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Abstract—Even when following a well-structured top-down
design methodology, system designers regularly face obstacles
and pitfalls posed by speed/accuracy tradeoffs in modeling and
simulation of complex hardware and software systems. Across
the abstraction levels, modeling details grow exponentially, while
simulation speed decreases by multiple orders of magnitude. To
quantify these effects, we systematically generate, simulate, and
evaluate grid-based systems-on-chip in a top-down open-source
based tool flow. We map two parallel software applications onto a
scalable grid of RISC-V processors and successively refine and
validate the models at lower abstraction levels, namely TLM,
ISS, RTL, and FPGA. Our comprehensive experimental evaluation
over five abstraction levels quantifies the speed-accuracy tradeoffs
in simulator build and run times. In addition to its educational
value, our work can guide the system designer on an efficient
path to a cycle-accurate software simulation on fully constructed
hardware.

Index Terms—System-on-chip, Codesign, RISC-V, SystemC
TLM-2.0, SystemVerilog.

I. INTRODUCTION AND MOTIVATION

Modern design methodologies starting at the Electronic
System Level (ESL) are founded on the well-known principle
of higher abstraction for lowering complexity. Typically, such
model-based design flows start at the system level, where
software and hardware are specified together, followed by a
top-down codesign flow where the system model is then suc-
cessively refined (e.g. [1]-[3]) and brought down step by step to
the clock-cycle accurate Register Transfer Level (RTL), from
where standard hardware digital design processes proceed to
FPGA and ASIC implementations. Throughout these codesign
flows, system designers regularly encounter tradeoffs between
incompatible goals, such as the speed/accuracy tradeoff in
model simulation, where the goals of high speed and high
accuracy contradict each other. The system designer must then
choose between a model with high speed and low accuracy, or
vice versa. If both features are needed to make the right design
decisions, two or more models must be built and analyzed,
significantly increasing the cost and duration of the overall
system design process.

While the speed/accuracy tradeoffs in system modeling are
generally well understood and a number of specific examples
are reported ad hoc in the literature (e.g. [4]-[6]), consistent
and reliable figures for the right model selection are few to
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none, especially when we want to consider implications across
multiple abstraction levels.

In this work, we systematically design, model, simulate,
and evaluate two non-trivial benchmark applications across five
major abstraction levels, namely functional multi-threaded C++,
SystemC Transaction Level Modeling (TLM-2.0), Instruction
Set Simulation (ISS), Register-Transfer Level (RTL), and a first
Field-Programmable Gate Array (FPGA) prototype implemen-
tation. At each level, we quantify and report the speed/accuracy
tradeoffs in build and run time. Our comprehensive comparison
and analysis can provide quantitative insights and guide the
system designer in better navigating the paths to an efficient
system implementation.

Aiming at medium-to-large SoC designs, we map two highly
parallel software applications onto a scalable grid of RISC-V
processors. Inspired by processor arrays, such as parallel trans-
puters [7], the recently proposed Grid of Processing Cells
(GPC) [8] aims to avoid the well-known memory bottleneck
of traditional multiprocessor architectures by using separate on-
chip memories that are accessible only by their paired processor
and a few immediate neighbors.
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Fig. 1. Checkerboard Grid of Processing Cells (GPC) [8] with processor-
memory pairs connected in North, East, South, and West directions.

The GPC platform, as illustrated by its checkerboard variant
in Fig. 1, is a scalable 2D array of on-chip processing cells.
Each cell consists of a processor Core and a local Memory, as
well as local interconnect consisting of address decoders and
memory arbiters, shown here with SystemC TLM-2.0 socket
connectivity.



Note that individual processor cores can only reach memory
addresses within their own cell and the immediate local neigh-
borhood. Specifically, each core has priority access to its own
memory and secondary access to the memories of its immediate
neighbors, but nothing further. Processing cells are intentionally
limited to local interactions only, enabling the true scaling of
the grid.

This work provides three main contributions.

1) We propose a seamless top-down design flow for hard-

ware/software codesign with open source tools.

2) We generate scalable grids of RISC-V processors at
five abstraction levels, namely functional C++, SystemC
TLM-2.0, ISS, RTL, and FPGA. Our experimental eval-
uation quantifies the speed/accuracy tradeoffs in build
and run time, providing systematic and comprehensive
educational value across major abstraction levels.

3) Our quantitative evaluation of two parallel benchmark
applications can guide the system designer in effectively
navigating the large design space, avoiding obstacles and
pitfalls, and reaching an efficient SoC implementation.

The remainder of this paper is organized as follows. After a
brief review of related work in Section I-A, we describe the
five covered abstraction levels and their general purpose in
Section II. We then detail our open-source based tool flow with
model generation in Section III and evaluate it systematically
based on two benchmark applications in Section IV-B and
Section IV-C. We finally conclude in Section V with the lessons
learned and future work.

A. Related Work

In this section, we briefly review prior work on three topics
that are relevant to this article, namely open source EDA
software, array-based many-core architectures, and modeling
with RISC-V processors.

While professional chip design environments are dominated
by only a few EDA vendors, the development and use of open-
source EDA software is fragmented but gaining more traction.
Today, several open-source RTL models are available that come
with design flow implementations with support for open-source
and commercial EDA tools. Some provide partial automation
support from RTL to FPGA and chip layout based on open-
source Makefiles and scripts. For example, PULP (Parallel
Ultra-Low-Power) stands for several RISC-V ecosystems for
different RISC-V SoCs, such as OpenPULP, PULPino, and
PULPissimo with heterogeneous components [9]. Similarly,
Chipyard [10], a framework for chip development of RISC-V
based processor systems with configurable cores, offers seam-
less design automation for RTL simulation (Verilator, FireSim),
FPGA prototyping, and VLSI chip implementation (Hammer).
Chipyard provides support for commercial and open-source
tools (e.g. OpenLane [11]) and several commercial and open-
source Process Development Kits (PDKs).

Array-based many-core architectures are based on the princi-
ples of multiple instructions and multiple data streams (MIMD)
[12]. The concepts of configurable processor grids for mas-
sively parallel processing stem from the principles of trans-
puters [7], [13], introduced in the 80s to overcome the classic

Von Neumann bottleneck [14]. As such, transputers rely on the
principles of a nothing-shared architecture with the advantage
of high scalability and configurable identical cells that can
be customized for individual applications. A transputer is a
single 32-bit RISC microprocessor with local memory and
four serial message-passing IOs, establishing communication
links to adjacent processors. Transputers served as building
blocks of massively parallel supercomputers with up to several
hundred nodes [13]. Recent examples of scalable many-core
architectures include the Raw Processor [15], and the Tile64
[16] with 64 tiles and a configurable switching network. The
recently proposed GPC platform has been explored in early
case studies using the Chipyard framework [17], [18].

In system design and modeling with SystemC [2], [19],
[20], the use of RISC-V processors is a popular choice due
to the free availability of simulators [21] and their seamless
integration with TLM-2.0 models [5], [22]. However, models
across multiple abstraction levels are sparse and, to the best
of our knowledge, no systematic evaluation is available. In
contrast, this work presents a full-scale software and hardware
implementation with a seamless design flow over five abstrac-
tion levels with two non-trivial applications on scaled grids of
RISC-V processors.

II. MODELING AND ABSTRACTION LEVELS

Before we go into tool flow details, we review the major
abstraction levels and their main concerns in system-level
simulation. In this work, we cover five different abstraction
levels, namely (1) functional multi-threaded C++, (2) Transac-
tion Level Modeling (TLM-2.0), (3) Instruction Set Simulation
(ISS), (4) Register Transfer Level (RTL), and (5) Field Pro-
grammable Gate Array (FPGA), as summarized in Table I.

A. Functional Model

At the highest abstraction level, the system designer is
generally concerned with the algorithmic functionality of the
application. An executable specification is designed to validate
the correct functionality, make algorithm and data structure
choices, and optimize the efficiency of parallelism, data flow,
and communication. Without loss of generality, we assume
that the functional model is specified as a multi-threaded C++
program where a number of tasks perform the application’s
functions and communicate via standard communication and
synchronization methods, such as queues and condition vari-
ables. The model is fully functional, but there is no notion
of timing or structure. These properties are added and refined
step by step in the following models using a top-down design
approach.

B. TLM-2.0

The first design decisions concern the structural system archi-
tecture and include platform allocation and hardware/software
partitioning. Specifically, we allocate a GPC of suitable size and
map the functional tasks to processors in the cells. The system
model is specified using SystemC TLM-2.0 and includes the
GPC hardware architecture and the host-compiled software
for every cell. Notably, the model contains explicit memory



TABLE I
SYSTEM MODELING AT FIVE ABSTRACTION LEVELS WITH THEIR PRIMARY CONCERNS, LANGUAGES, AND TOOLS

. Software Hardware
Model Abstraction Level Accuracy Concern
Language Tool Language Tool
Functional ~ Untimed Functions Algorithm Multi-threaded C++  g++ - -
TLM-2.0 Loosely-timed Transactions System architecture ~ C++ g++ SystemC g++
1SS Approximately-timed  Instructions Instruction set C++, Assembly g++-1v32  SystemC g++
RTL Clock-cycle accurate  Clock cycles Critical path C++, Assembly g++-1v32  SystemVerilog  Verilator
FPGA Real-time Physical time  Resources C++, Assembly g++-1v32  SystemVerilog  Vivado
components and is address-accurate for load/store transactions | Ae_MTce | | App.confg App-opP 158 config Config scala
of data, so that, for example, contepthn for data f"tccesses can | e | e
be accurately observed already at this high abstraction level [5], Generator Generator Generator
[23]. On the othe'r hand, the model 1s.only. loos.ely timed. Due @ @
to the host-compiled software, execution time is only a rough
1 1 C+ C+ C++ Cross- C++ FIRRTL
estlmatlon. | Compiler | | Compiler | Comp?l):rs | | Compiler | | Compiler |
C. IsS
For increased accuracy, we next generate an instruction set Verilator | | Vivado |
simulation model. Here, we cross-compile the software of every R —— S PRt SRR »t

cell in the grid for a chosen target processor. The target-
executable files are loaded into the instruction memories at
the start of simulation and then executed using an interpreted
simulator [21]. The main purpose of this model is the selection
and configuration of the instruction set architecture (ISA) and
corresponding code optimization for every cell.

In this work, we specifically use two RISC-V architectures,
namely RV32IMAC_Zicsr (for TokenX, see Section IV-B) and
RV32IMAFC_Zicsr (for ParticleSim, see Section IV-C), where
the latter offers hardware support for single-precision floating-
point arithmetic. Our bare-metal software contains no oper-
ating system, only a minimal boot function (assembly code
bootstrap.s) and a custom queue for communication with
neighbors via push and pop methods.

The ISS software is fully accurate in addresses, data, and
instructions. This allows for optimizing the ISA and analyzing
memory access behavior [22]. While the number of instructions
executed is accurate in this model, their delay is still an
approximation. In comparison to the previous TLM, timing
accuracy improves, but execution speed decreases significantly.

D. RTL

The RTL model is the first model with accurate timing
measured in clock cycles. It is also the first fully detailed
hardware model that is bit-accurate in pins and signals (ob-
servable as waveforms), and serves as the common entry stage
into FPGA prototyping and physical chip implementation. The
main purpose at RTL is the definition of clock cycles, driven
by concerns about minimizing the length of the critical path in
logic design optimization.

While SystemC [24] is an option, System Verilog [25] is our
language of choice to describe and simulate this system model.
Note that while the hardware is majorly refined at RTL, the
software binary remains unmodified from ISS onward.

App.exe App_GPC.exe (GPC_ISS.exe) <GPC_RTL,ex9 (GPC_RTL.bit

TLM-2.0 ISS

Functional RTL FPGA

Fig. 2. Conceptual tool flow to generate models at five abstraction levels

Since the entire model is now clock-cycle accurate, precise
timing analysis is finally possible, however, at the price of
severely reduced simulation speed. For acceptable run times
during debugging, typically only a limited number of instruc-
tions can be executed. Longer software execution can only be
observed in reasonable time at higher abstraction levels, or on
the following FPGA platform.

E. FPGA

For this work, we target a prototype implementation on an
FPGA. Here, the entire system runs in real-time on the physical
FPGA hardware as we will see in Section IV.

The high-speed execution comes at the price of a suitable
FPGA board and an increase in build time, since the model
needs to be synthesized for the available FPGA resources, i.e.
look-up tables (LUTSs) and registers. In contrast to all prior
abstraction levels, where hardware was represented virtually,
the FPGA model uses real hardware resources that need to be
allocated, configured, and minimized. This is typically called
hardware prototyping, as it can be considered the step toward
the final physical chip implementation and layout.

III. Tor-DOWN CODESIGN FLOW

From the functional level down to FPGA, we use model
generation to scale and construct each executable model for
codesign and co-simulation of software and hardware. Here,
we use open-source EDA tools wherever possible [26]. Our
tool flow for the five abstraction levels is shown in Fig. 2.



A. Functional Specification

Our design flow starts with the specification of the appli-
cation in form of multi-threaded C++ source code. Using a
regular C++ compiler on a Linux host, it can be executed for
fast functional validation, as shown on the left of Fig. 2.

B. Transaction Level Modeling

To define and simulate the overall system architecture, we
generate a suitably sized GPC model in SystemC TLM-2.0 us-
ing our high-level GPC generator implemented in Python. With
the application tasks mapped to its cells, the GPC model can
then be compiled and simulated in the same Linux environment
as the prior functional model (Fig. 2 column 2).

C. Instruction Set Simulation

For the ISS model, we separate the software compilation
and the hardware construction. We export the software code for
each cell and compile it using a C++ cross-compiler. The cross-
compiler runs on the simulation host, but generates code for
the chosen target processor configuration, e.g. RV32IMAC. The
cross-compiled binary files are stored in executable and linkable
format (ELF) and will be loaded into the on-chip memories of
the hardware platform at the start of the simulation (Fig. 2
column 3). Note that, to some extent, the same ELF files can
be loaded into the ISS, RTL, and FPGA hardware platforms,
as illustrated by the dashed lines at the bottom of Fig. 2.

To simulate the configured target ISA on the host worksta-
tion, we use an interpreted open-source ISS [21] integrated in
our SystemC model. Configured for the chosen target ISA,
our GPC generator replaces the host-compiled tasks of the
TLM-2.0 model with a corresponding ISS instance in each cell.
The platform model can then be compiled and simulated on a
simulation host at ISS level (Fig. 2 column 4).

D. RTL Hardware Generation

To obtain a clock-cycle accurate model, we use our GPC
generator for RTL, which is a custom extension of the Rocket
chip generator [27] in the Chipyard framework [10]. This
replaces the prior SystemC GPC model with a fully constructed
hardware model in SystemVerilog.

Our GPC generator for RTL, shown in Fig. 2 column 5,
is written in the hardware construction language Chisel [28],
embedded in the high-level programming language Scala. It
emits FIRRTL [29] code for the desired GPC, properly config-
ured for the chosen grid size, memory size, and RISC-V ISA
with or without FPU support. With Chipyard offering multiple
design flows, the FIRRTL circuit compiler then generates an
RTL model in SystemVerilog, tailored to the selected flow.
For RTL simulation, we use the open-source SystemVerilog
simulator Verilator [30]. Verilator translates the System Verilog
model into an intermediate multi-threaded C++ model, which
can then be executed after compilation.

E. FPGA Synthesis

To arrive at a first hardware implementation, we synthesize
the RTL design for the AMD VCU108 FPGA using AMD
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Fig. 3. FPGA resources needed when scaling quadratic GPCs

Vivado!. This hardware synthesis step produces a bitstream
that, when loaded onto the FPGA board, configures it as the
chosen GPC hardware model. For execution on this hardware
prototype, the cross-compiled ELF files of the application
are loaded into the scratchpad memories via JTAG and then
executed by the GPC configured on the FPGA.

IV. PRACTICE AND EVALUATION

To evaluate our codesign flow, we conduct an extensive
set of experiments that build, simulate, and evaluate models
for two applications over five abstraction levels. After briefly
describing our experimental setup in Section IV-A, we begin in
Section IV-B with the introduced top-down design flow using
TokenX, our first scalable benchmark designed with constant
computational load over its run time. Thereafter, we introduce
a second benchmark, ParticleSim, with real-world variable
computational load in Section IV-C. Based on this we discuss
obstacles and pitfalls that arise when design flows deviate from
the designer’s initial expectations.

A. Host Platforms and FPGA Setup

For our experiments, we compile and simulate the functional,
TLM-2.0, and ISS models on a Linux workstation with an
Intel Xeon E-2388G CPU with 16 cores at 3.2 GHz. At RTL,
we construct and simulate our models on a High Performance
Computing (HPC) cluster. Each CPU node in the cluster is
equipped with two AMD EPYC 7763 processors, both featuring
64 cores at 2.45 GHz. We also synthesize the FPGA bitstreams
on the HPC cluster.

Our FPGA experiments are then performed on an AMD
VCU108 FPGA board at 100 MHz. This board has sufficient
LUT and register resources for a GPC up to size 8x8 when
the RISC-V cells are configured with 32 KiB of memory and
without FPUs. Fig. 3 shows the number of 6-input LUTSs
required for grid configurations from 2x2 up to 8x8. It
also compares the capacity with other FPGA boards and
provides a breakdown of LUT utilization between the individual
processing cells and the surrounding SoC infrastructure. The
progressively increasing bars clearly show the linear growth in

INote that Vivado is the only commercial, closed-source tool in our flow.



resource requirements as the GPC scales with the number of
cells.

B. Top-Down Reference Design Flow

We first evaluate the presented design flow using a bench-
mark application with regular structure and behavior. This
benchmark is a simple example that exercises messaging on the
GPC and carries an evenly distributed workload. We generate
five models for 6x6 and 8x8 GPC targets and then analyze
the simulation results in detail.

1) TokenX Benchmark: Our TokenX application is a scalable
benchmark for communication on a grid with a constant compu-
tational load across all cells. TokenX starts with a user-defined
number of tokens in each cell and continuously exchanges these
tokens with neighbor cells in a pseudo-random but repeatable
fashion. It is deterministic and thus suitable for the systematic
validation of data transfers on a GPC.

The execution length of TokenX can be adjusted by a user-
defined number of steps. Each step is one iteration in the
TokenX main loop and performs two functions: it computes
tokens and then exchanges them with neighbors. By adjusting
the number of steps, we can control the execution length of the
application to ensure that simulator run times remain acceptable
at all abstraction levels. This is particularly important at the ISS
level and RTL, where simulators are slow.

2) Experimental Results: To evaluate the speed-accuracy
trade-offs of different simulation platforms at different abstrac-
tion levels, we run TokenX on grid sizes 6x6 and 8x 8. Table II
summarizes our results and quantifies the cost for conducting
the benchmark on each abstraction level in build time and run
time.

In general, the table shows an increase in build time for each
refinement down to the FPGA implementation. Lower levels
of abstraction result in more detailed models. This increase
in complexity causes longer build times. While the functional,
TLM-2.0, and ISS models only take up to a few seconds to
build, the RTL model takes many minutes. With the FPGA
implementations being the most complex ones in the table, their
build time is within hours. There is also an increase in build
time visible when comparing the 6x6 GPC to the 8x8 GPC.
A larger grid size results in more hardware to construct and
thus also increases the model’s complexity. As expected, the
build times of both functional models are identical. Starting at
TLM-2.0, there is a slight increase of 21% in build time visible
for the 8x8 GPC. With more detailed models, this overhead
further increases. The ISS model already shows a 45% increase.
At RTL, the build time is increased by a factor of 2.6, and by
a factor of 2.4 for FPGA.

As known from textbooks, the cost of simulation increases
by orders of magnitude when lowering the abstraction level. To
keep run times reasonable at each abstraction level, we adjust
the number of steps for TokenX accordingly. Given its linear
impact on execution length, and thus on simulator run time, the
number of steps provides smooth, fine-grained control.

In the following, we take a look at the run time of TokenX on
the 8x8 GPC. Starting at the functional level, we execute a total
of 1M steps, resulting in a run time of 22.5 seconds. According

to our measurements, TLM-2.0 is only one order of magnitude
slower in runtime, caused by the lack of parallelism in SystemC
[31], [32] and the explicit modeling of memory transactions.
Therefore, we keep the number of steps constant at 1M and
measure a run time of nearly three minutes, representing a
7.6x slowdown compared to the functional model. At ISS, we
switch from host-compiled to RISC-V target-compiled software
with instruction-accurate simulation. Our experiments show an
increase in runtime by up to two orders of magnitude from
TLM-2.0 to ISS. Thus, we reduce the number of steps by
a factor of 100 accordingly (10K steps). As intended, the
resulting two-minute run time at the ISS level remains within a
similar duration as TLM-2.0. When accounting for the reduced
number of steps, we observe a slowdown factor of 68 when
comparing TLM-2.0 to ISS. As expected, cycle-accurate RTL
simulation is the most expensive simulation in the entire design
flow with respect to run time. From ISS to RTL, we observe
a run time increase of up to three orders of magnitude. To
maintain a reasonable run time, we again reduce the number
of steps by a factor of 100 (100 steps). The resulting run time of
34 minutes matches the expectation, as it is only one magnitude
slower than the ISS. Considering the reduction in number of
steps, there is an increase in run time by a factor of 1.8k from
ISS to RTL. In contrast to the other abstraction levels down to
RTL, the FPGA operating at 100 MHz achieves performance
similar to that observed at the initial functional implementation.
Therefore, we run the full amount of 1M steps again. With a
run time of less than 8 seconds, the FPGA even surpasses the
functional model’s performance by a factor of 2.9.

The run time of the 6x6 grid shows similar order-of-
magnitude differences across the abstraction levels. Compared
to the 88 grid, the only distinction is a slight reduction in run
time: by a factor of 1.7 at the functional level, 2x for TLM and
ISS, and 3.2x at RTL. This indicates that the run-time overhead
introduced by increasing the grid size becomes more significant
at lower abstraction levels.

The simulation column in Table II presents measured metrics
relevant to the given abstraction level. Since the functional
model does not involve simulation, no corresponding metrics
are reported. Starting at TLM-2.0, we report the measured
number of transactions during execution. Beginning with ISS,
we include the number of retired instructions, as all subsequent
models run target-compiled software. When relating the num-
ber of retired instructions to the executed steps, only minor
deviations are observed across the abstraction levels. From ISS
to RTL, a noticeable deviation of 7-8% appears, while the
deviation from RTL to FPGA is negligible at 1-3%. The larger
deviation from ISS to RTL/FPGA is expected, as ISS simulates
individual instructions, whereas the RTL/FPGA models have
detailed processor pipelines and memories. To further compare
simulation speed, we report the millions of instructions per
second (MIPS), reflecting the previously observed orders of
magnitude. At RTL and on FPGA, where execution is driven
by a system clock, the number of elapsed clock cycles be-
comes available. As anticipated, this number is nearly identical
between RTL and FPGA, with less than 1% deviation. Finally,



TABLE II
EXPERIMENTAL RESULTS FOR TOKENX ON 6x6 AND 8 x8 GPC TARGETS

6x6 GPC 8x8 GPC
Model Steps
Build Time  Run Time  MIPS Simulation Build Time  Run Time  MIPS Simulation
Functional 1M 0.33s 12.62s - - 0.32s 22.46s - -
TLM-2.0 1M 3.50s 1:23m - 240M transactions 4.24s 2:51m - 448M transactions
1SS 10K 4.14s 55.86s 0.0479 2.68M instructions  6.01s 1:56m 0.0234 2.71M instructions
. . 25.0K instructions . . 25.1K instructions
RTL 100 15:00m 10:34m 0.00004 74.6K clock cycles 39:21m 33:59m 0.00001 74.7K clock cycles
252M instructions 258M instructions
FPGA 1M 1:04h 7.43s 33.9 743M clock cycles  2:32h 7.73s 324 746M clock cycles
242K LUTs 430K LUTs
TABLE III
EXPERIMENTAL RESULTS FOR PARTICLESIM ON 6 X6 AND 8 x8 GPC TARGETS
6x6 GPC 8x8 GPC
Model Steps - - - - - - - - - -
Build Time Run Time  MIPS Simulation Build Time  Run Time  MIPS Simulation
Functional 100K  0.54s 28.10s - - 0.74s 30.00s - -
TLM-2.0 100K  3.48s 3:46m - 67M transactions 3.95s 4:00m - 98M transactions
1SS 100 9.79s 2:28h 0.0457 406B instructions 15.81s 2:17h 0.0221 183M instructions
. ) 14.6M instructions . ) 8.41M instructions
RTL 10 19:08m 2:26h 0.00167 52.4M clock cycles 42:12m 3:00h 0.00078 32.7M clock cycles
134B instructions .
FPGA 100K  2:41h 1:23h 26.9 499B clock cycles 76‘;?%{};?;:‘3;3{;‘5&O‘L’}y\g; lgﬁ igg{:ble
452K LUTs ’
108 levels, each measured run time is expressed as a factor relative
£ 107 4 Functional to the run time of the 2x2 functional model.
C . T lTSLSN"Z'O Analyzing the run-time factors between adjacent abstraction
2 — RTL levels reveals the following increases: one order of magnitude
S 10+ —— FPGA from the functional level to TLM-2.0, two from TLM-2.0 to
3 104 4 ISS, and three from ISS to RTL simulation. This pattern aligns
,UE’ , well with textbook expectations regarding simulation cost. No-
2 109 tably, the functional and TLM-2.0 models initially show almost
% 107 identical run times on the 2x2 grid, but diverge significantly
E o1 as the grid grows, primarily due to SystemC’s restriction to
(e} . . .
z single-threaded execution. All abstraction levels, except the
10° . . L C
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Fig. 4. Run time comparison of TokenX relative to the 2x2 functional model
normalized to 100 steps across different grid sizes and abstraction levels

we report the utilization of 6-input look-up tables (LUTSs) on
the FPGA. As previously discussed and illustrated in Fig. 3, the
LUT utilization increases linearly with the number of cores in
the grid. This trend is reflected in the observed 77.7% increase
in LUTs utilized, closely matching the 77.8% increase in core
count when scaling from a 6x6 to an 8x8 grid.

3) Lessons Learned: For comparative performance evalua-
tion of the five abstraction levels, we vary grid sizes from 2x2
to 16x16 as shown in Fig. 4. Limited by the most expensive
abstraction level, namely RTL simulation, we restrict measure-
ments to 100 steps. For easier comparison across abstraction

LUT utilization. Starting at a grid size of 4x5, the FPGA
implementation even outperforms the functional model. This is
achieved by a fully parallel, hardware-based prototype of the
GPC platform. The FPGA implementation is, however, limited
to a maximum grid size of 8x8 by our FPGA. Overall, the
design and tool flow demonstrate excellent scalability of both
the simulated platform and the TokenX benchmark application.

C. Obstacles and Pitfalls with Real-World Designs

In contrast to the previous reference design flow using the
TokenX application with regular behavior, we now study a
different benchmark application on the same platform, requiring
only minor adjustments to the configuration of each processing
cell. ParticleSim is an actual Physics application characterized
by an uneven workload that varies over time.



1) ParticleSim Benchmark: Our ParticleSim application sim-
ulates the physical movement of a user-defined number of
particles in a confined two-dimensional space with configurable
velocity, gravity, and attracting or repelling forces. For parallel
execution, the space is partitioned into tiles, each assigned to
a corresponding cell in the GPC. Each cell first computes the
forces on the particles in its tile, taking into account the forces
applied by the particles in neighboring tiles. The combined
forces affect the direction and velocity of each particle and
determine its movement to a new position. When particles cross
tile boundaries, they are handed over to the neighboring cell.

ParticleSim carries a high and variable computational load
requiring floating-point arithmetic. In our configuration, it starts
with 1000 particles, which are evenly distributed over the tiles,
resulting in an equal computational load for all cells at the
beginning. We also apply an initial velocity in the South-East
direction for all particles. As a result, the particles fall down and
concentrate in the bottom right tiles, which gradually shifts the
computational load to a few cells in the grid, until the particles
repel each other and also bounce off the walls, eventually
resulting in a somewhat equal distribution over the tiles for
the remainder of the simulation.

Similar to TokenX, ParticleSim contains a main loop that
repeats the force computation and particle movement for a user-
defined number of steps. Again, a shorter simulation can be
configured by reducing the number of steps, which shortens
the execution length and allows us to keep simulator run times
acceptable at lower abstraction levels. However, note that the
steps in ParticleSim vary significantly in their computational
complexity due to the shifting load of the moving particles, as
we will see in the following.

2) Experimental Results: In line with the TokenX evaluation,
we generate and run ParticleSim on 6x6 and 8x8 grids at each
level, and report the results in Table III.

The build times down to RTL remain consistent with those
of TokenX, with only slight increases due to the larger model
complexity. At the FPGA level, the build time for the 6x6
grid increases significantly, by a factor of 2.5 compared to
TokenX, mainly because of the additional hardware overhead
from FPUs and larger memories, leading to an 87% increase in
LUT utilization. As a result of the hardware overhead, the 8 x8
grid cannot be built, as it exceeds the capacity of our FPGA,
requiring 42% more LUTs than available.

Unlike TokenX, ParticleSim shows a run time increase across
abstraction levels that deviates from the anticipated orders of
magnitude slowdown observed in the previous study. Due to
its high and variable computational load, a single step no
longer has constant run time, requiring a more detailed analysis.
Starting with the functional model, we reduce the number of
steps by a factor of 10 (to 100K) compared to TokenX to
account for the increased computational load of ParticleSim. As
before, we keep the number of steps constant for the TLM-2.0
model, observing the expected slowdown of up to one order of
magnitude compared to the functional model. From TLM-2.0
to ISS, we expect a slowdown of two orders of magnitude
and therefore reduce the number of steps by a factor of 100.
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However, even with just 1 K steps at ISS level, the simulation
does not complete within a day. Therefore, we further reduce
the number of steps by a factor of 10, bringing it down to 100
steps. The simulation then completes after 2.5 hours. However,
relative to the number of steps, we observe a total slowdown
of more than four orders of magnitude from TLM-2.0 to ISS,
which contradicts the expected slowdown of two orders that we
experienced with the TokenX reference in Fig. 4. We note this
mismatch as a first pitfall that requires further analysis.

Based on TokenX, we anticipate the RTL model to show a
slowdown of three orders of magnitude compared to the ISS
model. Reducing the number of steps accordingly would result
in 0.1 steps, which is not feasible in the application. To run at
least a few steps, we choose to execute 10 steps on the RTL
model. Surprisingly, the RTL simulation completes in under
2.5 hours, less than the ISS model that executes 10 times more
steps. Relative to the number of steps, this corresponds to a
slowdown of only one order of magnitude from ISS to RTL,
much less than anticipated and contrary to the slowdown of
three orders observed with our TokenX experience. As this
observation appears too good to be true, it becomes the second
pitfall we encounter.

3) Analysis: To understand the cause of the pitfalls, we need
to carefully analyze the computational load of the ParticleSim



application over its execution length. This load varies not only
across the cells as the particles move between tiles, but also
from one step to the next.

To quickly account for the particles, we instrument the fast
TLM-2.0 model on the 8x8 grid to accurately observe the
number of particles in each tile at every step. Fig. 5 shows the
particle count handled by each cell over 500 steps. The plot
confirms our application knowledge: particles move across the
grid and concentrate in a few cells at the bottom right before
bouncing back again. A clear peak in particle concentration
appears around step 140 in three specific cells (orange, green,
and red lines). The highest load occurs at step 135, where the
cell in row 7, column 5 contains 267 particles, more than a
quarter of the total.

As such, the particle count in a cell becomes a critical
factor for its computational load. At each step, the ParticleSim
algorithm is quadratic in complexity (i.e. O(n?) for n particles)
as it computes the forces acting on each particle by considering
all others within a specified proximity.

We can confirm this understanding using our ISS model,
where the computational load of each cell is reflected in the
number of instructions retired per step. Fig. 6 plots the executed
instruction count for each cell over 500 steps. The peaks for
the top three cells (orange, green, and red lines) around step
140 clearly correspond to the particle concentrations observed
in Fig. 5. Interestingly, cells with few or no particles still
reach a similar number of executed instructions. While this
appears counterintuitive, it is easily explained by the fact that
all cells must wait for slower neighbors to complete possible
particle transfers. Due to our polling-based synchronization, the
instructions associated with busy-waiting patterns accumulate
accordingly.

Overall, we note that the computational load per step, as
shown in Fig. 6, varies highly over the 500-step execution.
Starting from the first step, the load increases rapidly, reaches
its peak around step 140, and then declines just as quickly
before settling into a steady state beyond step 300. At its peak,
the instruction count is over 20 times higher than in the steady
state. In simple terms, it takes roughly 20 times longer to
compute steps at the peak than at the beginning or after step
300 of the particle simulation.

The curve in Fig. 6 explains the pitfalls we encountered.
When running the functional and TLM-2.0 models with 100 K
steps, the initial peak is only a very brief anomaly (only 0.2%
of all steps), making it unnoticeable and seemingly negligible.
However, this peak is what causes the pitfalls encountered with
the much shorter execution length of the ISS and RTL models.
First, when the ISS model executes 1 K steps, the computational
peak dominates the run time, resulting in an unexpectedly
long run time of over a day. Reducing the ISS run to just
100 steps still includes the steep ramp-up phase, explaining
the observed slowdown by two additional orders of magnitude
beyond anticipation.

Second, when running the RTL model for only the initial
10 steps, it captures a phase where the computational load
remains well below the later average. This explains the sur-

prisingly short RTL simulator run time, which initially seemed
too good to be true. Essentially, the two-orders-of-magnitude
discrepancy arises from a combination of the ISS run being
disproportionally slow and the RTL simulation covering only a
computationally light segment.

4) Lessons Learned: Our detailed analysis above not only
explains the obstacles and pitfalls encountered but also serves
as a good example for important insights in system design and
simulation across multiple abstraction levels.

First, the system designer must choose a model at the
right abstraction level for the specific purpose at hand. Here,
examples are the choice of the TLM-2.0 model to quickly
and accurately count the particles handled by the cells, and
the choice of ISS to get an early yet accurate estimate of
computational load per step.

Second, the one-two-three orders-of-magnitude slowdown
from functional to TLM-2.0, to ISS, and to RTL, observed in
Fig. 4, is a good quantitative rule of thumb. However, it only
applies to GPC applications with low and evenly distributed
computational load, such as our TokenX benchmark.

Third, to avoid pitfalls from naive expectations, the system
designer must be aware of the application’s behavior and
anticipate anomalies caused by variable computational load.
In particular, for simulator run-time estimation, it is crucial
to choose the right slice of execution, such as best, average,
or worst-case scenarios. An example would be a stress test of
ParticleSim over the first 300 steps, which include the maximum
load.

Fourth, FPGA prototyping is relatively expensive in platform
cost and build time, but essential for running accurate and
realistic workloads in real time. In our case, the entire workload
of 100K steps completes in under 1.5 hours.

V. CONCLUSION

System designers face obstacles and pitfalls posed by
speed/accuracy tradeoffs across abstraction levels. Using a top-
down open-source tool flow, we have studied two application
benchmarks on a modern grid architecture of RISC-V proces-
sors over five abstraction levels, from the functional specifica-
tion down to FPGA prototype implementation. Unfortunately,
achieving real-time performance with complex designs on
FPGA still requires commercial synthesis tools and evaluation
boards. Across these levels, we have quantified the differences
in simulation speed that amount to six orders of magnitude
in total. The insights gained from our detailed study can be
used by the system designer to better navigate the tradeoffs
and efficiently reach a cycle-accurate implementation on fully
constructed hardware.

Future work includes the study of additional software ap-
plications with other grid configurations. Additionally, we
consider the support of FPGA-accelerated RTL simulation
(FireSim), partitioning of larger grids over multiple FPGAs
(FireAxe), and physical VLSI chip design (Hammer) based on
the IHP SG13G2 open-source PDK.
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