
A Segment-Aware Multi-Core Scheduler for SystemC PDES

Guantao Liu, Tim Schmidt and Rainer Dömer

Center for Embedded and Cyber-physical Systems

University of California, Irvine

{guantaol, schmidtt, doemer}@uci.edu

Abstract—The SystemC IEEE standard is widely used for
system design. While the sequential reference simulator is based
on Discrete Event Simulation (DES), Parallel DES (PDES)
approaches have been proposed for multi-core platforms. This
paper proposes a dynamic load-profiling and segment-aware
scheduling algorithm with optimized thread dispatching to max-
imize parallel SystemC simulation speed, which generally can
be applied to all work-sharing PDES approaches. Based on a
compile-time generated Segment Graph (SG), our scheduler can
accurately predict the run time of the thread segments ahead
and thus make better dispatching decisions. In the systematic
evaluation, our segment-aware scheduler consistently shows a
significant performance gain on top of the order-of-magnitude
speedup of PDES, when compared with the previous scheduling
policies.

I. INTRODUCTION

Discrete Event Simulation (DES) has been in use for

decades to validate the functionality of Electronic System

Level (ESL) designs. In order to improve the performance of

DES, Parallel Discrete Event Simulation (PDES) [1] was pro-

posed to run threads in parallel. With the popularity of multi-

core hosts, parallel computing platforms are readily available

and provide great potential to achieve better performance.

Currently, the SystemC [2] System Level Description Lan-

guage (SLDL) is used for system design as an IEEE standard.

However, the reference simulation library of SystemC still

relies on DES, running a single thread at any time, and cannot

utilize the computing capabilities of parallel platforms. In re-

cent years, a lot of parallel SystemC simulation approaches [3],

[4], [5], [6] have been proposed, which speed up simulation

significantly due to parallel execution. However, very few of

these approaches [7] address the load balancing problem in

their parallel schedulers. In this paper, we propose a segment-

aware multi-core thread dispatch algorithm, which can be

applied to all work-sharing PDES (SystemC, SpecC, etc.)

schedulers. By parsing a design model to a graph of thread

segments (a portion of source-code statements between two

scheduling points) using static compiler analysis and profiling

segment execution at runtime, our approach automatically

optimizes the thread dispatch order and consistently achieves

a significant speedup over previous thread dispatchers.

The key contributions of this paper are the following:

1) We identify Longest Job First (LJF) as a better than

default thread dispatch policy, when thread run time

prediction is available.

2) We propose a novel technique to accurately predict

thread run times based on a static Segment Graph (SG)

and the specific segments threads will execute.

3) We evaluate our proposed segment-aware approach in

comprehensive experiments and show that it consistently

improves performance for both synthetic and real-world

examples.

The rest of the paper is organized as follows: Section II re-

views background on parallel SystemC simulation and related

work on load-balancing optimizations in PDES. In Section III,

we introduce our parallel SystemC implementation, then dis-

cuss multi-core scheduling, and propose our optimization

algorithm in Section IV. In Section V, we evaluate our

segment-aware algorithm with both synthetic and real-world

examples. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Parallel SystemC simulation has been a hot research topic

in the past few years. In general, these parallel approaches

differ in the simulation strategies they apply, the abstraction

levels they target, and the host architectures they use. [3]

proposes a conservative synchronous parallel simulation ap-

proach in which a master thread performs the update and

notification phases and a pool of worker threads execute

parallel SystemC processes. [4] compares different parallel

SystemC approaches, e.g. synchronous PDES, asynchronous

PDES, and cycle based simulation, at the Register Transfer

Level (RTL). Both [3] and [4] target shared-memory multi-

core host architectures. In order to further boost the simulation

speed, [5] partitions mixed-abstraction RTL and Transaction

Level Models (TLM) into processes suitable for GPU and

CPU execution. In [6], the author proposes an approach that

explicitly targets loosely timed systems, and runs parallel

processes at different simulation cycles. In comparison, [8]

proposes a conservative asynchronous PDES approach that

also perserves cycle accuracy. The proposed approaches in [6]

and [8] run on multi-core hosts.

In this paper, we implement a synchronous PDES approach

similar to [3], and propose a segment-aware thread dispatcher

inside the PDES scheduler. Our proposed dispatcher is or-

thogonal to the above approaches, and can be applied to any

work-sharing PDES schedulers for shared-memory multi-core

machines.

Compared with the many parallel SystemC simulation ap-

proaches, load-balancing optimizations on thread dispatching

in the context of PDES have gained little attention. [9] presents

a dynamic load migration algorithm for reducing the total

number of rollbacks in an optimistic PDES environment. [7]

proposes a novel parallel SystemC simulation approach with

hierarchical multithreading, and optimizes load balancing by



using workload stealing. In [10], authors improve dynamic

load balancing of PDES by using the proposed Random,

Communication-based and Load-based (RCL) load migration

policies. [11] evaluates different process partition strategies

(user defined, hash-based, round-robin, etc.) to improve load

balancing of parallel simulation. However, in the previous

work, the model is divided into distributed logical OS pro-

cesses and they are allocated to different processors. To

avoid workload imbalance on different processors, all the

previous work focuses on algorithms to transfer workload

among different processes, which is different from ours for

work-sharing simulators. To the best of our knowledge, this

paper proposes the first scheduler for work-sharing SystemC

PDES with thread dispatch order optimized based on the static

analysis of the model at hand.

III. PARALLEL SYSTEMC SIMULATION

The SystemC reference simulator is based on DES. In

the traditional DES scheduler, a single thread is running at

all times. When all runnable threads in the READY queue

finish their current delta cycle, the root thread resumes and

performs the update and notification phases. Then the sim-

ulation proceeds to the next delta cycle. If no more threads

are runnable after the update and notification, the current time

cycle finishes. The simulator advances the time and processes

the earliest timed event from the WAIT-FOR-TIME queue.

When the READY and WAIT-FOR-TIME queues are both

empty, the simulation ends.

In contrast to DES, a PDES scheduler dispatches multiple

runnable threads concurrently onto multiple available pro-

cessor cores. In the evaluation phase of our parallel imple-

mentation, one more thread (SC_METHOD, SC_THREAD or

SC_CTHREAD) is dispatched from the READY queue and

starts its execution, as long as an idle processor core is

available. When all threads finish their evaluation phase, the

last running thread performs the update and notification phases

and advances the time if the READY queue is still empty.

In order to avoid race conditions among accesses to internal

shared states, we protect the SystemC kernel with a mutex

lock. Whenever a thread needs to modify the state of the

kernel, it first acquires the mutex before entering the critical

section. Similar to [3] and the synchronous approach in [4],

our parallel SystemC implementation only executes threads

from the same delta cycle in parallel and has a central

READY queue. For safe communication, our approach also

automatically protects every channel with a local lock and

fully supports the standard SystemC semantics, including

immediate notification. Differing from [3], our parallel kernel

is symmetric and every thread can perform the scheduling

functions. Thus, our implementation does not need a special

root thread to perform the update and notification phases,

which eliminates the frequent context switches from worker

threads to the root thread.

Also, a semantics-compliant SystemC implementation is

“obliged to analyze any dependencies between processes and

!

"

#

$

%

&

'()*

#

"

!

+

,-.*

(a) Shortest Job First (SJF)

!

"#

$

%

&

'()*

#

"

!

+

,-.*

(b) Longest Job First (LJF)

Fig. 1. Two multi-core thread dispatch policies.

constrain their execution to match the co-routine seman-

tics” [2]. Here, we rely on a dedicated compiler to identify po-

tential data hazards inside design models in order to avoid any

race conditions on shared variables. Our SystemC compiler

performs three major tasks, namely conflict analysis, segment-

graph construction, and source-code instrumentation. For this

paper, we extend and exploit the segment-graph analysis and

the corresponding code instrumentation to accurately predict

the next thread run times, so that the dispatcher in the

scheduler can quickly make better decisions. We present more

details of our SystemC compiler in Section IV-C.

IV. MULTI-CORE SCHEDULING

In each delta cycle of PDES, a number of threads are

available in the READY queue, as determined by the PDES

scheduler. However, these threads typically have a diverse

run time in the evaluation phase. We note that the order of

dispatching these threads on a multi-core host has a significant

influence on the total execution time. As an illustrative exam-

ple, Fig. 1 compares the execution time of two classic dispatch

policies, namely Shortest Job First (SJF) and Longest Job First

(LJF), on a four-core machine. In the order determined by their

(predicted) run time, threads are assigned to the available CPU

cores. When employing LJF (Fig. 1(b)), the current evaluation

phase finishes much earlier than when using SJF (Fig. 1(a)).

In general, multi-core scheduling is a classic load balancing

problem in algorithm design, which decides the thread dis-

patch order and is orthogonal to the parallel DES approach.

Following this, we propose a segment-aware LJF-based thread

dispatch optimization to improve the performance of parallel

SystemC simulation for the case that the number of parallel

threads in the model is greater than the number of cores on the

host. Note that our key contribution here is not LJF itself, but

the accurate prediction of thread run times that LJF depends

on.

A. Classic LJF Thread Dispatch Policy

Without loss of generality, we will assume Linux as the

underlying OS on which the parallel SystemC simulator is



based. For Linux, the default scheduling policy since version

2.6.23 is Completely Fair Scheduling (CFS). Even though CFS

maintains fairness of execution time among threads, it always

picks first the thread which previously took the least processor

time. Thus, it favors interactive processes over batch processes

(e.g. PDES simulation). CFS is similar to the SJF policy,

except in Linux each core has a separate READY queue. If

Linux detects an unbalanced load on different cores, thread

migration is used for balancing.

The general multi-core scheduling problem is proven to be

NP-complete in the literature [12], [13]. Thus, in order to

efficiently generate an optimized thread dispatch policy for

parallel SystemC simulation, the well-established LJF policy

should perform better than the default Linux dispatch policy,

as illustrated in Fig. 1. In each evaluation phase of the

parallel simulation, our kernel measures the run time of each

thread by reading the CPU cycle count registers, which has

minimal overhead, and uses this profiling information as the

run time prediction for the next evaluation phase1. Then, the

dispatcher sorts threads in the READY queue in decreasing

order based on their previous execution time. Thus, the threads

estimated to run the longest will run first on the available cores.

Shorter threads are dispatched then whenever a core becomes

available. With m denoting the number of available processor

cores, this greedy scheduling algorithm has been proven to

introduce a slowdown of less than ( 4
3
− 1

3m
) compared with

the optimal multi-core scheduling [14].

The classic LJF thread dispatch policy works well when

threads show identical run time every time they are issued.

However, this typically is not the case in SystemC simulation.

A SystemC thread performs an overall job, but such job

usually consists of very different tasks. Thus, the actual run

time of a thread in the simulation depends on its specific

next task ahead (e.g. reading input data, processing frames, or

sending output data). Taking this observation into account, we

distinguish between the segments of code that a given thread

executes, and propose our segment-aware dispatch algorithm.

B. Segment Graph (SG)

In PDES, threads switch back and forth between the states

of RUNNING (threads in the READY and RUN queues)

and WAITING (threads in the WAIT and WAIT-FOR-TIME

queues). A series of source code statements executed by a

thread between two scheduling points can be defined as a

thread segment [8]. Then, for a SystemC model, it can be

converted to a corresponding Segment Graph (SG). The SG is

a directed graph that represents the code segments executed

during the simulation. The nodes in the SG are code segments

and the edges indicate the transitions from one segment to

another. The code segments always start from a SystemC

1Even though the input data to the operations in a thread may vary in
different runs, the thread run time likely stays similar. Also, the LJF dispatcher
only needs to know the relative order of any two threads’ workload, e.g. thread
1 runs longer than thread 2, rather than the absolute values. Therefore, we
estimate the next execution time of a thread to be the same as the previous
one. Note that it is possible to apply other methods to predict thread run
times, but this is not the focus of this paper.

!"!#$%&'()*+,&-!.

!/!!!01%234567%8931:7;<%4=1=7>=4?!@;A345"B

!C!!!01%234567%8931:7;<%4=1=7>=4?!@;A345/B

!D!!!01%234567%8931:7;<%0=;E=4?!!!'F5A345B

!G

!H!!!!"#$!IJ7;,!"#$-!.

!K!!!!!#%&!7L!ML!NB

!O!!!!!'(#)*!,&+,*-!.

!P!!!!!!!@;A345"Q?4=JE,M-B

"R!!!!!!!-"+!,7SRB!76*''A"B!7TT-

""!!!!!!!!!M!TS!"B

"/!!!!!!!UJ75,"L!#$%&#-B

"C!!!!!!!#-!,MV/!WS!R-!.

"D!!!!!!!!!@;A345/Q?4=JE,N-B

"G!!!!!!!!!-"+!,7SRB!76*''A/B!7TT-

"H!!!!!!!!!!!M!XS!NB

"K!!!!!!!!!'F5A345Q?U475=,M-B

"O!!!!!!!Y

"P!!!!!Y

/R!!!Y

/"!

//!!!#$%$Z'[,&-!.

/C!!!!!#$%Z\[+](,IJ7;-B

/D!!!Y

/G!YB

!"

!#

!#

!#

!$

!$

!%

!%

!%

!&

!" !&!$

!$

!"

!&!$

(a) Source code of an SC_THREAD

!"#$

!"#%

!"#&

!"#'

!"#(

(b) Segment graph

Fig. 2. SystemC thread and Segment Graph (SG).

scheduling primitive, e.g. wait, SC_METHOD, SC_THREAD,

SC_CTHREAD, etc.. Thus, our compiler can instrument these

scheduling primitives with segment IDs in the source code.

Then, when a thread resumes execution from the WAITING

state, the dispatcher can identify the current segment (before

actually running it).

Fig. 2 shows a SystemC thread with its segments and the

corresponding SG. As shown, every segment starts with a

scheduling primitive (including thread creation and context

switches, e.g. the SC_THREAD in line 23 or the wait

statement in line 12) and ends before another. The read and

write functions in this example invoke a wait statement inside

the function calls, so they are all blocking and start new

segments (segment 1 and 3 in the read function and segment

4 in the write function). Also, as indicated in Fig. 2(a), one

source code statement (e.g. the while statement in line 8)

may belong to several segments, depending on the execution

paths.

In general, every thread is composed of one or multiple

segments. The adjacent segments perform different functions

(e.g. in Fig. 2(a) reading input data in segment 0 and process-

ing it in segment 1) and usually run for a different amount of

execution time.

C. Dedicated SystemC Compiler

In order to identify the segment structure of a SystemC

model and analyze the interdependencies between threads, we

adopted the compiler proposed in [8] for our parallel SystemC

simulation framework and built the compiler based on the

ROSE infrastructure [15]. Our compiler first parses an input

SystemC model into ROSE Abstract Syntax Tree (AST) and

constructs a Segment Graph (SG) on top of the AST, following

the Algorithm 3 in [8]. Here, we treat the SC_METHOD,

SC_THREAD and SC_CTHREAD in the SystemC model as

thread creation points (STMNT PAR in Algorithm 3 [8]). Then,

according to the SG, the compiler will append the segment

ID as an extra argument to the AST nodes of the segment

boundary primitives (e.g. wait, SC_METHOD, SC_THREAD,

SC_CTHREAD, etc.). For those function calls that start new

segments (e.g. the read function in Fig. 2(a)), our compiler



!

"#$%&'(#) *+%,#+-(.&/ *+%,#+-(.&0 *+%,#+-(.&1 222

/!&3$ /0&3$ 4&3$ /5&3$ 222

(a) A single segment in a cyclic thread

!

"

#

$%&'()*%+ ,-'.%-/*0(" ,-'.%-/*0(# ,-'.%-/*0(1 222

"!(3&

45!(3&

#!(3&

""(3& "1(3& 4(3&

415(3& 467(3& 489(3&

#1(3& "4(3& #7(3&

222

222

222

(b) Consecutive segments in a cycle

!

"

#

$

%&'()*+&, -.(/&.0+1)" -.(/&.0+1)# -.(/&.0+1)$ 222

"!)3'

45!)3'

67!)3'

$!)3'

"5)3' "$)3' "")3'

4"4)3' 4$5)3' 448)3'

694)3' 689)3' 66!)3'

$5)3' #")3' $9)3')

222

222

222

222

(c) Multiple segments in a general thread

Fig. 3. Different segment structures in a thread.

modifies the function prototype of the called function, adding

an integer variable of the segment ID as a new argument. Next,

in the function definition, the segment boundary primitives will

use the new argument to identify the next segment. Also, based

on the SG, the compiler automatically performs static conflict

analysis between segments and passes conflict tables to the

parallel simulator. In addition, to ensure safe communication,

the compiler protects user defined channels (e.g. those derived

from sc_channel and sc_prim_channel) by acquiring

a local channel lock at the entry of their public functions and

releasing the lock at the exit. The details of static conflict

analysis and channel protection are out of the scope of this

paper.

D. Segment-Aware Dispatch Algorithm

Fig. 3 depicts three typical segment structures inside a

thread. In Fig. 3(a), the thread contains a single segment in a

loop2. For different iterations, the workload of the segment

is similar and typically varies only little due to the input

data. Here, the base load in the figure denotes the average

amount of execution time of the segment. Fig. 3(b) shows a

thread that is composed of three consecutive segments in a

loop, e.g. input, processing, and output. The three segments

have different workload and their execution time varies sig-

nificantly. Compared with the cyclic Fig. 3(a) and 3(b), the

segment structure in Fig. 3(c) is more general. Threads may

have different execution paths in different situations. While the

transition between their segments may be unpredictable, we

find that a given segment typically carries a similar workload

every time it runs.

2The loop structure is default for SC_METHOD and a common coding idiom
for SC_THREAD and SC_CTHREAD [2].

The classic LJF thread dispatch policy with load prediction

based on the previous run only performs well for the simple

segment structure in Fig. 3(a). However, for segment structures

3(b) and 3(c), LJF will rely on wrong predictions and thus

perform badly. For example, if a thread has the segment

structure of Fig. 3(b), LJF will use the run time of segment 0

to predict the execution time of segment 1. Since the classic

LJF policy is unaware of the segment structure, it treats the

segments the same. However, the workload of the segments is

unrelated and varies. Thus, the predicted run time for the next

thread segment is inaccurate and LJF performs poorly.

In order to accurately follow the segment structure, we

utilize our dedicated SystemC compiler (Section IV-C) to

generate the SG of the model and instrument the segment

boundary primitives with a segment ID as an extra argument.

For example, line 12 in Fig. 2(a) is transformed to wait(1,

SC_MS, 2), where 2 is the segment ID. Then the scheduler

is aware of the current segment of the runnable threads and can

accurately predict their execution time based on the profiling

information for the given segment.

Algorithm 1 lists the pseudo code of our segment-aware

scheduling algorithm. The calling thread first reads the CPU

cycle count register and records the run time of the current

segment. Then, the segment ID of the current thread is updated

to the next one. Next, while any threads exist in the READY

queue, our scheduler will dispatch them in order to any

available cores, and resume their thread execution. If no core

is available but the READY queue has remaining threads, the

current thread suspends itself. As the sequential scheduler,

when the READY queue becomes empty, our scheduler per-

Algorithm 1 Segment-Aware Scheduling Algorithm

Input:
Current thread thcurr

Next segment SegIDnext

1: thcurr.Tend ← CurrentCycles()
2: RunTime[thcurr.SegID] ← thcurr.Tend − thcurr.Tstart

3: thcurr.SegID ← SegIDnext

4: while true do
5: while READY 6= ∅ do
6: if ∃c ∈ Cores where c is idle then
7: thnext ← pop(READY)
8: thnext.Tstart ← CurrentCycles()
9: dispatch(thnext, c)

10: else
11: suspend(thcurr)
12: end if
13: end while
14: Delta cycle δ ← δ + 1
15: process any requested updates in primitive channels
16: process any delta notifications
17: if READY = ∅ then
18: advance simulation time
19: process any timed notifications
20: if READY = ∅ then
21: terminate the simulation
22: end if

23: end if
24: sort threads ∀th ∈ READY in decreasing order of

RunTime[th.SegID]

25: end while



Fig. 4. Software hierarchy of our parallel SystemC simulator implementation.

forms the update and notification to start a new delta or time

cycle. Before the beginning of the new cycle, the dispatcher

sorts threads in the READY queue in descending order of

their previous run time in the same segment. For the very

first evaluation phase of a segment, the algorithm can use

either static compiler analysis, user input, or random values

as prediction. Then, in later evaluation phases, the dispatcher

predicts the thread execution time using the profiling time of

the same segment, instead of the previous run time of the same

thread in the classic LJF dispatcher.

Fig. 4 depicts the software hierarchy of our parallel SystemC

simulation framework with the segment-aware scheduler and

dispatcher. Note that the thread dispatcher is implemented

inside the PDES scheduler of the SystemC simulation library

(user level), and we do not modify the kernel-level OS

scheduler. Compared with the case that the regular parallel

SystemC simulator dispatches all runnable threads and lets

the Linux OS scheduler determine the thread execution, our

segment-aware dispatcher only dispatches a number of threads

equal to the number of available cores, and fixes their core

affinity. Thus, our dispatcher is in full control and the Linux

OS scheduler will not modify the thread execution order in

our parallel simulation.

Using the segment-aware prediction, our scheduling algo-

rithm can generate an optimized thread dispatch order3. Since

the prediction is based on the correct segment, our segment-

aware dispatcher will achieve better performance than the

classic LJF.

Note that the starvation problem for short threads cannot

happen in our segment-aware scheduling algorithm for PDES,

since no other threads will be added to the READY queue in

between a delta cycle, unless an immediate notification occurs.

However in the Accellera sequential simulation library and our

parallel implementation, even the immediate notified threads

will be made runnable only after all current threads in the

READY queue are dispatched.

V. EXPERIMENTAL EVALUATION

We now evaluate our segment-aware optimization on paral-

lel SystemC simulation with synthetic benchmarks and real-

world examples to demonstrate the performance gain. Table I

3In the case of a single segment per thread, as in Fig. 3(a), the segment-
aware approach falls back to the classic LJF.

!"#

!
$
%
&'
$
(
)
*

+,

-.!

/

0 1 2 3

4 5 6 7 8 0/

00 01 02 03 04 05

06

9.!

:&;<$

0

1

2

3

4

(a) Task graph block diagram

!"!#$%&'()*+,-.#/01!2
!3!!!45%6768%79:;*'.-%-<!7=8>?0@
!A!!!BBB@
!C!!!45%6768%8D?:;*'.-%-<!8=8>?0@
!E!!!BBB@
!F!
!G!!!!"#$!HI79,!"#$1!2
!J!!!!!%&#'(!,)*+(1!2
!K!!!!!!!;*'.-%-!L0!M!7=8>?0N<>OIP,1@
"0!!!!!!!;*'.-%-!Q0!M!RSR-R.*T.*@
""!!!!!!!BBB@
"3!
"A!!!!!!!,"*!,7M0@!7:R-+U0@!7VV1
"C!!!!!!!!!Q0!M!Q0!W!Q0!V!Q0@
"E!!!!!!!BBB@
"F!!!!!!!8=8>?0N<X>7?O,Q0!V!L01@
"G!!!!!!!BBB@
"J!!!!!Y
"K!!!Y
30!
3"!!!#$%$-'U,-.#/01!2
33!!!!!#$%-ZU+.(,HI791@
3A!!!Y
3C!Y@

(b) Source code of a task

Fig. 5. Synthetic SystemC benchmark models.

lists the hardware specifications of the two multi-core work-

stations we used in our experiments.

TABLE I
WORKSTATIONS USED FOR EXPERIMENTS.

Host 8-Core 32-Core

Processor
Intel Xeon Intel Xeon
E3-1240 E5-2680

CPU frequency 3.4 GHz 2.7 GHz

Physical CPUs 1 2

Cores/CPU 4 8

Hyperthreads/core 2 2

Total HW threads 8 32

A. Task Graph Benchmarks

Task Graphs For Free (TGFF) [16] is a popular tool to

generate standardized random benchmarks for scheduling and

allocation research. For our evaluation, we extended TGFF to

output actual SystemC models of the generated task graphs.

In particular, every task in the task graph is converted to an

SC_MODULE which initiates an SC_THREAD with a specific

amount of workload. Here, SC_THREAD is used as a test

case, but our approach is applicable to SC_METHOD and

SC_CTHREAD as well. Between the tasks, the SC_MODULEs

use sc_fifo channels to communicate and synchronize.

Fig. 5 shows the block diagram of a generated SystemC model

and the code of a task (a block in Fig. 5(a)). Next, we evaluate

the three categories of thread segment structures introduced in

Fig. 3 separately.

1) Single-Segment Threads: For the first experiment, we

use the extended TGFF to generate SystemC models where

each thread has a single segment like Fig. 3(a) with a base

amount of workload. Each segment performs data crunching

in a for loop like lines 13 and 14 in Fig. 5(b), and the

workload is determined by the for loop iterations. The base

workloads of different segments are generated by TGFF as

attributes, randomly distributed in a wide range. Then, in each

while loop iteration the workload of a segment is adjusted

by varying the base value with a random factor, to simulate the

variation of execution time due to data dependency. To ensure

fair comparison between different dispatchers, each thread

defines its own reentrant random number generator (rand r())



TABLE II
PERFORMANCE OF DIFFERENT PARALLEL SYSTEMC SCHEDULERS FOR

SINGLE-SEGMENT THREADS (FIG. 3(A)).

Par Var
8-Core Host 32-Core Host

SEQ PAR LJF SEG SEQ PAR LJF SEG

0 217s 513% +8.0% +8.0% 657s 1669% +20.2% +20.1%
1 to 2 20% 217s 501% +9.2% +9.2% 655s 1607% +17.0% +16.9%
threads 40% 217s 480% +8.8% +8.8% 654s 1507% +12.8% +12.8%
per core 60% 217s 456% +6.8% +6.8% 653s 1407% +9.3% +9.3%

80% 217s 433% +5.1% +5.1% 652s 1314% +6.5% +6.5%

0 260s 574% +1.6% +1.6% 924s 1999% +11.4% +11.4%
2 to 3 20% 260s 563% +4.4% +4.4% 923s 1937% +11.8% +11.8%
threads 40% 259s 545% +4.6% +4.6% 921s 1842% +7.9% +7.9%

per core 60% 258s 526% +2.5% +2.7% 920s 1749% +4.3% +4.3%
80% 258s 510% +1.0% +0.8% 918s 1673% +1.8% +1.8%

to generate the same sequence of random numbers in different

simulation runs.

In our experiments, we set the maximum variation of the

workload in different iterations to be 0, 20%, 40%, 60%, and

80%. A variation of 0 means the workload of the same segment

in different iterations stays the same, a maximum variation of

20% means that the workload in any iteration is within the

range of 80% to 120% of the base of the segment, and so

on and so forth. In addition, we generate two sets of task

graphs that have a different number of parallel threads at each

stage (Fig. 5(a)), except the first and last stages. The average

number of parallel threads per core is chosen in the range of

1 to 2, or 2 to 3. Each set of task graphs contains 30 different

benchmarks, and runs on the two workstations.

Table II shows the average performance gain of different

parallel schedulers over the 30 benchmarks compared with the

sequential SystemC simulator from Accellera. The first column

Par in the table refers to the average number of parallel threads

per core at each stage and the second column Var refers to

the maximum variation of the workload of the same segment

in different iterations. For different SystemC schedulers, SEQ

refers to the sequential SystemC from Accellera, PAR refers

to our parallel implementation with the Linux scheduling, LJF

refers to the parallel version with classic LJF dispatching, and

SEG refers to our segment-aware optmization. The simulation

times of LJF and SEG already include the additional overhead

of profiling and sorting. Their relative speedup is compared

with PAR.

Table II allows the following observations:

1) Parallel simulation is fast: Since the benchmarks have

plenty of parallelism inside the models, all parallel

simulators achieve a good performance gain on the

multi-core hosts, up to 5x on the 8-core, and 20x on

the 32-core machine. Also, a larger number of parallel

threads leads to higher speedup.

2) LJF and SEG are faster than PAR: When each

thread contains a single segment, the SEG scheduler

with segment-aware optimization shows the same per-

formance as the classic LJF algorithm. But compared

with the parallel simulation that relies on the Linux dis-

patcher, our segment-aware optimization is clearly bet-

ter. Also, the segment-aware scheduler achieves greater

speedup on the 32-core host than the 8-core host for

the same type of benchmarks, as a larger number of

TABLE III
PERFORMANCE OF DIFFERENT PARALLEL SYSTEMC SCHEDULERS FOR

MULTI-SEGMENT THREADS (FIG. 3(B)).

Par Var
8-Core Host 32-Core Host

SEQ PAR LJF SEG SEQ PAR LJF SEG

0 220s 515% -3.3% +6.0% 772s 1634% +8.0% +21.6%
1 to 2 20% 219s 504% -1.6% +7.7% 770s 1587% +7.4% +16.8%

threads 40% 218s 482% +0.8% +8.5% 768s 1484% +6.9% +12.9%
per core 60% 217s 459% +2.4% +7.2% 767s 1380% +6.1% +9.7%

80% 216s 437% +3.2% +5.7% 765s 1290% +5.0% +6.6%

0 263s 564% -2.0% +3.2% 829s 1952% +0.8% +13.5%
2 to 3 20% 262s 555% -1.3% +5.8% 828s 1899% +0.6% +13.8%
threads 40% 261s 539% -0.7% +5.8% 826s 1818% +0.2% +9.7%
per core 60% 261s 522% -0.4% +3.6% 824s 1736% +0.6% +5.4%

80% 260s 507% -0.8% +1.8% 822s 1657% +1.0% +3.2%

processing cores leads to greater variability in thread

dispatching.

3) Prediction needs to be accurate: In Table II, it is clear

that the smaller the variation of the workload in different

iterations, the higher the performance gain is. In the

case that the maximum variation of the workload is 80%

(which is rare in real world), all the parallel schedulers

have similar performance, as the prediction is inaccurate

in LJF and SEG. However, when the maximum variation

of the workload is 40%, the LJF and SEG schedulers still

achieve an additional speedup of 8% on the 8-core and

13% on the 32-core host, in the case that the average

number of parallel threads per core is in the range of 1

to 2.

2) Multi-Segment Threads: Next, we evaluate our parallel

schedulers with benchmarks where each thread has three

consecutive segments, like Fig. 3(b). Now in Fig. 5(a), each

block in DUT still represents an SC_THREAD, and it contains

three segments that are separated by wait statements. The

workload in adjacent segments is unrelated and varies inde-

pendently. The experimental results are shown in Table III.

In addition to the first three observations from Table II, we

make another observation in Table III:

4) Segment-awareness matters: In contrast to Table II,

the performance gain of LJF degrades because the pre-

diction of segment run time is inaccurate. On the other

hand, the segment-aware scheduler achieves a significant

speedup over the other two parallel schedulers. For

example, on the 32-core host, when the number of

parallel threads per core is within the range of 1 to 2 and

the workload variation is 0, the three parallel schedulers

speed up by 16x to 19x. Compared with the parallel

scheduler with Linux dispatching, the segment-aware

optimization achieves another 20% speedup (while the

relative improvement of LJF is less than 10%).

3) General Threads: Finally we evaluate our parallel sched-

ulers with benchmarks in which each thread has multiple

segments in a general structure, as Fig. 3(c). Table IV shows

the experimental results and allows another observation:

5) Segment-aware scheduler identifies the correct seg-

ments: In Table IV, even though a thread may take

different execution paths, our segment-aware scheduler

still identifies the next segment correctly and achieves

a high speedup over the other two parallel schedulers



TABLE IV
PERFORMANCE OF DIFFERENT PARALLEL SYSTEMC SCHEDULERS FOR

GENERAL THREADS (FIG. 3(C)).

Par Var
8-Core Host 32-Core Host

SEQ PAR LJF SEG SEQ PAR LJF SEG

0 183s 370% +2.4% +6.2% 402s 844% +4.1% +3.4%
1 to 2 20% 183s 362% +2.2% +6.9% 402s 807% +2.5% +2.9%
threads 40% 183s 345% +1.7% +6.7% 401s 750% +0.4% +3.6%
per core 60% 183s 326% +1.5% +6.1% 401s 692% +0.7% +2.3%

80% 183s 308% +1.3% +5.5% 401s 643% -1.4% +3.1%

0 218s 439% +6.8% +21.0% 572s 1201% +19.2% +37.0%
2 to 3 20% 218s 433% +6.5% +19.9% 572s 1183% +20.9% +35.2%

threads 40% 218s 418% +6.5% +18.2% 571s 1121% +18.6% +31.7%
per core 60% 218s 401% +6.0% +15.7% 571s 1056% +17.0% +28.8%

80% 217s 384% +5.2% +13.5% 570s 1008% +15.2% +23.7%

(a) 1 to 2 threads per core (b) 2 to 3 threads per core

Fig. 6. Performance comparison for general threads (Fig. 3(c)) on a 8-core
host.

(more than 35% over PAR on the 32-core host, when

the number of parallel threads per core is 2 to 3 and the

workload variation is 0).

However, the performance of the three parallel schedulers

is similar on both hosts when the parallelism is low (1 to

2 threads per core). This is due to the fact that each thread

takes different execution paths and has a different number of

segments in total. Thus, at a certain point in the simulation,

most threads finish all their segments in the current iteration

but some threads have extra segments to execute in the

following delta cycles. That reduces the parallelism in the

simulation (i.e. the number of parallel threads is smaller than

the number of cores), in which case the classic LJF dispatcher

and our segment-aware optimization perform the same as

the Linux dispatcher. The performance of the segment-aware

scheduler improves a lot when the parallelism increases to 2

to 3 threads per core.

Fig. 6 shows the performance of different parallel schedulers

for each individual benchmark on the 8-core host. Again, each

thread contains multiple segments in a general structure and

the maximum variation of the workload is 40%. The number

of parallel threads per core for Fig. 6(a) is within 1 to 2, and

Fig. 6(b) has 2 to 3 parallel threads per core. Here, we make

another observation:

6) Our segment-aware scheduler consistently shows the

best performance: For all 60 benchmarks, even though

they have different segment graphs, our segment-aware

scheduler always achieves the highest speedup, signifi-

cantly better than the other two parallel schedulers.

!"##$%&'()%*)+),+-.

/"(#0+1')%

*)2+"

*).03"+03)
%4%$

/"(#0+1')
%4%$

5-#%/"4%

6177

8772$%

9$:+).):0:

;"1::0-#%6<--+=

>.)7

?21.@%>".

?21.A%>".

Fig. 7. Pipelined Canny edge detector example.

TABLE V
PERFORMANCE COMPARISON FOR CANNY EDGE DETECTOR ON A 8-CORE

HOST.

Benchmark
SEQ PAR LJF SEG
Time Speedup Speedup +Speedup Speedup +Speedup Overhead

canny v1 138.8s 298.1% 290.4% -2.6% 284.6% -4.5% 0.05%

canny v2 139.0s 305.7% 296.4% -3.1% 360.4% +17.9% 0.15%

canny v3 139.0s 255.9% 261.8% +2.3% 329.9% +28.9% 1.75%

B. Canny Edge Detector Example

For a first real-world experiment, we use a pipelined Canny

edge detector to demonstrate the performance gain of our

segment-aware optimization. The Canny edge detector is a

popular image processing application to detect a wide range of

edges in images. Fig. 7 shows the block diagram of the Canny

edge detector in SystemC. In this model, seven functions (i.e.

Prep, BlurX Par, BlurY Par, Derivative x y, Magnitude x y,

Non Max Supp and Apply Hysteresis) are applied to a se-

quence of input images in a pipelined fashion. In BlurX Par

and BlurY Par, multiple parallel threads work on different

slices of the image. The number of parallel threads in these

two modules is configurable as an exponent of 2. In Fig. 7,

all blocks are implemented as SC_MODULE and communicate

through sc_fifo channels. The parallel modules in the

pipeline may be blocked by the sc_fifo channels, and have

multiple segments in one thread. Thus, their segment structure

is similar to that in Fig. 3(c). The execution of some segments

is optional, depending on whether the buffers in the sc_fifo

channels are empty or not. As a result, the LJF algorithm

degrades due to inaccurate predictions, whereas our segment-

aware optimization achieves a much better performance.

Table V shows the performance of different parallel Sys-

temC schedulers for the pipelined Canny edge detector ex-

ample on the 8-core host. Here, the relative speedup of LJF

and SEG is compared with PAR, and canny v1, canny v2 and

canny v3 have 1, 8 and 256 worker threads in BlurX Par and

BlurY Par respectively4. Clearly, the LJF scheduler has similar

or worse performance than the default Linux scheduler, but our

segment-aware algorithm achieves an additional speedup of up

to 28%. Only when the number of parallel threads in the model

is lower than the number of cores on the host (e.g. canny v1

has up to 7 parallel threads, made up of the seven pipelined

stages in the model), LJF and SEG are slightly worse due to

the small profiling and scheduling overhead.

4As these three benchmarks process the same sequence of images, a larger
number of parallel threads means a smaller amount of workload in each worker
thread.



!"#$%#&'()*+

,$-./00
123345&%

#&'()*+

#&'()*+

607 825&9:;* <:=;5=

0>+(45%#&'()*+

607
0>+(45%
825&9:;*

<:=;5=

0>+(45%#&'()*+

607
0>+(45%
825&9:;*

<:=;5=

Fig. 8. Pipelined JPEG encoder example.

TABLE VI
PERFORMANCE COMPARISON FOR JPEG ENCODER ON A 8-CORE HOST.

Benchmark
SEQ PAR LJF SEG
Time Speedup Speedup +Speedup Speedup +Speedup Overhead

JPEG 176.1s 331.4% 324.7% -2.0% 400.6% +20.9% 0.87%

C. JPEG Encoder Example

Our second real-world experiment uses a JPEG image

encoder (an extended version of [17]). Its block diagram is

shown in Fig. 8. Here, the RGB2YCC module first performs

color-space transformation on an image from RGB to YCbCr.

Then, the image is split into blocks of 8 × 8 pixels and each

color component (Y, Cb or Cr) of a block undergoes Discrete

Cosine Transform (DCT), quantization, and zigzag ordering

separately. At the end, the resulting data for all 8 × 8 blocks

is further compressed with the lossless Huffman encoding

algorithm. Since encoding of the three color components (Y,

Cb and Cr) is independent, the JPEG model executes these

three encoders in parallel. Also, to efficiently process a stream

of images, our JPEG encoder example is implemented in a

pipelined fashion. Same as the Canny edge detector, each

block in Fig. 8 is implemented as an SC_MODULE and using

sc_fifo for communication. Thus, each thread has multiple

segments and owns a segment structure like Fig. 3(c).

Table VI compares the performance of different SystemC

schedulers for the JPEG encoder example on the 8-core

host. Again, our segment-aware optimization shows the best

performance, achieving an additional 20% speedup over PAR.

In comparison, the LJF scheduler is slightly worse than the

Linux scheduler (PAR) due to the inaccurate prediction based

on previous run times.

Table V and VI also show the profiling and sorting overhead

of our segment-aware optimization. Clearly, the overhead of

our proposed algorithm takes less than 2% of the whole simu-

lation time, and sometimes much less (e.g. 0.05% and 0.15%

in the cases of canny v1 and canny v2). In order to keep

the per-segment execution time information, the extra storage

overhead is two unsigned long long values (start time

stamp and previous run time) per segment and one unsigned

int value (current segment ID) per thread.

VI. CONCLUSION

In this paper, we propose a segment-aware scheduling

algorithm with optimized thread dispatching in the context

of a parallel SystemC simulator. By taking the execution time

for a specific segment as a prediction of the next run time,

our approach dispatches threads in an optimized and efficient

fashion. Evaluated with synthetic benchmarks and real-world

examples, the implemented parallel simulator shows a speedup

of up to 20x over the sequential simulator. More importantly,

our segment-aware optimization works on top of this and con-

sistently achieves a high speedup over previous thread dispatch

algorithms for examples with complex segment structures.

Based on these experimental results, we conclude that accu-

rate prediction of the next execution time based on segment

information is critical. Our segment-aware approach achieves

significantly better performance than previous schedulers.

In future, we plan to evaluate our approach with more real-

world examples and also utilize the compiler infrastructure

to generate static load estimates. We also intend to improve

the segment-aware scheduler for both sporadic and periodic

models, and perform a detailed scalability analysis on many-

core platforms.

VII. ACKNOWLEDGMENT

This work has been supported in part by funding from Intel

Corporation. The authors thank Intel for the valuable support.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Communications

of the ACM, vol. 33, no. 10, pp. 30–53, October 1990.
[2] IEEE Standard 1666-2011 for Standard SystemC R© Language Reference

Manual, IEEE Computer Society, January 2012.
[3] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parsc: Syn-

chronous parallel SystemC simulation on multi-core host architectures,”
in CODES+ISSS, Scottsdale, AZ, October 2010.

[4] B. Haetzer and M. Radetzki, “A comparison of parallel SystemC
simulation approaches at RTL,” in FDL, Munich, October 2014.

[5] R. Sinha, A. Prakash, and H. D. Patel, “Parallel simulation of mixed-
abstraction SystemC models on GPUs and multicore CPUs,” in ASP-

DAC, Sydney, NSW, January 2012.
[6] M. Moy, “Parallel programming with SystemC for loosely timed models:

A non-intrusive approach,” in DATE, Grenoble, France, March 2013.
[7] M. Chung, J. Kim, and S. Ryu, “SimParallel: A high performance par-

allel SystemC simulator using hierarchical multi-threading,” in ISCAS,
Melbourne, VIC, June 2014.

[8] W. Chen, X. Han, C. Chang, G. Liu, and R. Dömer, “Out-of-order
parallel discrete event simulation for transaction level models,” IEEE

TCAD, vol. 33, no. 12, pp. 1859–1872, December 2014.
[9] F. Sarkar and S. K. Das, “Design and implementation of dynamic load

balancing algorithms for rollback reduction in optimistic PDES,” in
MASCOTS ’97, Haifa, Israel, January 1997.

[10] L. F. Wilson and W. Shen, “Experiments in load migration and dynamic
load balancing in SPEEDES,” in Simulation Conference Proceedings,
Washington, DC, December 1998.

[11] A. Inostrosa-Psijas, V. Gil-Costa, R. Solar, and M. Marin, “Load balance
strategies for DEVS approximated parallel and distributed discrete-event
simulations,” in PDP, Turku, March 2015.

[12] C. Papadimitriou and M. Yannakakis, “Towards an architecture-
independent analysis of parallel algorithms,” in STOC ’88, 1988.

[13] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multipro-

cessors. Cambridge, MA: MIT Press, 1989.
[14] R. Graham, “Bounds on multiprocessing anomalies,” SIAM Journal on

Applied Mathematics, vol. 17, no. 2, pp. 416–429, March 1969.
[15] D. J. Quinlan, “ROSE: Compiler support for object-oriented frame-

works,” Parallel Processing Letters, vol. 10, no. 2/3, pp. 215–226, May
2000.

[16] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
in CODES/CASHE ’98, Seattle, WA, March 1998.

[17] “A JPEG encoder model in SystemC,”
https://github.com/weiweichen/systemc-jpeg.


