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Abstract Communication modeling is a critical issue in specifying SoCs. It is
needed for accurately predicting the timing behavior of the system.
Fast simulation capabilities are a key in this environment, for coping
with the complex design choices during the specification process. Re-
cently, Transaction Level Models (TLM) have been proposed to speedup
communication simulation at the cost of accuracy.

This paper reports on a case study, where an automotive communica-
tions protocol, the Controller Area Network (CAN), has been captured
at different levels of abstraction, where specific features of the proto-
col, such as bit stuffing, are reflected in the model, or abstracted away.
The resulting models have been measured in an experimental setup in
terms of performance and accuracy. The paper will analyze the results
and evaluate the benefits and drawbacks of these TLM and pin-accurate
models. In conclusion it will be shown for which applications the models
are suitable, with respect to their speed/accuracy trade off.
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1. Introduction

The System-On-Chip (SoC) design faces a gap between the produc-
tion capabilities and time to market pressures. The design space, to be
explored during the SoC design, grows with the improvements in the
production capabilities, while at the same time shorter product life cy-
cles force an aggressive reduction of the time-to-market. Addressing this
gap has been the aim of recent research work. As one approach, abstract
models have been introduced to tackle the design complexity.

Fast simulation capabilities are required for coping with the immense
design space that is to be explored; these are especially needed during
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early stages of the design. This need has pushed the development of
Transaction Level Models (TLM) [6], which are abstract models that
execute dramatically faster than synthesizable, bit-accurate models.

Transaction level modeling, however will come with the drawback of
a decreased accuracy. This paper will analyze the performance gains of
transaction level modeling and show the drawbacks in accuracy. The
analysis is based on a case study of the Controller Area Network (CAN)
bus, which is a standard bus protocol used in the automotive industry.

This paper will first introduce the main features of the CAN bus.
Based on a feature selection a set of models with different levels of ab-
straction will be proposed and their design will be described. Following
that the implemented models will be measured in an experimental setup
and their results will be analyzed, to conclude with a set of models
suitable for the desired application.

1.1 Related Work

System level modeling has become a more important issue over the re-
cent years, as a means to improve the SoC design process. Languages for
capturing these models have been developed, such as SpecC [3] or Sys-
temC [6]. Furthermore capturing and designing communication systems
using transaction level models has received research attention.

Sgroi et al. [11] address the SoC communication with an Network-on-
Chip (NoC) approach. They propose partitioning of the communication
into separate layers that follow the OSI structure. Software reuse is
promoted with an increase of abstraction from the underlying commu-
nication framework.

Siegmund and Miiller [12] describe with SystemC*"" an extension to
SystemC, and propose modeling of an SoC at different levels of abstrac-
tion. They describe three different levels: the physical description at
RTL level, a more abstract model that covers individual messages, and
a most abstract level that deals with transactions.

[1] describes how the CAN bus is modeled using the above mentioned
extension SystemC®Y. The work also shows the three abstraction levels,
but does not give any experimental results on performance or accuracy.

In [2] Caldari et al. describe the results of capturing the AMBA rev.
2.0 bus standard in SystemC. The bus system has been modeled at two
levels of abstraction, fist a bus functional model on RTL level and second
a model on TLM level. Their TLM model reached a speedup of 100 over
the RTL level model.
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2. Introduction CAN Bus

The Controller Area Network (CAN) is a serial communications pro-
tocol, introduced by the Robert Bosch GmbH [10], that was designed
with a focus on automotive applications.

CAN is a serial multi master broadcast bus. Messages, with up to 8
bytes user data, are received by all bus nodes and distinguished by the
message identifier. Each bus node decides using local rules whether to
process the message. The message identifier also serves as a message
priority. If multiple senders attempt a transmission, the collision free
CSMA/CA arbitration will guarantee that the highest priority message
will succeed undisturbed.

The CAN bus defines two bus states: recessive (1) and dominant
(0). A CAN data frame has the basic format shown in Figure 1. After
transmitting the start of frame bit, the message identifier is transmitted
with the most significant bit first. During transmission, each sender
compares the send and receive signal. A sender that has send recessive
bit but a detects a dominant bit will back off from transmission. Another
sender must have started a higher priority message.
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CAN Data Frame (Source [9]) .

In order to ensure correctness of the received data, each CAN message
includes a 15-bit CRC. In case of a CRC mismatch, a retransmission of
the frame is triggered. The protocol also defines elaborate error detection
and error confinement rules for protection against faulty bus nodes.

The CAN serial protocol operates without a centralized clock. Each
bus node synchronizes on the bit stream of the sender. A bit stuffing rule
guarantees sufficient edges for this synchronization. After transmitting
5 bits of equal polarity, a bit of opposite polarity is introduced.

In summary, the following properties are candidates for abstraction:

Serial protocol

Bit synchronization

Error detection and confinement

Bit error detection using a 15 Bit CRC

Bit stuffing

Arbitration, bus access controlled by CSMA/CA

Figure 1.
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The following section describes our modeling of the CAN bus. For each
model a subset of the above listed features is selected.

3. Modeling

A layered architecture was chosen for the communication system mod-
eling in order to cope with the complexity of communication. Following
the ISO OSI reference model [8], the CAN specification falls within the
second layer, the data link layer. For modeling of the CAN bus the me-
dia access control (MAC) and the protocol sublayer, both sublayers of
the data link layer, are considered as well as the physical layer.

The OSI layer definition is based on functional concerns. An alterna-
tive view, suitable for describing the models, focuses on the granularity
in which user data is handled. The media access layer provides ser-
vices for the transmission of a contiguous block of bytes, called a user
transaction. This layer divides the arbitrary sized user transaction into
smaller bus transactions and transfers them using the protocol layer.
The protocol layer transfers data as bus transactions, which are bus
primitives (e.g. a CAN data frame with up to 8 bytes data), and uses
the physical layer services. The physical layer implements a bus cycle
access to sample and drive individual bus wires.

Figure 2 shows how the above defined data granularity levels can be
analyzed with respect to time. A user transaction is successively split
into the smaller elements: bus transaction and finally bus cycles.

User Transaction (1)

Bus Transaction (2)

Bus Cycle (3)

time

Figure 2. Time decomposition of a user transaction.

Using a system level modeling approach, each layer was implemented
as a separate channel using a system description language (SDL)!.

3.1 Transaction Level Model

The Transaction Level Model TLM is the most abstract model - it
only implements the media access layer. The user data, handled at the
user transaction granularity, is transferred in one chunk, regardless of
the size. The bus access is checked only once per user transaction.

1SpecC [3] was used as the SDL of choice, SystemC could be used just as well.
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In the implementation, the user data is transferred using a single mem-
cpy. The timing is simulated by a single waitfor statement, covering the
whole user transaction. Neither the CRC nor bit stuffing are observed,
since both would require a bit inspection of each message. For an in-
creased performance concurrent bus access is avoided using a semaphore,
hence the concurrency resolution relies on the simulation environment
and does not observe the message identifier.

3.2 Arbitrated Transaction Level Model

The Arbitrated Transaction Level Model (ATLM) simulates the bus
access with a bus transaction granularity (CAN frames), at the protocol
layer level. It uses the MAC layer implementation of the later described
bus functional model to split user transactions into bus transactions.

The ATLM accurately models the arbitration for each bus transaction
(CAN frame) based on the message identifier. It collects all requests dur-
ing start of frame, and proceeds with the highest priority message. The
bus simulation has been implemented without an own flow of execution,
in order to maximize execution performance.

Two variants of the ATLM model have been defined. The first,
the ATLM (a), performs a bitwise inspection of the frame in order to
calculate the CRC and perform stuff bit handling: a stuff bit is in-
serted /removed each time 5 bits of equal polarity are found. With the
bit stuffing, the physical frame length depends on the frame content.
The second model, the ATLM (b), does neither calculate the message
CRC and nor does it handle stuffing bits. It avoids the costly bit in-
spection and is expected to execute faster than the ATLM (a), however
at the cost of accuracy.

3.3 Bus Functional Model

The bus functional model is a synthesizable model bus model that
covers all timing and functional properties of the bus definition. It is a
pin accurate and cycle accurate model of the bus.

The bus functional model implements all features of the specification.
It protects the data by the CRC, handles stuff bits and performs arbi-
tration. The frame data is send and received serially and the nodes clock
is synchronized to the bit stream according to [10] and [7].

Table 1 summarizes the features implemented by a model and shows
at which granularity user data is handled. Each model has been imple-
mented in the SDL with the following amount of code lines (excluding
testbench): TLM: 250, ATLM (b): 475, ATLM (a): 550, BF: 1400. The
model performance and accuracy is analyzed in the following section.



Bus
Functional

Feature Model ATLM (a) | ATLM (b) | TLM
serial transmission yes no no no
bit synchronization yes no no no
error detection, confinement yes no no no
CRC calculation yes yes no no
bit stuffing yes yes no no
arbitration yes yes yes no

bus bus bus user

data granularity cycle trans- trans- trans-

action action action

Table 1. Summary of features supported or abstracted away in the models.
4. Analysis

This chapter will explore how the implemented models can be used
for system modeling. Two main aspects will be examined. First, sim-
ulation performance will be evaluated, since a performance gain is the
main premise of abstract modeling. Second, the accuracy of the more
abstract models will be examined. Weighting the speed benefits against
the accuracy drawbacks allows the designer to decide on speed/accuracy
trade-off applicable for a particular design stage.

4.1 Performance

The performance of each model has been measured in a scenario with
two bus nodes: one acting as a master, one as a slave. A user transaction
is transferred a constant number of times, without any delay in between.
The simulation time (also referred as real time or wall clock time) for
executing all repetitions of the user transaction was measured and the
average execution time for a single user transaction was calculated. All
tests have been performed on a Pentium 4, 2.8 GHz.

The results of performance measurements in terms of simulation time

are shown in Figure 3. The x-axis denotes the size of a user transaction in
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Figure 3. Simulation time
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Bus
Functional
Feature Model ATLM (a) | ATLM (b) | TLM
simulation
time [ms] 274 0.12 0.015 0.0012
simulation
bandwidth [MByte/sec] 0.0006 0.127 1.05 12.3
speedup over
bus functional model 1 228 1879 22124
speedup over next
more accurate model 1 228 8 12

Table 2. Model performance comparison for sending 16 bytes.

bytes. The y-axis denotes the time the simulation spends for transferring
of one user transaction. Table 2 compares the performance of the models
for a 16 bytes user transaction.

The performance measurements confirm the expectations: the simu-
lation speed increases with an increase of abstraction. The TLM model
executes the fastest. Its execution time is independent of the transaction
size, since a constant number of operations is executed for each trans-
fer (one memcpy and one waitfor). Transferring 16 bytes (via multiple
CAN messages) takes 0.0012 ms.

The next slower model is the ATLM (b), which does not model bit
stuffing and CRC. Since the ATLM models the data transfer at the level
of bus transactions (CAN messages), a step is noticeable in the graph
for each 8 bytes - an additional CAN message is needed for transferring
the user data. The execution time increases linearly with the amount of
bus transactions. A 16 byte transaction is transfered in 0.015 ms.

The ATLM (a) performs 8 times slower than the ATLM (b), since
it inspects every bit of the message for the bit stuffing and the CRC
calculation. The effect of the additional effort can be seen by the in-
crease of simulation time within one frame. Transferring a 16 bytes user
transaction takes 0.12 ms.

The bus functional model is two orders of magnitude slower than
the ATLM (a). The additional effort of serially transmitting the data
and performing the bit synchronization requires more computing power.
Additionally to the increased functionality, the structure of the imple-
mentation reduces the performance. For each bus node two additional
threads of execution are required, one for the bit stream processor and
one for the bit timing logic. It takes 27.4 ms for transferring 16 bytes.

4.2 Accuracy

In the previous section, the gain of speedup by using models at higher
level of abstraction was quantified. Now we will evaluate, which accuracy
limitations the designer has to accept for achieving the higher simulation
speeds. However, unlike the performance measurements before, it is hard
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to define a single expressive number that allows comparing the accuracy
of the different models. The actual accuracy depends heavily on the
environment and the actual application at hand.

4.2.1 Test Setup. A generic test setup with 4 bus nodes was
used. T'wo nodes act as masters and two nodes act as slaves. During the
test, each master transfers a predefined set of 5000 user transactions.
The user transactions vary in message id, in length and content of the
transaction (1 - 16 bytes) and in the delay between two transactions
(simulating local computation). All varying parameters are linear ran-
dom distributed. Each master sends from an exclusive range of message
ids. One master will send messages with high priority ids (0-511), the
other emits messages with low priority (ids 512-1023).

During the test execution, the start time and duration (each in sim-
ulated time) of each individual user transaction is recorded, separately
for each master. The test is repeated once for each implemented bus
model. Since the same set of user transactions is transferred by each
model, their results are comparable and can be analyzed.

Bus contention is a major concern for bus usage in general. It is
expected, that model accuracy varies significantly with bus contention.
Therefore the described test was repeated for different bus contentions.

The bus contention can not be controlled directly in this test. Instead,
the maximum delay between two user transactions of a master has been
varied between test runs. Varying the maximum delay influences the
bus utilization and, since two masters access the bus during the test, it
correlates to the amount of bus contention. The actual amount of con-
tention during was measured during test execution of the bus functional
model.

AN high prio.
0% Contention: ¢ gh prio. msg -
CAN low prio. msg

t tz

CAN high prio.
25% Contention: 'on prio. msg

delay | CAN low prio. msg

Time

t t

AN high prio.
50% Contention: l ¢ 107 prio. Msg

delay | cANlowprio. msg |

oy

Tim

9

} _
thts Time

Figure 4. Example of bus contention.

For this paper, the contention is defined as the overlap between user
transactions as shown in Figure 4. The actual amount of contention, as
a result of a particular maximum transaction delay, has been measured
with the bus functional model. For each CAN bit time, it was measured
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whether one or two user transactions where active. A user transaction
is active if the application is blocked for completion of the transaction.
This definition of an active transaction is independent from the actual
state of the bus node (e.g. pending, arbitration, active transmission).
Given this basic definition, the contention is defined for this paper as:

. bus cycles with two active user transactions
contention = 100 * Y (1)

bus cycles with at least one active user transaction

4.2.2 Analysis Based on Transfer Duration.  As described
above, a test run yields a execution record of each individual user trans-
action. The following paragraphs will describe the analysis of the mea-
sured data.

The transfer duration of an individual user transaction is an impor-
tant measure for predicting the application latency due to bus access.
Therefore, in a first step, the accuracy of the models has been evaluated
with respect to the transfer duration. For this purpose, the error of an
individual user transaction is defined as:

durationsiq : transfer duration as per CAN standard
durationiest : transfer duration in model under test
duration — durations
error; = 100 % | fest — std] (2)
durationsiq

Given this error definition, a timing accurate model exhibits 0% er-
ror. It was avoided to directly express the accuracy in percent, since a
particular model may have an error of more than 100% (i.e. the model
under test predicts more than twice the simulated time).

The first set of graphs, Figure ba for the high priority master and
Figure 5b for the low priority master, show the average timing error for
a user transaction for different amounts of bus contention.

Figure 5a shows that the ATLM (a), which includes bit stuffing and
CRC calculation, performs as accurate as the bus functional model (both
graphs lie on top of the x-axis). This result has to be seen in perspective
to the restrictions of the test, which are: no propagation delay between
sending and receiving on the CAN bus, all delays between user trans-
actions are multiple of the CAN bit time and the test starts aligned to
the bit clock of the first sender. With this restrictions, reasonable for
a simulation environment only, all bus accesses are performed aligned
to the CAN bit clock, and no sub cycle information is needed. In this
situation the additional capabilities of the bus functional model, i.e. bit
synchronization, are not exercised and both the bus functional model
and the ATLM (a) perform with 100% accuracy.

The ATLM (b), due to the lack of modeling the bit stuffing and CRC,
performs inaccurately. For messages in the high priority range, the in-
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Figure 5a.  Duration based error for Figure 5b.  Duration based error for
high priority messages. low priority messages.

accuracy starts with 10% for low contention situations and platoes after
linearly rising to 20% inaccuracy at 30% contention. With the lack of
the bit stuff modeling, an individual message transfer is - depending on
its content - shorter than in the bus functional model. Therefore, the
arbitration interaction between the two senders differs. With an increas-
ing contention the user transactions of the low priority band increasingly
influence the high priority transactions. However an earlier started low
priority transaction, which may consist of multiple CAN frames, can
delay a later started high priority user transaction only for up to one
frame. A second started CAN frame of the low priority transaction will
lose arbitration, which leads to the plateau in inaccuracy at 30%.

Looking at the same scenario with reversed priorities, this limitation
does not apply. A low priority user transaction may be delayed for a full
high priority user transaction consisting of many CAN frames. Hence,
the timing error of the ATLM (b) increases without a plateau for the
low priority user transactions (Figure 5b) with increasing contention.

The TLM model, which simulates bus access on the level of user trans-
actions only, both high and low priority give a uniform result. For both
cases the inaccuracy increases with the bus contention. As to be ex-
pected, the TLM achieves the most inaccurate results (40% inaccuracy
at 45% contention).

4.2.3 Analysis Based on Cumulative Transfer Duration.
The accuracy analysis based on the transfer duration is a measure to pre-
dict the application latency due to bus traffic. Additionally, the overall
timing (e.g. when does the application finish?) is of interest for design
decisions. For this, the same experimental results have been evaluated
in terms of the cumulative transfer time, which is the sum of the user
transaction durations. Figure 6a and Figure 6b show the results of the
accuracy based on the cumulative transfer time.
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Figure 6a.  Cumulative error for high Figure 6b.  Cumulative error for low
priority messages. priority messages.

The cumulative transfer time analysis reveals: mispredictions of the
ATLM (b) for individual CAN frames average out during the test, since
the model correctly captures arbitration. Regardless of priority a con-
stant error of about 4% is measured. This can be attributed to not
modeling the bit stuffing (which in average adds 4% bits). The TLM,
with its coarse grain contention resolution independent of priority, shows
for both priority ranges a linear increasing inaccuracy.

5. Conclusion

This paper has reported on a case study, based on the CAN bus,
for abstract communication modeling. Three major models have been
implemented: the bus functional model, the arbitrated transaction level
model (ATLM) and the transaction level model (TLM). Additionally,
two variances have been created for the ATLM.

The usability of the models has been evaluated. With respect to
the simulation performance, a speedup of two magnitudes was mea-
sured from the bus functional model to the ATLM (a). With each fur-
ther increase of abstraction (to the ATLM (b), and TLM) an additional
speedup of one order of magnitude was measured.

A detailed analysis of the simulation accuracy of each model has been
done. Based on the analysis results, Table 3 lists the fastest model, that
yields acceptable results for a given environment and simulation focus.

Environment Condition Applicable Model
e no overlap between masters bus access
. . TLM
e carly stage in design
e main focus on application finish time ATLM (b)
e main focus on individual transfer delay ATLM (a)
o synthesizable bus functional
e using propagation delay

Table 3. Model selection
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The TLM can only be used in very early stages of the design. Its
accuracy, for individual and cumulative transfer time, degrades heavily
with increasing bus contention. The still fast ATLM (b) is applicable in
scenarios, where the main focus is on the application finish time. This
model is not suitable for predicting an individual transfer delay, since
the duration based analysis has not shown acceptable results.

The ATLM (a), which includes bit stuffing and CRC calculation, has
shown 100% accuracy given the test restrictions (e.g. no propagation
delay). It is the fastest model that accurately predicts the delay of an
individual transfer in all contention situations. The bus functional model
is necessary as a synthesizable model, or in case the simulation includes
propagation delay on the simulated CAN bus.

References

[1] Denny Brem and Dietmar Miiller. Interface based system modeling of a CAN
using SVE. In EkompaSS Workshop, Hanover, Germany, April 2003.

[2] M. Caldari et al. Transaction-level models for AMBA bus architecture using
SystemC 2.0. In DATE, Munich, Germany, March 2003.

[3] Daniel D. Gajski et al. SpecC: Specification Language and Design Methodology.
Kluwer Academic Publishers, 2000.

[4] A. Gerstlauer et al. System-Level Communication Modeling for Network-on-
Chip Synthesis. In ASP-DAC, Shanghai, China, January 2005.

[5] A. Gerstlauer and D. Gajski. System-level abstraction semantics. In ISSS,
Kyoto, Japan, October 2002.
[6] Thorsten Grotker, Stan Liao, Grant Martin, and Stuart Swan. System Design
with SystemC. Kluwer Academic Publishers, 2002.
[7] Florian Hartwich and Armin Bassemir. The Configuration of the CAN Bit
Timing. http://www.can.bosch.com/, 1999.
[8] Internation Organization for Standardization (ISO). Reference Model of Open
System Interconnection (OSI), second edition, 1994. ISO/IEC 7498 Standard.
[9] Philips. P8xC592: 8-bit microcontroller with on-chip CAN. http://www.
semiconductors.philips.com, 1996.
[10] Robert Bosch GmbH. CAN Specification, 2.0 edition, 1991. http://www.can.
bosch.com/.
[11] M. Sgroi et al. Addressing the system-on-a-chip interconnect woes through
communication based design. In DAC, June 2001.

[12] R. Siegmund and D. Miiller. SystemC®": An Extension of SystemC for Mixed
Multi-Level Communication Modeling and Interface-Based System Design. In
DATE, Munich, Germany, March 2001.



