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Abstract. This paper presents a hardware/software (HW/SW) code-
sign framework (TECSCE) which enables software developers to easily
design complex embedded systems such as massive data-parallel systems.
TECSCE is implemented by integrating TECS and SCE: TECS is a com-
ponent technology for embedded software, and SCE provides an environ-
ment for system-on-a-chip designs. Since TECS is based on standard C
language, it allows the developers to start the design process easily and
fast. SCE is a rapid design exploration tool capable of efficient MPSoC
implementation. TECSCE utilizes all these advantages since it supports
transformation from component descriptions and component sources to
SpecC specification, and lets the developers decide data partitioning and
parallelization at a software component level. Moreover, TECSCE effec-
tively duplicates software components, depending on their degree of data
parallelizing, to generate multiple SpecC specification models. An appli-
cation for creating a panoramic image removing objects, such as people,
is illustrated as a case study. The evaluation of the case study demon-
strates the effectiveness of the proposed framework.

1 Introduction
Increasing complexities of embedded system and strict schedules in time-to-
market are critical issues in the today’s system-level design. Currently, vari-
ous embedded systems incorporate multimedia applications, which are required
more and more complex functionalities. Meanwhile, the semiconductor technol-
ogy progress has placed a great amount of hardware resources on one chip, en-
abling to implement more functionalities as hardware in order to realize efficient
systems. This widens design space to be explored and makes system-level designs
further complicated - to improve the design productivity, designing systems at
a higher abstraction level is necessary [1].

Hardware/software (HW/SW) codesign of these systems mainly relies on the
following challenging issues: (1) data parallelism to improve performance, (2)
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support for software developers to implement such complicated systems without
knowing system-level languages such as SystemC and SpecC, (3) implementa-
tion to directly use existing code without modification, and (4) management of
communication between functionalities. To the best of our knowledge, there is
no work addressing all of the above issues.

This paper presents a system-level framework (TECSCE) to cope with the
preceding issues. This framework aims at enabling even software developers to
easily design complicated systems such as multimedia applications which are rich
in data parallelism. For this, we integrate a component technology for embedded
software, TECS (TOPPERS Embedded Component System [2]), and the system-
on-a-chip environment SCE [3], which is based on SpecC language. Since TECS
is based on conventional C language, it allows the developers to start the design
process easily and fast. SCE is a rapid design exploration tool capable of efficient
MPSoC implementation.

The contribution of this work is to present a system-level design method
for software developers to deal with massively parallel embedded systems using
TECS. In existing HW/SW codesign technologies, a designer needs to manually
add or modify HW/SW communication sources (e.g., their size, direction, and
allocator) in input behavioral descriptions, which is complex to specify and error-
prone. In contrast, in the proposed framework, the developer can design the
overall system at a software component level and has no need to specify the
HW/SW communication in the input description because TECS defines the
interface between components, and the communication sources are automatically
generated. Moreover, a new mechanism of duplicating components realizes data
partitioning at the software component level for an effective speedup of the
applications.

The rest of this paper is organized as follows. Section 2 explains TECS, SCE,
and the overview of the proposed framework. Section 3 depicts a case study of
adapting the proposed framework. The evaluation of the case study is shown in
Section 4. Related work is described in Section 5. Finally, Section 6 concludes
this paper.

2 TECSCE

In this section, the overviews of TECS, SCE, and a system-level design frame-
work (TECSCE) integrating TECS and SCE are presented.

2.1 TECS

In embedded software domains, software component technologies have become
popular to improve the productivity [2, 4, 5]. It has many advantages such as
increasing reusability, reducing time-to-market, reducing software production
cost, and hence, improving productivity [6].

TECS adopts a static model that statically instantiates and connects com-
ponents. The attributes of the components and interface sources for connecting
the components are statically generated by the interface generator. Furthermore,
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Fig. 1. Component diagram.

TECS optimizes the interface sources. Hence, no instantiation overhead is intro-
duced at runtime, and the runtime overhead of the interface code is minimized
[7]. Therefore, these attributes of TECS are suitable for system-level designs.

Furthermore, in system-level designs, parallelism and pipeline processing
should be considered. TECS supports parallelism and pipeline processing on
a real-time OS for multi-processors in embedded software [8]. The oneway call-
ing is provided to support the parallelism. It means that a caller component does
not need to wait until a callee component finishes executing. At a software level
for multiprocessors environment, the parallelism has been already supported in
TECS. Therefore, it is possible to adapt the feature for system-level designs.

Component Model in TECS A cell is an instance of component in TECS.
Cells are properly connected in order to develop an appropriate application. A
cell has entry port and call port interfaces. The entry port is an interface to
provide services (functions) to other cells. Each service of the entry port called
the entry function is implemented in C language. The call port is an interface to
use the services of other cells. A cell communicates in this environment through
these interfaces. To distinguish call ports of caller cells, an entry port array is
used. A subscript is utilized to identify the entry port array. A developer decides
the size of an entry port array. The entry port and the call port have signatures

(sets of services). A signature is the definition of interfaces in a cell. A celltype

is the definition of a cell, as well as the Class of an object-oriented language. A
cell is an entity of a celltype.

Figure 1 shows an example of a component diagram. Each rectangle repre-
sents a cell. The dual rectangle depicts a active cell that is the entry point of a
program such as a task and an interrupt handler. The left cell is a TaskA cell,
and the right cell is a B cell. Here, each of tTask and tB represents the celltype

name. The triangle in the B cell depicts an entry port. The connection of the
entry port in the cells describes a call port.

Component Description in TECS The description of a component in TECS
can be classified into three descriptions: a signature description, a celltype de-
scription, and a build description. An example for component descriptions is
presented in Section 3 to briefly explain these three descriptions 5 .

2.2 SCE

SCE implements a top-down system design flow based on a specify-explore-refine
paradigm with support for heterogeneous target platforms consisting of custom
hardware components, embedded software processors, dedicated IP blocks, and

5 Please refer [2] for the more detailed explanations.
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Fig. 2. Design flow using the proposed framework.

complex communication bus architectures. The rest of features and design flow
is explained in the next subsection.

2.3 Overview of TECSCE

Figure 2 represents the design flow using the proposed framework. The circled
numbers in Figure 2 represent the order of design steps.

– Step1: A framework user (hereafter, a developer) defines signatures (interface
definitions) and celltype (component definitions).

– Step2: The developer implements celltype source (component source code) in
C language. They can use the template code based on signatures and celltype

descriptions.
– Step3: The developer describes an application structure including definitions

of cells (instances of component) and the connection between cells. In this
step, the developer decides the degree of data partitioning. If it is possible
to use existing source code (i.e., legacy code), the developer can start from
Step3.

– Step4: The SpecC specification model based on the component description,
including definitions of behaviors and channels, is generated by a TECS
generator. The specification model is a functional and abstract model that
is free of any implementation details.

– Step5: The designer can automatically generate system models (Transaction-
level models) based on design decisions (i.e. mapping the behaviors of the
specification model onto the allocated PEs).

– Step6: The hardware and software parts in the system model are imple-
mented by hardware and software synthesis phases, respectively.
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Fig. 3. Target application. Left images are input images. Right image is a result image.

SCE supports generating a new model by integrating the design decisions into
the previous model.

3 Case study for proposed framework

In this section, the proposed framework is explained through a case study. First,
a target application is described. Then, two kinds of mechanism to generate
specification models (Step4 in Figure 2) are depicted.

3.1 Target Application

The target application named MovingObjectRemoral for a case study of the
framework is an application for generating a panoramic image removing objects,
such as people. In the panoramic image view system, such as Google Street
View, a user can see images from the street using omnidirectional images. Figure
3 illustrates the target application. The application creates the image without
people as shown in the right image of Figure 3 based on the algorithm [9] by
using a set of panoramic images which are taken at the same position.

Since creating an image by removing obstacles needs a number of original
images, each of which has too many pixels, the original program is designed only
for off-line use. Because the output image depends on the place and environment,
we do not know how many source images are needed to create the output image.
Therefore, currently, we need enormously long time to take images at each place.
Our final goal is to create the output image in real-time by using our framework.

3.2 TECS components for the target application

Figure 4 shows a TECS component diagram for the target application. Each
rectangle represents a cell which is a component in TECS. The left, middle, and
right cells are a Reader cell, an MOR (MovingObjectRemoral) cell, and a Writer
cell, respectively. The Reader cell reads image files, slices the image, and sends
the sliced image data to the MOR cells. The MOR cell collects background colors
(RGB) of each pixel based on the input images. The Writer cell creates the final
image based on the data collected by the MOR cell. Here, tReader, tMOR, and
tWriter represent the celltype name.

Figure 5 shows a signature description between tReader and tMOR, and
between tMOR and tWriter. The signature description is used to define a set
of function heads. A signature name, such as sSliceImage, follows a signature
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Fig. 4. Component diagram for target application.

1 signature sSliceImage {
2 [ oneway ] void sendBlock([ in ]const slice *slice image);

3 };

Fig. 5. Signature description for the target application.

1 [ singleton, active]

2 celltype tReader {
3 call sSliceImage cSliceImage[];

4 };
5 celltype tWriter {
6 entry sSliceImage eSliceImage[];

7 };

8 celltype tMOR{
9 entry sSliceImage eSliceImage;

10 call sSliceImage cSliceImage;

11 attr{
12 float32 t rate = 0.75;

13 };
14 var{
15 int32 t count = 0;

16 slice out slice image;

17 slice slice images[MAX COUNT];

18 };
19 };

Fig. 6. Celltype description for the target application.

keyword to define the signature. The initial character (“s”) of the signature name

sSliceImage represents the signature. A set of function heads is enumerated in
the body of this keyword. TECS provides the in, out, and inout keywords to
distinguish whether a parameter is an input and/or an output. The in keyword
is used to transfer data from a caller cell to a callee cell. The oneway keyword
means that a caller cell does not need to wait for finishing a callee cell. Namely,
the oneway keyword is useful when a caller cell and a callee cell are executed in
parallel.

Figure 6 describes a celltype description. The celltype description is used to
define the entry ports, call ports, attributes, and variables of each celltype. The
singleton keyword (Line 1 in Figure 6) represents that a singleton celltype is a
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1 const int32 t SliceCount = 2;

2 [ generate(RepeatJoinPlugin," count=SliceCount")]

3 cell tReader Reader {
4 cSliceImage[0] = MOR 000.eSliceImage;

5 };
6 [ generate(RepeatCellPlugin," count=SliceCount")]

7 cell tMOR MOR 000 {
8 cSliceImage = Writer.eSliceImage[0];

9 };
10 cell tWriter Writer{
11 };

Fig. 7. Build description for the target application.

particular cell, only one of which exists in a system to reduce the overhead. The
active keyword (Line 1 in Figure 6) represents the entry point of a program such
as a task and an interrupt handler. A celltype name, such as tReader, follows a
celltype keyword to define celltype. The initial character (“t”) of the celltype name
tReader represents the celltype. To declare an entry port, an entry keyword is
used (Line 6 and 9 in Figure 6). Two words follow the entry keyword: a signature

name, such as sSliceImage, and an entry port name, such as eSliceImage. The
initial character (“e”) of the entry port name eSliceImage represents an entry

port. Likewise, to declare a call port, a call keyword is used (Line 3 and 10 in
Figure 6). The initial character (“c”) of the call port name cSliceImage represents
a call port.

The attr and var keywords that are used to increase the number of different
cells are attached to the celltype and are initialized when each cell is created. The
set of attributes or variables is enumerated in the body of these keywords. These
keywords can be omitted when a celltype does not have an attribute and/or a
variable.

Figure 7 shows a build description. The build description is used to declare
cells and to connect between cells for constructing an application. To declare
a cell, the cell keyword is used. Two words follow the cell keyword: a celltype

name, such as tReader, and a cell name, such as Reader (Lines 3-5, Lines 7-
9, and Lines 10-11 in Figure 7). In this case, eSliceImage (entry port name) of
MOR 000 (cell name) is connected to cSliceImage (call port name) of Reader
(cell name). The signatures of the call port and the entry port must be the same
in order to connect the cells.

3.3 cellPlugin

At the component level (Step 3 in Figure 2), the proposed framework realizes
data partitioning. A new plugin named cellPlugin is proposed to duplicate cells
for data partitioning and connect the cells. There are two types of cellPlugin:
RepeatCellPlugin and RepeatJoinPlugin.

RepeatCellPlugin supports duplication of cells depending on the slice count

i.e. the number of data partitions. and connection between the call port of the
duplicated cells and the entry ports of the connected cell in the original build
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description (Line 6 in Figure 7). RepeatJoinPlugin provides connection between
the call port of the duplicated cells generated by RepeatCellPlugin (Line 2 in Fig-
ure 7). Note that it is easy to duplicate MOR cells for realizing data partitioning
and parallelization as shown in Figure 4.

3.4 cd2specc

In this subsection, policies of transformation from a component description to
a specification model in SpecC language are described. A basic policy of trans-
formation is that a cell and an argument of function of signature correspond to
a behavior and a channel in SpecC language, respectively. The tReader, tMOR,
and tWriter celltypes correspond to tReader, tMOR, tWriter behaviors generated
by cd2specc, respectively. The following pseudo code describes the examples of
generated SpecC code.

Pseudo Code 1 tMOR behavior
1 behavior tMOR(channel definitions){
2 void eSliceImage sendBlock

(slice image){
3 for i to HIGHT / SliceCount do

4 for j to WIDTH do

5 store pixel color

6 sort

7 end for

8 end for

9 send new image to Writer

10 }

11 void main(){
12 while true do

13 receive slice image data

14 call eSliceImage sendBlock

15 end while

16 }
17 }

Pseudo Code 1 shows a tMOR behavior. If a behavior has an entry func-

tion, the behavior receives parameters to call the entry function. In this case,
tMOR behavior receives sliced images by using channels to call entry function

(eSliceImage sendBlock) in Pseudo Code 1. Although there are several ways to
realize tMOR, here we show in the pseudo code an algorithm to do so easily.
This is often used for sorting algorithm based on brightness of each pixel to find
the background color for each pixel. In this case, the brighter color depending
on the rate value (Line 12 in Figure 6) is selected.

A SpecC program starts with execution of the main function of the root
behavior which is named Main as shown in Pseudo Code 2. The roles of the
main behavior are instantiation of behaviors, initialization of channels, connec-
tion of channels between behaviors, and management of execution of the other
behaviors.

All behavioral synthesis tools typically do not support all possible C lan-
guage constructs, such as recursion, dynamic memory allocation. Thus, TECS
component source obeying these restrictions can be synthesized. Since recursion
and dynamic memory allocation are not usually used for embedded software,
these restrictions are not critical.

Figure 8 shows a specification model of SpecC language when slice count is
two. The model consists of four behaviors and four communication channels.
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Pseudo Code 2 Main behavior
1 behavior Main(channel definitions){
2 // declaration of channels

3 // declaration of behaviors

4 tReader Reader(...);

5 tMOR MOR 000(...);

6 tMOR MOR 001(...);

7 //...

8 Writer Writer(...);

9 int main(){
10 par{
11 Reader.main();

12 MOR 000.main();

13 MOR 001.main();

14 //...

15 Writer.main();

16 }
17 }
18 }

  

Fig. 8. Specification model of SpecC language when slice count is two.
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Fig. 9. Size of generated code in SpecC language.

The numbers of channels and MOR instances are depended on the number of
slice count.

4 Evaluation

For the experimental evaluation of the TECSCE design flow, we used the appli-
cation described in Section 3 to show effectiveness of cellPlugin and cd2specc for
improving design productivity.

First, we measured the number of lines of each component description gen-
erated by cellPlugin and each SpecC code generated by cd2specc. The values in
Figure 9 represent the total number of lines of generated code. When the number
of data partitioning is zero, the value shows the lines of common code, e.g., def-
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Table 1. Results of Execution Time (ms) (slice count is Eight)

Algorithm CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8

Bubble 16465.0 16343.0 16215.2 16162.5 16276.9 16325.0 16372.7 16396.3

Insert 2261.3 2360.5 2423.9 2425.4 2423.2 2384.4 2345.2 2317.8

Average 942.1 973.4 997.9 997.7 997.6 997.8 997.8 997.5

Bucket 944.9 973.2 987.7 980.8 998.8 999.3 999.4 999.2

initions of channel types, template code of behaviors, and implementation code
based on entry functions. As can be seen from Figure 9, the lines of the code
proportionally grow to slice count. In TECSCE, the developers only change the
parameter for slice count in order to manage the data partitioning. The results
indicate that the communication code between behaviors have a significant im-
pact on productivity. Therefore, it can be concluded that cellPlugin and cd2specc

are useful, particularly for large slice count.
Next, we evaluated four algorithms to realize the MOR: Bubble, Insert, Av-

erage, and Bucket. Bubble is a basic algorithm for MOR based on a bubble sort
to decide the background color. Insert is based on an insertion sort. Average is
assumed that the background color is the average color value. Bucket is based
on a bucket sort.

Each MOR behavior was mapped onto different cores based on ARM7TDMI
(100MHz). The execution time of processing 50 images with 128x128 pixels on
every core is measured when slice count was eight. An ISS (Instruction Set Sim-
ulator) supported by SCE was used to measure the cycle counts for estimation
of the execution time. Table 1 shows the results of execution time for each core
when slice count is eight. These results indicate that the generated SpecC de-
scriptions are accurately simulatable.

All of the series of images are not necessary to collect the background color
for the target application because the series of images are almost the same.
Therefore, if a few input images can be obtained per second, it is enough to
generate the output image. In our experiments, two images per second were
enough to generate an output one. It is possible to use this application in real-
time when each input image with 256x512 is used on this configuration (eight
cores, ARM 100MHz, and Bucket algorithm). If the developers want to deal
with bigger images in real-time, there are several options: to use higher clock
frequency, to increase the number of data partitioning, to use hardware IPs, and
so forth.

5 Related Work

HW/SW codesign frameworks have been studied for more than a decade.
Daedalus [10] framework supports a codesign for multimedia systems. It

starts from a sequential program in C, and converts the sequential program
into a parallel KPN (Kahn Process Network) specification through a KPNgen
tool.

SystemBuilder [11] is a codsign tool which automatically synthesizes target
implementation of a system from a functional description. It starts with system
specification in C language, in which a designer manually specifies the system
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functionalities as a set of concurrent processes communicating with each other
through channels.

SystemCoDesigner [12] supports a fast design space exploration and rapid
prototyping of behavioral SystemC models by using an actor-oriented approach.

The system-on-chip environment (SCE) [3] is based on the influential SpecC
language and methodology. SCE implements a top-down system design flow
based on a specify-explore-refine paradigm with support for heterogeneous tar-
get platforms consisting of custom hardware components, embedded software
processors, dedicated IP blocks, and complex communication bus architectures.

System-level designs based UML [13, 14] are proposed to improve the produc-
tivity. One [13] is for exploring partial and dynamic reconfiguration of modern
FPGAs. The other [14] is for closing the gap between UML-based modeling and
SystemC-based simulation.

To the best of our knowledge, there is no work addressing all of the issues
mentioned in Section 1. TECSCE solve all of the issues since cd2specc, which
a part of TECSCE, makes the overall system at a software component level
in order to hide the many implementation details such as communication be-
tween functionalities. The framework users do not need to specify the HW/SW
communication in the input description because the communication sources are
automatically generated from component descriptions TECS specifically defines
the interface between components. Therefore, TECSCE realizes that existing
code can be used without modification and without knowing system-level lan-
guages such as SystemC and SpecC. Moreover, cellPlugin, which is a part of
TECSCE, supports that duplication of components realizes data partitioning at
a component level for an effective speedup of the applications.

6 Conclusions

This paper proposed a new codesign framework integrating TECS and SCE,
which enables software developers to deal with massive parallel computing for
multimedia embedded systems. The advantage of our framework is that devel-
opers can directly exploit software components for system-level design without
modifying input C sources (component sources). Moreover, since TECS supports
data partitioning and SCE supports MPSoCs as target architectures, our frame-
work can deal with more complex applications (such as MOR) and can help
parallelize them for efficient implementation. The evaluation demonstrated the
effectiveness of the proposed framework including cellPlugin and cd2specc and the
capability of operating the MOR application in real-time. Furthermore, almost
all multimedia applications can be adapted to the same model of our frame-
work. cellPlugin and cd2specc are open-source software, and will be avaibale to
download from the website at [15].
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