
An Untimed SystemC Model of GoogLeNet

Emad Malekzadeh Arasteh and Rainer Dömer

Center for Embedded and Cyber-Physical Systems, University of California Irvine
{emalekza,doemer}@uci.edu

Abstract. Deep learning and convolutional neural network (CNN) have
been shown to solve image classification problems fast and with high
accuracy. However, these algorithms tend to be very computationally
intensive and resource hungry, hence making them difficult to use on
embedded devices. Towards this end, we need system-level models for
analysis and simulation. In this report, we describe a newly designed
untimed SystemC model of GoogLeNet, a state-of-the-art deep CNN us-
ing OpenCV library. The SystemC model is automatically created from a
Caffe model using a generator tool. We successfully validate the function-
ality of the model using Accellera SystemC 2.3.1 simulator. Then, we use
RISC (Recoding Infrastructure for SystemC) to speed up the simulation
by exploiting thread-level parallelism and report extensive experimental
results.

Keywords: System-level modeling · Parallel discrete event simulation ·
Deep learning · Convolutional neural network · SystemC

1 Introduction

Computer vision (CV) as a scientific field aims to gain understanding of images
and video. CV covers a wide range of tasks, such as object recognition, scene
understanding, human motion recognition, etc. One of the core problems in
visual recognition is image classification. Image classification is the problem of
assigning a descriptive label to an input image from a fixed set of categories.
Deep learning and convolutional neural network (CNN) have been shown to
solve this hard image classification problem fast and with acceptable precision.

Early work on CNN dates back to 1989 with the LeNet network for hand-
written digit recognition [7]. However, the early 2010s started a new era for CNN
applications by the introduction of AlexNet [5] for image classification. Growth
of computing power, availability of huge datasets that can be used for training,
and rapid innovation in deep learning architectures have paved the way for the
success of deep learning techniques in recent years [11].

A CNN mainly consists of alternating convolution layers and pooling (sub-
sampling) layers. Each convolution layer extracts features in the input by ap-
plying trainable filters to the input. Later, the convolved feature is fed to an
activation function, for example a Rectifier Linear Unit (ReLU) to introduce
nonlinearity and obtain activation maps. Each pooling layer downsamples the

2 E. M. Arasteh, R. Dömer

activation maps to reduce computation and memory usage in the network. Fea-
tures extracted from previous convolution and pooling layers are fed to a fully
connected layer to perform classification. Typically, a softmax activation function
can be placed following the final fully connected layer to output the probabil-
ity corresponding to each classification label. For example, LeNet-5, a CNN for
digit recognition, as depicted in Figure 1, contains three convolution layers, two
sub-sampling layers, and one fully connected layer [8].

Fig. 1. Architecture of LeNet-5, a CNN for digits recognition [8]

In this paper, we develop an untimed SystemC model of GoogLeNet [12], a
state-of-the-art deep CNN. Following the top-down specification approach for
a classical system on chip design [1][2], our goal is to separate communication
parts from computation parts. To achieve this, we exploit the fact that a neural
network is a directed graph where the nodes are different layers in the network
and edges connect neighboring layers.

Latest trends in cutting edge deep neural network architectures like ResNeXt
(2016) [13], FractalNet (2016) [6], DenseNet [3] (2017), etc. show a substantial
increase in the number of multiple parallel connections between layers in the
network. This comes with a high level of thread-level parallelism, which parallel
simulators can take advantage of for faster simulations.

The rest of this paper is organized as follows: Section 2 describes high level
structure of GoogLeNet. Section 3 describes SystemC modeling details of each
layer and the overall GoogLeNet model. Section 4 presents sequential and parallel
simulation results with an analysis of valuable observations. At last, Section 5
concludes this case study.

2 GoogLeNet Structure

GoogLeNet is a deep CNN for image classification and detection that was the
winner of the ImageNet Large Scale Recognition Competition (ILSVRC) in 2014
with only 6.67% top-5 error [12]. GoogLeNet was proposed and designed with
computational efficiency and deployability in mind. The two main features of

An Untimed SystemC Model of GoogLeNet 3

GoogLeNet are (1) using 1x1 convolution layer for dimension reduction and (2)
applying network-in-network architecture to increase representational power of
the neural network [12].

GoogLeNet is 22 layers deep when only layers with learned parameters are
considered. The total number of layers (independent building blocks) is 142
distinct layers. The main constituent layer types are convolution, pooling, con-
catenation, and classifier. GoogLeNet includes two auxiliary classifiers that are
used during training to combat the so-called vanishing gradient problem. The
detailed types of layers inside GoogLeNet and the number of each type of layers
are summarized in Table 1.

Table 1. GoogLeNet layer summary

Layer type Count

Convolution 57

ReLU 57

Pooling 14

LRN 2

Concat 9

Dropout 1

InnerProduct 1

Softmax 1

Total 142

Our focus for now is on inference by using the proposed neural network archi-
tecture, and not the training for fine-tuning network parameters or suggesting
improved network architecture. Therefore, our model does not include the two
auxiliary classifier layers.

A schematic view of GoogLeNet is depicted in Figure 2. An image is fed in
on the left, and processed by all layers. Then, a vector with probabilities for the
set of categories comes out on the right. The index of a class with a maximum
probability is looked up in a table of synonym words that outputs the class of
the object in the image, i.e. “space shuttle”.

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

Fig. 2. GoogLeNet network with all the bells and whistles [12]

4 E. M. Arasteh, R. Dömer

To get pre-trained network parameters, we have used the Caffe (Convolu-
tional Architecture for Fast Feature Embedding) model zoo. Caffe is a deep
learning framework originally developed at University of California, Berkeley,
and is available under BSD license [4]. The GoogLeNet Caffe model comes with
(1) a binary file .caffemodel that contains network parameters, and (2) a text
file .prototxt that specifies network architecture. Including weights and bias
values, there are a total of 5.97 million learned parameters in GoogLeNet.

We also use another text file listing 1000 labels used in ILSVRC 2012 chal-
lenge that includes a synonym ring or synset of those labels.

3 SystemC Modeling of GoogLeNet

We now describe how we design a SystemC model of GoogLeNet.

3.1 Reference Model using OpenCV

Our SystemC model of GoogLeNet is implemented based on an original model
using OpenCV 3.4.1, a library of computer vision functions mainly aimed for real-
time applications written in C/C++ [10]. The OpenCV library was originally
developed by Intel and is now free for use under the open-source BSD license.
OpenCV uses an internal data structure to represent an n-dimensional dense
numerical single-channel or multi-channel array, a so called Mat class. Therefore,
our model uses the Mat data type to store images, weight matrices, bias vectors,
feature maps, and class scores. This becomes practical while interacting with
various OpenCV APIs.

Furthermore, OpenCV provides an interface class, Layer, that allows for
construction of constituent layers of neural networks. A Layer instance is con-
structed by passing layer parameters and is initialized by storing its learned
parameters. A Layer instance computes an output Mat given an input Mat by
calling its forward method. We refer to this class as OpenCV layer for the rest
of this paper. OpenCV also provides utility functions to load an image and read
a Caffe model from .prototxt and .caffemodel files.

3.2 Modeling Goals

Given the OpenCV primitives, we set three design goals in the early stage of
model development as follows:

1. Generic layers: Since GoogLeNet is composed of only a handful of layer
types, the layers shall be parameterized by their attributes using a custom
constructor. For example, a pooling layer shall be parameterized by its type
(max-pooling or average pooling), its kernel size, its stride, and the number
of padding pixels.

An Untimed SystemC Model of GoogLeNet 5

2. Self-contained layers: Each layer shall implement the functionality it requires
without the need of an external scheduler to load its input or in case load its
parameters. For example, a convolution layer shall have a dedicated method
to load its parameters (weight matrix and bias vector) used only at the time
of construction.

3. Reuseable and modular code: Since most CNNs share a common set of layers,
the code shall be structured in a way to enable the feeding of any kind of
CNN with minimum effort. For example, the layer implementation shall be
organized as code template blocks and the SystemC model shall be autogen-
erated using only the network model defined by Caffe model files.

Note that these goals will allow us to easily generate a SystemC model also
for other Caffe CNNs. At the same time, the models generated will have a well-
organized structure that enables static analysis. Specifically, this allows us to
perform parallel simulation with RISC [9], as described in Section 3.6 below.

3.3 Layer Implementation

Each layer in the CNN is defined as a sc module with one input port and one
output port. Ports are defined as sc port and are parameterized by our own de-
fined interface classes, mat in if and mat out if. These user-defined interfaces
are derived from sc interface and declare read and write access methods with
a granularity of Mat. The choice of Mat for a granularity of port parameterization
simplifies the design by focusing on the proper level of abstraction at this stage
of modeling. As an example, the module definition of the first convolution layer
conv1 7x7 s2 is shown in Listing 1.1.

As shown in lines 41-53 of Listing 1.1, each module has several attributes
that are all defined as data members inside the class definition. For example, a
convolution module is defined by its name, number of outputs, number of pixels
for padding, kernel size, and number of pixels for stride. If a layer also has learned
parameters, two Mat objects are defined as member variables to store the weight
matrix and the bias vector. In that case, their values are initialized at the time
of module construction. For example, a convolution module has a designated
load method that reads pre-trained Caffe model files and stores weight and bias
values in the weights and bias member variables.

1 c l a s s conv1 7x7 s2 t : s c c o r e : : sc module
2 {
3

4 pub l i c :
5 s c c o r e : : s c por t<m a t i n i f > b l o b i n ;
6 s c c o r e : : s c por t<mat out i f> blob out ;
7

8 SC HAS PROCESS(conv1 7x7 s2 t) ;
9

10 conv1 7x7 s2 t (s c c o r e : : sc module name n ,
11 St r ing name ,
12 unsigned i n t num output ,

6 E. M. Arasteh, R. Dömer

13 unsigned i n t pad ,
14 unsigned i n t k e r n e l s i z e ,
15 unsigned i n t s t r i d e ,
16 unsigned i n t d i l a t i o n ,
17 unsigned i n t group) :
18 s c c o r e : : sc module (n) ,
19 name(name) ,
20 num output (num output) ,
21 pad (pad) ,
22 k e r n e l s i z e (k e r n e l s i z e) ,
23 s t r i d e (s t r i d e) ,
24 d i l a t i o n (d i l a t i o n) ,
25 group (group) ,
26 weights (4 , we ight sz , CV 32F , weight data) ,
27 b ia s (4 , b i a s s z , CV 32F , b i a s da ta)
28 {
29 load () ;
30 SC THREAD(main)
31 }
32

33 void load () ;
34 void main () ; ;
35 void run (std : : vector<Mat> &inpVec ,
36 std : : vector<Mat> &outVec) ;
37

38 p r i v a t e :
39

40 St r ing name ;
41 unsigned i n t num output ;
42 unsigned i n t pad ;
43 unsigned i n t k e r n e l s i z e ;
44 unsigned i n t s t r i d e ;
45 unsigned i n t d i l a t i o n ;
46 unsigned i n t group ;
47 s t a t i c const i n t we ight s z [4] ;
48 unsigned i n t weight data [6 4∗3∗7∗7] ;
49 s t a t i c const i n t b i a s s z [4] ;
50 unsigned i n t b i a s da ta [6 4] ;
51 Mat weights ;
52 Mat b ia s ;
53

54 } ;

Listing 1.1. Conv1 7x7 s2 module definition

Each module has also a main thread that continuously reads its input port,
computes results, and writes those to its output port. Data processing is handled
by the run method. Here, we rely on OpenCV to perform the computations. The
run method creates an instance of OpenCV layer and calls its forward method
by passing references to input Mat and output Mat objects.

An Untimed SystemC Model of GoogLeNet 7

Fig. 3. Convolution layer

As an example, Figure 3 illustrates the module defining the first convolution
layer in GoogLeNet. The input to the module is a Mat object containing 3 color
channels of 224x224 pixels of the input “space shuttle” image and the output is
another Mat object containing 64 feature maps with the size of 112x112 pixels.

3.4 Netspec Generator

Since each convolution layer consists of different parameters, writing module
declarations by hand is an error-prone and tedious task. Moreover, declaring
all modules and queues in the top level GoogLeNet module, instantiating them
with the correct parameters, and binding queues to neighboring modules is also
a laborious task. Therefore, we develop a generator tool to automatically ex-
tract the network architecture from a textual protocol buffer .prototxt and
the network learned parameters from binary protocol buffer .caffemodel. The
generator, called netspec, is written in Python and uses Python interface to
Caffe library, pyCaffe, in order to read .caffemodel and .prototxt files to
construct its internal data representation of the neural network. Netspec then
uses this data structure to generate SystemC code for all convolution modules
and the top level GoogLeNet module with all interconnecting FIFO channels.

3.5 Validation by Simulation

A top level test bench validates our GoogLeNet SystemC model against the
reference OpenCV implementation. The test bench instantiates our SystemC
GoogLeNet module which contains all modules inside the network with all the
interconnecting queues as Design under Test (DUT). It also instantiates a stim-
ulus module to feed the design with images of size 224x224 with three color

8 E. M. Arasteh, R. Dömer

channels, and a monitor module to read the final class scores and output the
label with the maximum probability (Figure 4). To measure the performance of
the model, our test bench can also be configured to continuously feed in a stream
of images. In that case, a checker module is plugged inside the monitor to check
the correct classification and its probability against the reference model.

Fig. 4. Top-level test bench

3.6 Modular Source File Structure and Build Flow

Following good practices of SystemC coding, we place each module definition
in a header file .hpp and the corresponding module implementation in a .cpp

file. Also, to explore parallelism existing in the GoogLeNet system level model
using RISC, we decide to split the implementation into two separate .cpp

files. One .cpp file contains only methods that directly call OpenCV APIs
〈module name cv.cpp〉 and the other only contains the main method implemen-
tation that does not directly interact with OpenCV APIs 〈module name.cpp〉.
This prevents RISC from unnecessarily analyzing and instrumenting the code
inside the OpenCV library, by only feeding object files generated from CV parts
and not including OpenCV library source code.

First .caffemodel and .protoxt files are fed to the netspec tool to generate
code for convolution modules and the overall GoogLeNet module. Once these
modules are generated, all 〈module name.cpp〉 and 〈module name cv.cpp〉 files
are passed to the GNU compiler to generate the object files. Then, the object files
are passed all together to the GNU linker with OpenCV and SystemC libraries
to obtain the final executable. Running the executable requires the Caffe model
files to load convolution modules with weights and bias values and also a synset
file to read the class names.

An Untimed SystemC Model of GoogLeNet 9

The build flow specifically for RISC requires minimum effort due to our
early decision to split the OpenCV source code from the model source code.
Since RISC prefers all the source code in a single file, all header files and imple-
mentation files are merged into one file. This flattened source code, with object
files generated from the OpenCV part of the modules, is then fed to RISC which
then generates a multithreaded parallel executable.

4 Experimental Results

Our untimed SystemC model of GoogLeNet compiles and simulates success-
fully with Accellera SystemC 2.3.1. For parallel simulation, we also compile and
simulate the model using RISC V0.5.1 to speed up simulator run time. Both
simulation results match the OpenCV reference model output.

4.1 Performance Setup

We use two different computer platforms to benchmark the simulations. The
specifications of each platform are shown in Table 2. We name platforms based
on the number of logical cores visible to the operating system. The number
of logical cores is double the number of physical cores when hyper-threading
technology (HTT) is enabled.

To have reproducible experiments, the Linux CPU scaling governor is set to
‘performance’ to run all cores at the maximum frequency, and file I/O opera-
tions i.e. cout are minimized. SystemC 2.3.1 and OpenCV 3.4.1 are built with
debugging information 1.

Moreover, the OpenCV library can be built with support for several paral-
lel frameworks, such as POSIX threads (pthreads), Threading Building Blocks
(TBB), and Open Multi-Processing (openMP), etc. We build OpenCV with the
support for pthread to run in multithreaded mode and also without support for
pthread to run only on a single-thread. Lastly, the stimulus module is configured
to feed 500 images with size of 224x224 pixels to the model.

Table 2. Platform specification

Platform name 4-core host 8-core host 16-core host 32-core host

OS CentOS 7.6 CentOS 7.6 CentOS 6.10 CentOS 6.10

CPU Model name Intel E3-1240 Intel E3-1240 Intel E5-2680 Intel E5-2680

CPU frequency 3.4 GHz 3.4 GHz 2.7 GHz 2.7 GHz

#cores 4 4 8 8

#processors 1 1 2 2

#threads per core 1 2 1 2

1 OpenCV has built with -O0 flag meaning (almost) no compiler optimizations.

10 E. M. Arasteh, R. Dömer

4.2 Simulation Results

For benchmarking, we measure simulation time using Linux /usr/bin/time under
CentOS. This time function provides information regarding the system time,
the user time, and the elapsed time. Measurements are reported for sequential
SystemC simulation using Accellera SystemC compiled with POSIX threads.
Parallel simulation is performed using RISC simulator V0.5.1 in non-prediction
(NPD) mode. Tables 3 to 6 show the measurements for each simulation mode on
the four different platforms using the single-thread and multithreaded OpenCV.
In case of parallel simulations, we set the maximum number of concurrent threads
allowed by the RISC simulator to the number of available logical cores on each
platform.

Table 3. Measurement results on 4-core host (HTT off)

Single-thread Multithreaded

Time (sec) Accellera RISC Accellera RISC

User time 627.19 651.59 680.01 664.02

System time 1.55 1.11 34.26 18.26

Elapsed time 629.49 253.29 199.44 234.36

CPU utilization 99% 257% 358% 291%

Speedup 1x 2.48x 3.15x 2.68x

Table 4. Measurement results on 16-core host (HTT off)

Single-thread Multithreaded

Time (sec) Accellera RISC Accellera RISC

User time 912.79 921.95 1164.69 960.48

System time 34.76 42.19 705.22 134.25

Elapsed time 947.93 275.29 154.45 260.7

CPU utilization 99% 350% 1210% 419%

Speedup 1x 3.44x 6.13x 3.63x

4.3 Analysis

Table 3 allows the following observations:

1. RISC introduces thread-level parallelism

RISC is faster than single-thread OpenCV with Accellera and it speeds up
simulator run time up to 2.48x on the 4-core machine.

An Untimed SystemC Model of GoogLeNet 11

Table 5. Measurement results on 8-core host (HTT on)

Single-thread Multithreaded

Time (sec) Accellera RISC Accellera RISC

User time 621.49 961.44 1164.13 1046.39

System time 1.52 1.28 84.06 34.85

Elapsed time 622.68 254.07 184.09 232.57

CPU utilization 100% 378% 678% 464%

Speedup 1x 2.45x 3.38x 2.67x

Table 6. Measurement results on 32-core host (HTT on)

Single-thread Multithreaded

Time (sec) Accellera RISC Accellera RISC

User time 911.98 1177.02 2124.87 1299.86

System time 35.31 52.76 1838.35 224.84

Elapsed time 947.7 273.27 155.72 274.29

CPU utilization 99% 450% 2544% 555%

Speedup 1x 3.46x 6.08x 3.45x

2. OpenCV parallelism is even faster than RISC

We observe that multithreaded OpenCV speeds up simulator run time using
Accellera up to 3.15x on the 4-core machine. Therefore, thread-level paral-
lelism in OpenCV primitives is more efficient than thread-level parallelism
at SystemC level.

3. Combining OpenCV and RISC parallelism does not deliver the
best speedup

Since RISC and OpenCV threads unknowingly from each other compete for
resources, exploiting parallelism in RISC and OpenCV at the same time does
not increase the speedup. For example, multithreaded OpenCV using RISC
(2.68x) performs worse than multithreaded OpenCV using Accellera (3.15x)
on the 4-core machine.

4. RISC performance improves slightly with OpenCV parallelism

RISC gains small speedup by also using parallelism in OpenCV. For example,
RISC speeds up multithreaded OpenCV (2.68) in comparison with single-
thread OpenCV (2.48x).

Table 4 supports observations 1 through 4 as well. It also allows for the
following observation:

5. Performance does not scale by the number of cores

12 E. M. Arasteh, R. Dömer

Quadratic increase in the number of cores only leads to double increase in
performance. Relative good speed up to 3.15x on the 4-core machine does
not scale to 16-core machines and only gets 6.13x speedup compared to
sequential single-thread simulator run time.

Table 5 and 6 use hyper-threading technology (HTT) and allow for the fol-
lowing observations:

6. HTT is ineffective for this application
Enabling HTT slightly improves speedup from 3.15x on the 4-core machine
without HTT to 3.38 on the 4-cores with HTT (8-cores). In case of 16-cores
to 32-cores, performance has not improved at all.

7. HTT substantially increases user and system time
We observe that the user and system times increase significantly with HTT
turned on. At this point, the origin of this time increase is unclear for us.
We will investigate this further in more detailed future research.

In summary, Figure 5 shows the speedups for different sources of parallelism:
single-threaded OpenCV using RISC, multithreaded OpenCV using Accellera
and multithreaded OpenCV using RISC. The illustration shows a significant
speedup using parallelism introduced by RISC and multithreaded OpenCV. It
also demonstrates that combining OpenCV and RISC parallelism does not pro-
vide a remarkable speedup.

Fig. 5. Speedup comparison on different platforms based on the source of parallelism

5 Conclusion

In this report, we have described an untimed SystemC model of GoogLeNet
using OpenCV 3.4.1 library. We also developed a tool to automatically generate

An Untimed SystemC Model of GoogLeNet 13

SystemC code from Caffe model files. We successfully simulated the generated
model using Accellera SystemC 2.3.1 and RISC V0.5.1.

Experimental results show significant simulation speedups using RISC, as
well as using multithreaded OpenCV. Results also show that combining OpenCV
and RISC parallelism did not deliver significant speedup.

References

1. Gerstlauer, A., Dömer, R., Peng, J., Gajski, D.D.: System Design: A Practical
Guide with SpecC. Kluwer (2001)

2. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer
(2002)

3. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017. pp. 2261–2269. IEEE Computer Society (2017)

4. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

6. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks
without residuals. CoRR abs/1605.07648 (2016)

7. Le Cun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson,
D., Howard, R.E., Hubbard, W.: Handwritten digit recognition: Applications of
neural network chips and automatic learning. Comm. Mag. 27(11), 41–46 (Nov
1989)

8. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-
based learning. In: Shape, Contour and Grouping in Computer Vision. p. 319
(1999)

9. Liu, G., Schmidt, T., Cheng, Z., Mendoza, D., Dömer, R.: RISC Compiler and Sim-
ulator, Release V0.5.0: Out-of-Order Parallel Simulatable SystemC Subset. Tech.
Rep. CECS-TR-18-03, CECpS, UCI (Sep 2018)

10. OpenCV Tutorials, Load Caffe framework models.
https://docs.opencv.org/3.4/d5/de7/tutorial dnn googlenet.html, accessed:
2019-05-11

11. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural net-
works: A tutorial and survey. Proceedings of the IEEE 105(12), 2295–2329 (2017)

12. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015. pp. 1–9
(2015)

13. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transforma-
tions for deep neural networks. CoRR abs/1611.05431 (2016)

