Thread- and Data-Level Parallel Simulation in
SystemC, a Bitcoin Miner Case Study

Zhongqi Cheng, Tim Schmidt, Guantao Liu, Rainer Domer
Center for Embedded and Cyber-Physical Systems
University of California, Irvine, USA

Abstract—The rapidly growing design complexity has become
a big obstacle and dramatically increased the time required for
SystemC simulation. In this case study, we exploit different levels
of parallelism, including thread- and data-level parallelism, to
accelerate the simulation of a Bitcoin miner model in SystemC.
Our experiments are performed on two multi-core processors and
one many-core Intel ® Xeon Phi™ Coprocessor. Our results show
that with the combination of data- and thread-level parallelism,
the peak simulation speed improves by over 11x on a 4-core host,
50x on a 16-core host, and 510x on a 60-core host, respectively.
The results confirm the efficiency of combining thread- and data-
level parallelism for higher SystemC simulation speed, and can
serve as a benchmark for future optimization of system level
design, modeling, and simulation.

I. INTRODUCTION

SystemC [1] is a widely used modeling language for
Electronic System Level (ESL) design and also provides
a simulation framework for validation and verification [2].
With the rapidly growing complexity of embedded systems,
a tremendous challenge is imposed on the simulation time,
which is a crucial factor affecting the time-to-market and thus
the commercial success. Various studies have been proposed to
accelerate the SystemC simulator, and parallelization is often
the most common approach.

With the development of computer architecture, the parallelism
mainly takes three forms [3], namely instruction-level par-
allelism (ILP), data-level parallelism (DLP) and thread-level
parallelism (TLP). ILP is implicit. It is exploited automatically
by the compiler and processor, without the interaction or
awareness of the software developer. In contrast, DLP and
TLP are explicit. The programmers are required to write
parallel code and pragmas manually. In the SystemC based
ESL design, TLP is achieved by the simulator, specifically, the
parallel discrete event simulator. It can issue and run multiple
simulation threads in parallel. On the other hand, exploiting
DLP for faster SystemC simulation is a novel idea. It is first
proposed in 2017 [4]. In this case study, we evaluate the
effectiveness of this technique with a more computationally
intensive SystemC design, the Bitcoin miner.

We exploit different level of parallelism, including TLP, DLP
and the combination of both to accelerate the simulation of
a Bitcoin miner model in SystemC. ILP is not considered
because it is transparent to the programmer and automatically
applied at the hardware level. Bitcoin miner is used as a case

978-1-5090-3997-5/17/$31.00 ©2017 IEEE

study due to its high potential for parallel execution.
The contributions of this case study are as follows:

e« We have developed a SystemC model of the reference
C++ Bitcoin miner project, which can serve as a suitable
test bench for evaluating parallel SystemC models.

« We evaluate the performance of thread-level parallelism
in the context of the RISC simulator [14]. Our results
show that the speedup of the parallel simulation compared
to the reference sequential simulator is proportional to the
number of simulation threads. This confirms that RISC is
an effective framework for parallel SystemC simulation.

« We exploit data-level parallelism on top of thread-level
parallelism for fast SystemC simulation. SIMD pragmas
are added to vectorize loops and functions. The results
show that with the combination of DLP and TLP, a
speedup of the magnitude of N x M is achieved, where N
and M denote the thread- and data-level speedup factors,
respectively. This confirms the results and conclusions of
[4].

o We analyze the scalability of the parallel SystemC sim-
ulation on a many-core Xeon Phi™ Coprocessor. A
speedup of over 510x is attained. This demonstrates that
simulation of Bitcoin miner using the RISC simulator
scales well on the Xeon Phi™ Coprocessor.

The rest of the paper [5] is organized as follows: Section II
introduces Bitcoin miner and its modeling in SystemC. In
Section III and IV, we take advantage of thread-level and
data-level parallelism to accelerate the simulation. Results and
evaluations are carried out in Section V. Finally, Section VI
concludes this case study.

A. Related work

Various approaches have been proposed to speedup the sim-

ulation of SystemC models. Parallel discrete event simulation
(PDES) is well studied in [6] and [7]. It is a very big step
from the traditional discrete event simulation [8], where only
one simulation thread can run at the same time. However, the
absolute temporal barrier is still an obstacle towards highly
parallel simulation.
Distributed parallel simulation [9][10] is an extension from the
PDES. SystemC models are broken into small executable units
and distributed to different host machines to run in parallel.
This still suffers from the previously mentioned temporal
barrier, and the network speed is another bottleneck limiting
the performance.

Time-decoupling [11] is an appealing approach for fast Sys-
temC simulation. With parts of the model executing in an un-
synchronized way, simulation gets much faster. However, this
technique cannot guarantee an accurate simulation result. In
other words, it is a trade-off between accuracy and simulation
speed. [12] parallelizes the temporal decoupling approach, but
some human efforts are required to manually partition and
instrument the model.

Out-of-order parallel discrete event simulation (OoO PDES)
[13] localizes the simulation time to individual threads, and
handles event deliveries and data conflicts carefully with the
use of a segment graph infrastructure. This approach achieves
a 100% accurate simulation result. However, pointers cannot
be effectively analyzed for data conflicts.

SystemC simulations on specialized hardware are also studied.
[15] presented a FPGA board based SystemC simulation
approach and [16] proposed a multi-threading SystemC sim-
ulation on GPU. Such approaches all face the difficulty of
manual model partitioning to fit the heterogeneous simulator.
In contrast to these approaches, we exploit data-level paral-
lelism in the SystemC model to speedup the simulation without
loss of any accuracy.

II. SYSTEMC MODELING OF BITCOIN MINER

In this section, we first introduce the architecture and
algorithm of a Bitcoin miner application, and then develop
a sequential implementation of Bitcoin miner in SystemC.

A. Bitcoin miner

Bitcoin is a new peer-to-peer digital asset and a
decentralized payment system introduced by Satoshi
Nakamoto in 2009 [17]. Without a third party, the transactions
of Bitcoin are verified by the network nodes running the
Bitcoin software, and are recorded into a public ledger, which
serves to prevent the double-spending problem. The ledger is
made up of Bitcoin blocks, where each Biftcoin block contains
the validated transactions. Formally, the ledger is called block
chain. The maintenance of the block chain is also performed
by the network nodes.

1) Proof of work: To prevent malicious nodes from modify-
ing the past blocks in the block chain, Bitcoin system requires
each node to prove that it has invested a significant amount
of work in its creation of the candidate Bitcoin block. This
behavior is called proof of work. Once a new block is accepted
by the Bitcoin network and is appended to the block chain,
new Bitcoins will be created and paid as a reward together
with some transaction fees to the node which found the block.
The proof of work in the Bitcoin system is implemented with
a cryptographic hash algorithm. Each computation node is
required to find a number called nonce, such that when the
block header (the compression of the whole block content) is
hashed using the SHA-256 algorithm along with the nonce,
the result is numerically smaller than the network’s difficulty
target. The difficulty target is a 256-bit value shared in the
global network. Figure 1 demonstrates the workflow for proof

75

of work of an individual node.

block header

SHA256

Generate a
nonce value

proof of work
done

Fig. 1. Flow graph for proof of work

2) SHA-256 algorithm: SHA-256 [18] is a member of the
SHA-2 family, which is a set of cryptographic hash functions
designed by the National Security Agency (NSA). The SHA-
256 function computes with 32-bit words, and has a digest
size of 256 bits. Considering its collision-resistant properties,
such functions are often used in digital signatures and
password protection [19], and its computational complexity
fits well the demands of proof of work for the Bitcoin system.
The SHA-256 algorithm is briefly described as follows. It first
performs the preprocessing, which pads the input message
into a new message M with the length of a multiple of 512
bits, then parses M into N 512 bit blocks. The SHA-256
algorithm consists mainly of a loop, as shown in Figure 2. In
each step, the 8 intermediate values are updated, and after 64
iterations, a result is generated by cascading them together.
Details of the whole algorithm can be found in [18].

+

LT

E3

(Wi+Kj)

Fig. 2. Flow graph for SHA-256 algorithm [18]

B. Sequential SystemC Bitcoin Miner Model

Figure 3 shows the block diagram of the sequential SystemC
Bitcoin miner. It mainly contains two parts. The dispatcher is
responsible for data transfer and the scanner includes all the
hashing computations. The design is based on a C reference
implementation, CPUminer [20].

block header and target

dispatcher scanner

headers

Fig. 3. Block diagram for solo Bitcoin miner

1) Design of the dispatcher for the sequential Bitcoin
miner: The dispatch sends the block header and the difficulty
target to the scanner. Since the main purpose of our research

is to analyze and exploit the parallelization potential of the
computation, we design the dispatcher in a simple way, where
the block header is generated as a fixed value, instead of
packing the transactions and deriving the Merkle root hash
[21]. This change is valid because the transactions are all
unknown and independent, making the block header random
to the scanner. The difficulty target is also user-defined, rather
than obtaining it from the Internet.

Figure 4 depicts the implementation of the dispatcher block.
In the loop, the dispatcher first sends the block header together
with the difficulty target to the scanner via the output sc_fifo.
Then it is blocked on the input sc_fifo for the result from
the scanner. In conclusion, the dispatcher works both as the
stimulus and the monitor in our model.

|

Send block header
and difficulty
target to scanner
via FIFO

Generate Bitcoin
block header and
target

Wait on another

FIFO for result Display result

Fig. 4. Flow graph for reference dispatcher block

2) Design of the scanner for the sequential Bitcoin miner:
The scanner module is the most computationally intensive part
of the Bitcoin miner. As depicted in Figure 5, it receives the
block header and difficulty target as the input, and then iterates
through every possible value of the nonce and generates the
corresponding hash. If the hash value is below the difficulty
target, the scanner sends the nonce together with the hash to
the dispatcher.

nonce=nonce+1

| H=hash(nonce, block header)

H<target
Output

Fig. 5. Flow graph for reference scanner block

3) Test bench and benchmark configuration: The execution
time is determined by two parameters in the model. The first is
the number of total jobs dispatched to the scanner. The second
is the difficulty target. Nonce range and block header have
nothing to do with the simulation speed, but they are another
two critical parameters in the model. In order to make the
experiments reproducible, the four values are fixed on each
simulation host, as shown in Table 1. The difficulty target
in our model is a 256-bit value, starting with 24-bit Os and
followed by 232-bit 1s. The block header is 80-bit wide.
Note that the number of total jobs dispatched is 50/100/20
respectively on the three different host processors. This is
because of their different CPU clock frequencies. If we were

76

using the same number of jobs, either would one machine
finish too early or another run for too long. Besides, the
comparison of simulation speed on different host processors
is not the focus of this work, so it is only necessary to fix the
total number of jobs on each individual host.

TABLE I
CONFIGURATION OF THE BITCOIN MINER

50/100/20
0x000000FF_FFFFFFFE_..._FFFFFFFF
0x00000000 - OxFFFFFFFF
0x80000000_00000000_..._00000280

total number of jobs
difficulty target (256 bits)
nonce range
block header (80 bits)

Table II lists some results of the simulation. As we can see,
the resulting hash values are all smaller than the difficulty
target. Furthermore, the C++ reference model also gets the
same results. In conclusion, the correctness of our SystemC
based Bitcoin miner model is confirmed.

TABLE 11
TEST CASE RESULTS
#iterations hash value
4044822 0x000000bcbe45bba7e37bc9c.....6a681c0fbb0038768fa
589033 0x000000ebc7a887f9alff961.....bfb8227597b77453935
9311051 0x000000d627c0alfdccc2ead.....cf8aaab8adbbeecec8eS2
6316947 0x000000872acb7cc530faa96.....099093c6b20f9b57f663

ITII. THREAD-LEVEL PARALLEL BITCOIN MINER
MODEL

In the sequential implementation of Bitcoin miner, only
one thread is running at the same time, which largely wastes
the computation power of multi- and many-core modern
processors. In this section, we will propose our thread-level
parallel Bitcoin miner design. Thread-level parallelism is
exploited by taking advantage of the RISC simulator [14].

A. Overall architecture

Based on the observation that the scanner module is the
most complex, time-consuming, and computationally intensive
block, its optimization is the main focus in our parallel
implementation. In Figure 6, the parallel Bitcoin miner block
diagram is shown. For simplicity, only two scanners are shown
in this figure. It is worth noting that the overall architecture
is similar to the previous one, except that there are multiple
scanners and an additional synchronizer module. However,
going more deeply into these blocks, important differences
arise due to the essential synchronization behavior among the
scanners. That is, when one scanner succeeds in finding a hash
value below the given difficulty target, the other scanners can
abort their current scanning job and start with a new one.

B. Design of the dispatcher for the parallel Bitcoin miner

The block diagram for the dispatcher module is shown in
Figure 7. It has multiple outgoing ports and one incoming
port. Each output port is connected to a single scanner, and

dispatcher

synchronizer

scanner 1 scanner 2

{4

receiver

Fig. 6. Parallel Bitcoin miner model with two scanners

the input port is bound to the synchronizer. The functionality
of the dispatcher is quite similar to the one in the sequential
reference design. The main difference is that the dispatcher
now assigns to the scanners also a starting point for scanning,
so the scanners’ work will not overlap with each other. After
job dispatching, the dispatcher block waits on the input port
until the synchronizer block wakes it up.

Dispatcher

o

Outl
block header,
difficulty target,
start point

Out2

Fig. 7. Dispatcher for parallel Bitcoin miner

C. Design of the scanner for the parallel Bitcoin miner

With thread-level parallelism, multiple scanners can work
simultaneously. As mentioned previously, the starting points
for the scanning of different scanners are different. For in-
stance, we consider the case that there are four scanners.
Then the entire scanning range will be partitioned into four
equal pieces, with the first scanner starting from 0x00000000,
the second from 0x40000000, the third from 0x80000000,
and the last one from 0xC0000000, as illustrated in Figure
8. To show the effectiveness of our design, we can assume
that the successful nonce values (the nonce which would
result in a hash value below the difficulty target when hashed
together with the block header) distribute uniformly across the
entire range. Based on this assumption, it is obvious that the
probability of finding a successful nonce becomes N times
larger with N scanners, because each scanner is independent.
Synchronization is another important issue in the parallel scan-
ner design. When one scanner succeeds in finding the nonce,
others have to stop because further scanning on the current

71

proof-of-work becomes meaningless. In order to solve this
problem, the scanners are synchronized after every scanning
step. After each scanning step, a Boolean value representing
whether or not a successful nonce is found is sent to the central
synchronizer, and then the scanner waits for a response. The
flow graph for each scanner is illustrated in Figure 9. When
a scanner succeeds in finding the nonce, the result hash value
is sent to the receiver module via another sc_fifo channel.

Whole scanning range
1

-

—
scanner4 >

OXFFFF_FFFF

[scannerl scanner2 scanner3

0x0000_0000 0x4000_0000 0x8000_0000 0xC000_000

Fig. 8. Illustration of parallel scanning

D. Design of the synchronizer for the parallel Bitcoin miner

The synchronizer module serves as the central control block
for synchronizing the multiple scanners. A loop in this module
repeatedly checks the status of each scanner, as shown in
Figure 10. With the use of sc_fifo’s blocking read, it is
guaranteed that only when all the scanners are checked will
the synchronizer generate a response back. Depending on the
response, the scanners can decide to continue their current
work or to start a new search.

E. Design of the receiver for parallel Bitcoin miner

The receiver block contains a busy waiting loop. On every
loop step, one input port is checked to see if there is any value
stored.

IV. DATA-LEVEL PARALLEL BITCOIN MINER
MODEL

In this section, data-level parallelism (DLP) is applied to the
thread-level parallel Bitcoin miner model to further improve
the simulation speed.

Receive work

nonce=nonce+1

result=hash(nonce, header) |

result<target?

Send NOT_FOUND to Send FOUND to
synchronizer synchronizer

Send result to receiver

Receive response from
synchronizer

N Y
Start new work?

Fig. 9. Scanner for parallel Bitcoin miner

v

Check all scanners |

N [ponce found? —=>— y

Send NOT_FOUND to all
scanners

I

Send FOUND to all
scanners
v

Send FOUND to
dispatcher

| I

Fig. 10. Synchronizer for parallel Bitcoin miner

A. Basic idea for applying DLP

The scanner block is made up of three stages: work receiv-
ing, scanning loop and synchronization. In the reference and
the thread-level parallel Bitcoin miner, one scanner instance
only executes a single lane of the scanning iteration at the
same time. In order to improve the performance, Single
Instruction Multiple Data (SIMD) vectorization is exploited to
execute multiple scanning lanes simultaneously. A comparison
between the reference scanner module and the SIMD scanner
module is shown in Figure 11. This idea is based on the

scanner simd_scanner

Receive work Receive work

Synchronize Synchronize

Fig. 11. Comparison between scalar and SIMD scanners

observation that the computation of the hash value inside
each iteration step is independent with others. The hashing
computation is performed on a constant block header value
and an increasing nonce. The nonce value only relies on the
loop index. However, because of the if and break statements
in the scanning loop, the control graph becomes divergent,
which makes the implementation of SIMD difficult

B. Design of the data-level parallel scanner

In the SIMD scanner design, we use SIMD pragma ' to
vectorize the scanning loop and the function calls inside the
loop, which are hash() and isSmaller().

The first step is to vectorize the hash() function. This func-
tion contains the SHA256 algorithm and some data padding
operations. In its scalar implementation, it can only hash one
data point at one time. In the vectorized loop, it is required to
hash multiple data points simultaneously, and thus an efficient

The SIMD pragma is recognized by the Intel® compiler as a hint from
the designer to vectorize the annotated function or loop

78

vectorization is critical to the overall performance.

In our first approach, nothing is changed except a #pragma
simd declare statement is placed in front of the hash()
function declaration. However, the result is not as expected.
Vectorization is very inefficient. The run time for the Bitcoin
miner doubles compared to the scalar one. The reason for
that is because this function is too long for the compiler to
automatically inline it in the scanning loop. To solve this
problem, we manually inlined this function.

For the isSmaller() function call, since it only contains some
comparison instructions, which is very short in length, the
compiler can inline it automatically, and thus no manual
modification is needed, except for adding the SIMD pragma
in front.

The second step is to vectorize the scanning loop. According to
the restriction for vectorization of loops [22], the loop should
not contain any break statements, and should not modify
the same variable (nonce, result, found) on different steps
of the iteration. In order to solve this problem, an auxiliary
bit array flag_array is introduced to replace the flag variable.
The length of the array is equal to the scanning loop length
LOOP_LENGTH. A corresponding bit in the array is set if a
successful nonce is found on that iteration step, and is not set
otherwise. The result variable is also changed to a temporary
variable belonging to the loop. The break statement is removed
as well. After the scanning loop, the bit array is checked to
find if there is any bit set to true. If so, it means that the
scanning loop has successfully found a hash value smaller
than the target. The result variable is recalculated based on
the position of the set bit.

V. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we present a thorough evaluation of our
proposed parallelization approaches on three different host
processors. For the experimental setup, we first describe
the compilation options and then show the target processor
specifications in detail. Finally, we present and evaluate our
experimental results on the different processor platforms.

A. Benchmark setup and reproducibility

Four versions of the Bitcoin miner model have been imple-

mented with different parallelization techniques, referred to as
sequential (SEQ), thread-level parallel (TLP), data-level paral-
lel (DLP) and the combination of TLD and DLP (TLP+DLP),
respectively. In order to evaluate all the implementations under
the same conditions, we are using the same source file for
the different designs. The number of scanners and the SIMD
operations are controlled by compile-time macros. The source
code is first instrumented by the Recoding Infrastructure
for SystemC (RISC) compiler [14], and then compiled with
Intel® C++ compiler (ICPC) [23], under optimization level
-03.
Execution time is measured with /usr/bin/time. In our CentOS
6.8 64-bit Linux environment, this is a very precise time
measuring tool, which can provide information regarding the
system time, the user time and the elapsed time.

Our experiments are conducted on otherwise idle host pro-
cessors with CPU frequency scaling turned off. File I/Os
operations (i.e. printf()) are also disabled. These settings
ensure the accuracy and reproducibility of the measurements.
Hyper-threading is turned on so as to maximize parallelism.
The setups are shown in Table III.

TABLE III
BENCHMARK SETUP

Linux host OS
Compile option

CentOS 6.8 64-bit
-03 -DNDEBUG

Time measurement /usr/bin/time
File /O disabled
CPU frequency scaling disabled
Work load of other users 0

Hyper-threading on

B. Processor specifications

The evaluations are performed on three different platforms,

respectively the E3-1240 processor (4-core host), the E5-2680
processor (16-core host), and Intel® Xeon Phi™ Coprocessor
5110P (60-core host). Specifications of these processors are
listed in Table IV. Here, the peak parallelism is calculated as
#processors X #physical cores X #SIMD lanes.
Hyper-threading is not in this equation because two hyper-
threads on the same physical core only duplicate the status
registers, but still share the main execution resources [24].
Our Bitcoin miner application is computational intensive
(with integer operations) and has minor communications,
making hyper-threading’s advantages (reduced core idle time
and efficient inter-thread communication) less useful for our
application. The experimental results discussed below confirm
this observation. Hyper-threading is not effective for Bitcoin
mining.
The number of SIMD lanes 1is calculated as
SIMD register width | Operand data width. In
our Bitcoin miner application, all data types are unsigned int
which is 32-bit wide. #pragma simd vectorlengthfor(unsigned
int) statement is used explicitly to set the SIMD data type to
unsigned int. In the AVX instruction set, the integer SIMD
register width is 128-bit wide [2], and thus the number of
SIMD lanes of the 4-core and 16-core host is 4. On other
hand, the 60-core host uses 512-bit SIMD registers and thus
has 16 integer SIMD lanes.

C. Experiments on 4-core host

Table V shows the experimental results with different
parallelism techniques on the Xeon E3-1240 processor.
The run time of sequential scalar Bitcoin miner T'sgq is used
as the reference for speedup measurements. One thing we
noticed is that the absolute execution time of the sequential
model is different with different number of scanners. This is
because of the random nature of Bitcoin mining, as discussed
in Section 3.4. However, with the same number of scanners,

79

TABLE IV
PROCESSOR SPECIFICATIONS
omicron phi micO
Xeon Phi™
processor type E3-1240 | ES5-2680 | Coprocessor
5110P
#cores 4 8 60
#processors 1 2 1
#total cores 4 16 60
#threads per core 2 2 4
SIMD instruction set AVX AVX AVX-512
integer SIMD register width | 128 bits | 128 bits 512 bits
#integer SIMD lanes 4 4 16
peak parallelism 16 64 960

the four models (SEQ, DLP, TLP and DLP+TLP) perform
the same amount of work.
The DLP speedup Sprp is stable and approximately 2.96.
This value is smaller than the naively expected maximum
value 4 for two reasons. One is the needed overhead for SIMD
lanes packing and unpacking. The other one is that there are
still some sequential operations that cannot be vectorized,
such as data padding and communication. According to
Amdahl’s law, the speedup of 2.96 is reasonable.
The TLP speedup St p is naively expected to be equal to the
maximum of #physical cores and N, where N is the number
of scanners in the Bitcoin miner model. As shown in Table
V, Strp is always smaller than the expected maximum. The
maximum cannot be reached because of the synchronizations
and the context switchings between threads. As we can
see in Figure 12, Sppp reaches a maximum of 3.71 when
N equals to 4, and then stops increasing because of the
limited number of physical cores in the host processor. It
even decreases slightly because of the increasing contentions
between threads. This also confirms our expectation that
hyper-threading technology does not help in our Bitcoin
miner application, as discussed in Section V-B.

Finally, by combining TLP and DLP together, we get a

Speedup on 4-core host

Speedup

et == ———

4 16

Number of scanners

ik DLP ——TLP «o Mo+ DLP+TLP

Fig. 12. Speedup on 4-core host with 4 SIMD lanes

maximum speedup of over 11x on the 4-core machine with
4 SIMD lanes. This is an impressive result. Our results
confirm the orthogonality of DLP and TLP, and achieve the
speedup Sprp+rp = Sprp X Srrp as proposed in [4],
which shows that the combination of thread- and data-level
parallelism can be very efficient to accelerate the SystemC

simulation.

Figure 12 gives an graphical overview of the three speedups.
It can be seen that Sprp is constant all the time, and S7rp
and Sprpyrrp first increase and then saturate when reaching
the upper limit of #physical cores. From this figure, it is
clear that combining DLP and TLP together results in a large
improvement on the speedup.

D. Experiments on 16-core host

The same models are simulated also on a 2 x 8-core host,
and similar results are achieved, as shown in Table VI.
First, Sprp has a constant value, which agrees with the
results on the 4-core host. However, the speedup value of 3.66
is higher. The difference is likely due to the different CPU
architectures of the two host machines [25][26]. The 16-core
host is advanced in this aspect.
Second, S7rp increases with N, and is limited by the total
number of physical cores. A maximum of over 13.7 is reported
from the table.
Finally, Sprp+7rp is approximately the product of Sprp and
SprLp, which agrees with the previous results on the 4-core
host. This again confirms the effectiveness of combining DLP
and TLP for faster SystemC simulation.
One thing to be noticed is that, as shown in Figure 13,
the value of Sprp at N 16 is lower than expected.
From Table VI we can see that it has a value of 11.82,
which is only 73.85% of the upper limit. This is because
there are two separate processors in this host machine, and
the communication overhead between them is much higher
than that of the intra-processor communication [27]. With the
increase of communication overhead, speedup will decrease.
For the same reason, Sprp+7rp is also lower than expected.

Speedup on 16-core host

8
Number of scanners

16 32 64 128

ek DLP -t TLP oMo+ DLP+TLP

Fig. 13. Speedup on 16-core host with 4 SIMD lanes

E. Experiments on 60-core host

Finally, we simulated our Bitcoin miner model on the many-
core Xeon Phi™ Coprocessor host. The results are shown in
Table VII. With the use of the 512-bit wide vector registers,
a constant DLP speedup Sprp of 9.7 is achieved. On the
other hand, TLP speedup St p reaches a maximum of 61.73
on the 60-core machine. The upper limit is exceeded in this
case. Such phenomenon is often referred to as super-linear
speedup [28]. This happens when the working set of a problem

80

is greater than the cache size when executed sequentially, but
can fit in each available cache when executed in parallel [29].
Finally, by combining both DLP and TLP techniques together,
an impressive speedup of more than 516.6 is reported. How-
ever, with N = 256, Sprp X Srrp = 600.52, which is
approximately +15% higher than Sprpirrp = 516.6. This
is because of the well-known memory bandwidth bottleneck
for Xeon Phi™ Coprocessor [27]. Overall, these results show
the good scalability of parallel simulation on the many-core
processor, and confirm the advantage of combining DLP and
TLP for SystemC simulation.

Speedup on 60-core host

16

Number of scanners

e DLP - 4= TLP oomee DLPATLP

Fig. 14. Speedup on 60-core host with 16 SIMD lanes

VI. CONCLUSION

In this case study, we exploit different levels of parallelism
to accelerate the simulation of SystemC based on a Bitcoin
miner model. Our approaches include thread-level parallelism
(TLP), data-level parallelism (DLP), and the combination of
both. The Bitcoin miner is investigated as a case study due
to its highly parallel potential and computational complexity.
We demonstrate our experiments on a 4-core Intel® E3-1240
processor, a 16-core Intel® ES5S-2680 processor and a 60-
core Intel® Xeon Phi™ Coprocessor. With the combination
of DLP and TLP, we achieve a speedup of more than 11x,
50x and 510x, respectively, on the three hosts. These results
confirm the advantage of accelerating SystemC simulation
through the combination of thread- and data-level parallelism.
Moreover, our results also confirm that Sprp+rrp = Sprp X
Strp, as recently shown in [4].

In future work, we plan to investigate these three parallel
SystemC simulation techniques (DLP, TLP, DLP+TLP) on
more SystemC models as well as other hardware platforms.

REFERENCES

[1] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design With
SystemC. 2002.

Intel R Advanced Vector Extensions Programming Reference.
https://software.intel.com/sites/default/files/4f/5b/36945.

M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE
Transactions on Computers, C-21(9):948-960, 1972.

T. Schmidt and R. Domer. Exploiting Thread and Data Level Parallelism
for Ultimate Parallel SystemC Simulation. In Proceedings of the 54th
Annual Design Automation Conference 2017, Article No. 79, Austin,
TX, USA June 18 - 22, 2017.

Zhongqi Cheng. Thread- and Data-Level Parallel Simulation of a Bitcoin
Miner Model in SystemC, 2017

[2]
[3]
(4]

[51

[6] R. Fujimoto. Parallel discrete event simulation. Commun. ACM, 33:3053,

TABLE V

RESULTS ON 4-CORE HOST WITH 4 SIMD LANES: RUNTIME(SECS)/SPEEDUP

#scanner SEQ DLP TLP DLP+TLP

1 361.68 /1 | 122.06 /2.96 | 361.69 /1.00 121.50 / 2.97

2 33196 /1 | 112.01 /296 | 17090/ 194 | 57.53/5.77

4 382.00 /1 | 128.30/2.97 | 103.08/3.70 | 34.68 / 11.01

8 36250 /1 | 121.33 /298 | 9991/ 3.62 31.39/11.22

16 529.25/1 | 177.89 /297 | 146.49 /3.61 | 46.37/11.41

TABLE VI
RESULTS ON 16-CORE HOST WITH 4 SIMD LANES: RUNTIME(SECS)/SPEEDUP

#scanner SEQ DLP TLP DLP+TLP
1 1100.74 /' 1 299.98 / 3.66 1098.36 / 1.00 | 305.57 /2.97
2 993.03 /1 270.73 / 3.66 506.59 / 1.96 137.67 /5.77
4 115546 /1 314.55/3.67 301.64 /3.83 83.25/11.01
8 126142 /1 345.51 / 3.65 179.19 /7.04 | 50.10 /11.22

16 1617.65 / 1 443.12 / 3.65 136.76 / 11.82 55.9/28.93
32 1954.14 / 1 535.79 / 3.64 146.30 / 13.38 | 38.21/51.13
64 3037.19/ 1 833.49/3.64 | 23433/ 1297 | 64.62/46.99
128 5030.56 /1 | 1370.10/3.67 | 366.35/13.74 | 99.26/50.67

TABLE VII
RESULTS ON 60-CORE HOST WITH 16 SIMD LANES: RUNTIME(SECS)/SPEEDUP
#scanner SEQ DLP TLP DLP+TLP
1 2669.42 /1 274.23 /9.73 2540.91 / 1.05 273.75 1 9.75
2 2383.14 /1 245.13/9.72 124576 / 1.91 | 124.66 / 19.12
4 3321.10/ 1 341.46 /9.73 838.19 / 3.96 86.68 / 38.31
8 1911.22 /1 196.38 / 9.73 238.76 / 8.00 30.81 / 62.03
16 3501.69 / 1 359.63/9.74 | 217.97 /16.06 | 23.20 / 150.93
32 4843.24 / 1 498.15/9.72 160.52 / 30.17 | 16.51/293.35
64 6774.88 / 1 696.40 / 9.73 113.55/59.66 | 14.27 / 474.76
128 11252.35 /1 | 1156.35/9.73 | 184.71/60.92 | 21.84 / 515.22
256 18744.61 /1 | 1926.87/9.73 | 303.65/61.73 | 36.28 / 516.67

[18] Descriptions

of SHA-256,

Oct. 1990.

[71 R. Domer, W. Chen, and X. Han. Parallel discrete event simulation
of transaction level models. In 17th Asia and South Pacific Design
Automation Conference, pages 227-231,2012.

[8] G.S. Fishman. Principles of discrete event simulation. John Wiley and
Sons,New York, NY, Jan 1978.

[9] J. Viitanen, P. Sjvoall, M. Viitanen, T. D. Hamildinen, and J. Vanne.
Distributed SystemC simulation on manycore servers. In 2016 IEEE
Nordic Circuits and Systems Conference (NORCAS), pages 1-6, 2016.

[10] K. M. Chandy and J. Misra. Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs. IEEE Transactions on
Software Engineering, SE-5(5):440-452, 1979.

[11] Systemc TLM-2.0. IEEE Standard 1666-2011, 2011.

[12] N. Ventroux and T. Sassolas. A new parallel SystemC kernel leveraging
manycore architectures. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 487-492, 2016.

[13] W. Chen, X. Han, C. W. Chang, G. Liu, and R. Domer. Out-of-
Order Parallel Discrete Event Simulation for Transaction Level Models.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 33(12):1859-1872, 2014.

[14] Tim Schmidt Guantao Liu and Rainer Démer. RISC Compiler and Sim-
ulator, Beta Release V0.4.0:Out-of-Order Parallel Simulatable SystemC
Subset. Technical Report CECS-17-07, July 2017.

[15] S. Sirowy, C. Huang, and F. Vahid. Online SystemC emulation acceler-
ation. In Design Automation Conference, pages 30-35, 2010.

[16] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla. SCGPSim:
A fast SystemC simulator on GPUs. In 2010 15th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 149-154.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

81

http://www.iwar.org.uk/comsec/resources/cipher/sha256-384-512.pdf.

[19] SHA-2. https://en.wikipedia.org/wiki/SHA-2.

[20] pooler, Jeff Garzik, ArtForz. Source code for cpuminer.
https://github.com/pooler/cpuminer/issues/13.

[21] Bitcoin block header. https://bitcoin.org/en/developer-reference#block-
headers.

[22] The Intel® Intrinsics Guide. https://software.intel.com/sites /landing-
page/IntrinsicsGuide/.

[23] User and Reference Guide for the Intel R C++ Compiler 15.0.
https://software.intel.com/en-us/compiler_15.0_ug_c.

[24] Hyper-threading Technology. https://en.wikipedia.org/wiki/Hyper-
threading.

[25] Intel R E3-1240 Specification. https://ark.intel.com/products/52273/Intel-
Xeon-Processor-E3-1240-8M-Cache-3_30-GHz.

[26] Intel R ES-2680 Specification. http://ark.intel.com/products/64583/Intel-
Xeon-Processor-E5-2680-20M-Cache-2_70-GHz-8_00-GTs-Intel-QPI.
[27] G. Liu, T. Schmidt, R. Domer, A. Dingankar, and D. Kirkpatrick. Op-
timizing thread to-core mapping on manycore platforms with distributed
Tag Directories. In 20th Asia and South Pacific Design Automation

Conference, pages 429-434, Jan 2015.

[28] Shamoon Jamshed. Commercial software benchmark. In Using HPC
for Computational Fluid Dynamics: A Guide to High Performance
Computing for CFD Engineers.

[29] Speckenmeyer, Ewald. Superlinear Speedup for Parallel Backtracking.
Lecture Notes in Computer Science. 297: 985-993.

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

