 6.791 s

SMP with 8 Cores 166.704 s (1.96x) 18.518 s 61.124 s

SMP with 16 Cores 81.454 s (1.62x) 18.525 s 64.398 s

Initial Checkerboard 174.859 s (1.92x) 27.291 s 0.699 s

Improved Checkerboard 70.008 s (1.76x) 28.296 s 2.676 s

Clock rate of 1GHz

Single Core 185.419 s (1.96x) 176.808 s 4.619 s 6.791 s

SMP with 8 Cores 86.703 s (1.92x) 18.518 s 78.675 s

SMP with 16 Cores 59.332 s (1.38x) 18.525 s 93.821 s

Initial Checkerboard 94.855 s (1.84x) 27.291 s 0.354 s

Improved Checkerboard 43.336 s (1.63x) 28.296 s 2.564 s

Clock rate of 2GHz

Single Core 97.219 s (1.91x) 88.404 s 4.619 s 6.791 s

sMP with 8 Cores 48.423 s (1.81x) 18.518 s 88.403 s

SMP with 16 Cores 45.426 s (1.31x) 18.525 s 101.670 s

Initial Checkerboard 54.853 s (1.73x) 27.291 s 0.182 s

Improved Checkerboard 30.001 s (1.43x) 28.296 s 2.712 s

Clock rate of 4GHz

Single Core 53.119 s (1.83x) 44.202 s 4.619 s 6.791 s

SMP with 8 Cores 38.048 s (1.26x) 18.518 s 90.867 s

SMP with 16 Cores 39.677 s (1.13x) 18.525 s 116.412 s

Initial Checkerboard 34.852 (1.57x) 27.291 s 0.096 s

Improved Checkerboard 23.332 (1.31x) 28.296 s 2.785 s

Clock rate of 8GHz

Single Core 31.069 s (1.71x) 22.101 s 4.619 s 6.791 s

SMP with 8 Cores 38.047 s (1.00x) 18.518 s 91.792 s

SMP with 16 Cores 38.308 s (1.03x) 18.528 s 119.683 s

Initial Checkerboard 24.852 s (1.41x) 27.291s 0.053 s

Improved Checkerboard 19.999 s (1.17x) 28.296 s 2.619 s



110 V. Govindasamy et al.

are compared at different assumed processor clock rates. The clock rates have
been chosen to start at 0.25 GHz and are doubled up to 8 GHz in our simulation.

An important assumption made intentionally is that no cache memory exists
in any model. The reasoning for this is that we want to observe memory con-
tention directly, undisturbed by caching behaviour. In other words, for a fair
comparison we model all memories as fast and thus do not need caches.

Table 2 shows the comparison of the three types of delays and the overall
execution time. Time spent in computation linearly reduces, but has limited
effect on the total execution time as the contention time goes up in every model,
to varying degrees. The increase in contention time is the reason why execution
times start to show less improvement.

Plotting the values from Table 2 provides insight on the change in execution
time as the clock rate is doubled (Fig. 5). For the single core model, it is seen that
the decrease in computation speed leads to great increase in speedup, until a cer-
tain point where diminishing returns are observed. The shared memory processors
start off with low execution time, but they start to stagnate at around 4 GHz.

The Memory Access Time or MA Time varies for each of these models even
though the amount of pixels they process is the same. This is because simpler
models, like the single core model, need to access the memory only two times
(from the stimulus and to the monitor) when processing a row of pixel data.
Other models, like the checkerboard, need to pass on the data between adjacent
cores, which involves a lot more reading and writing from and to memories. The
SMP models need to access the main memory frequently, as almost every core
needs to access new data to continue data processing.

5.4 Observations and Comparison

Fig. 5. APNG Encoder execution time scaling. Note that
the graph y axis is in log scale.

The initial checkerboard
mapping starts with an
execution time similar to
the 8 core SMP model,
but quickly accelerates
as the clock rate is
increased. The improved
checkerboard is as fast
as the 16 core SMP at
low clock rates, but is
twice as fast when the
clock rate reaches 8 GHz.
At low clock rates, the
limiting factor is the
number of cores, and
not the memory access
contention, whereas at
higher clock rates this
trend is reversed.



Minimizing Memory Contention Using GPC 111

Fig. 6. Contention time scaling with increase in clock rate for the five SystemC models.

Figure 6 shows the increase in contention as the clock rate increases. This
increases the rate at which memory is accessed by the cores so that they can
process more data, which leads to a rise in contention time. For the single core
model minimal contention exists because the cores are accessing the memory
along with the stimulus and monitor. The initial checkerboard mapping has a
linear decrease in contention, but the improved checkerboard suffers from a slight
increase. The reasoning for the reduction in contention for the initial mapping is
that when the clock rate increases the shorter memory accesses appear to come
first, and this leads to a decrease in contention as shortest job first (SJF) reduces
wait time. This does not seem to be the case for the SMP models however, as
they have a noticeable increase in contention as the clock rate increases and
the execution time starts to stagnate. Therefore the checkerboard architecture
is a good alternative to shared memory processors as clock rate increases, its
contention is much less.

6 Conclusion

The increase in processor speeds over the years has resulted in much faster com-
puters but this trend has been hampered due to slower memory speed increases.
The newly proposed checkerboard architecture is one possible way to mitigate
the effects of slower memory access speeds, as shown by our experimental results.

In future work, we aim to provide more accurate comparisons by also includ-
ing caches for our SMP models. Further, we would like to continue our modeling



112 V. Govindasamy et al.

by lowering the level of abstraction of our cores to instruction set simulators [18]
and mapping more applications to the GPC.

In the longer term, we plan to address the programmability of the GPC archi-
tecture so that applications can be mapped to it automatically by an advanced
compiler.

References

1. Smith, A.J.: Cache memories. ACM Comput. Surv. (CSUR) 14(3), 473–530 (1982)
2. Tanenbaum, A.S.: Implications of structured programming for machine architec-

ture. Commun. ACM 21(3), 237–246 (1978)
3. Patterson, D.A.: Reduced instruction set computers. Commun. ACM 28(1), 8–21

(1985)
4. Cocke, J., Markstein, V.: The evolution of RISC technology at IBM. IBM J. Res.

Dev. 34(1), 4–11 (1990)
5. Dömer, R.: A Grid of Processing Cells (GPC) with Local Memories, Tech. Rep.

CECS-TR-22-01 (Apr. 2022)
6. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemCTM.

Springer Science & Business Media (2007)
7. Govindasamy, V.: Mapping of an APNG Encoder to the Grid of Processing Cells

Architecture, Tech. Rep. CECS-TR-22-02 (2022)
8. McKee, S.A.: Reflections on the memory wall. In: Proceedings of the 1st conference

on Computing frontiers, p. 162 (2004)
9. Patterson, D.A., Hennessy, J.L.: Computer organization and design ARM edition:

the hardware software interface. Morgan kaufmann (2016)
10. Blagodurov, S., Zhuravlev, S., Dashti, M., Fedorova, A.: A Case for NUMA-aware

Contention Management on Multicore Systems. In: 2011 USENIX Annual Techni-
cal Conference (USENIX ATC 2011) (2011)

11. Radway, R.M.: Illusion of large on-chip memory by networked computing chips for
neural network inference. Nat. Electron. 4(1), 71–80 (2021)

12. Olofsson, A.: Epiphany-v: A 1024 processor 64-bit risc system-on-chip, arXiv
preprint arXiv:1610.01832 (2016)

13. IEEE Standard for Standard SystemC Language Reference Manual, IEEE Std
1666–2011 (Revision of IEEE Std 1666–2005), pp. 1–638 (2012)

14. Arasteh, E.M., Dömer, R.: Improving parallelism in system level models by assess-
ing PDES performance. In: Forum on specification & Design Languages (FDL),
vol. 2021, pp. 01–07. IEEE (2021)

15. Parmenter, S., Vukićević,V., Smith, A.: APNG Specification by Mozilla. www.wiki.
mozilla.org/APNG Specification. (Accessed 12 Aug 2021)

16. Deutsch, P., Gailly, J.-L.: Zlib compressed data format specification version 3.3,’
RFC,: May, p. 1996. Tech, Rep (1950)

17. Sayood, K.: Chapter 9. Lossless compression handbook. Elsevier (2002)
18. Herdt, V., Große, D., Le, H.M., Drechsler, R.: Extensible and configurable RISC-V

based virtual prototype. In: Forum on Specification & Design Languages (FDL),
vol. 2018, pp. 5–16. IEEE (2018)

http://arxiv.org/abs/1610.01832
www.wiki.mozilla.org/APNG_Specification
www.wiki.mozilla.org/APNG_Specification

	Minimizing Memory Contention in an APNG Encoder Using a Grid of Processing Cells
	1 Introduction
	1.1 Problem Definition
	1.2 Background and Related Work

	2 Modeling of the Checkerboard GPC
	2.1 Modeling Interconnect Contention

	3 Parallelized APNG Encoder Application
	3.1 Backannotation of Delays

	4 Mapping APNG on the Checkerboard
	4.1 Checkerboard Mappings

	5 Experimental Results
	5.1 Models for Comparison
	5.2 Measurement of Delays
	5.3 Simulated Time Results
	5.4 Observations and Comparison

	6 Conclusion
	References




