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Abstract—While processor speeds continue to show perfor-
mance increases, memory access speeds remain significantly
slower. One solution is to develop novel computer architectures,
specifically designed to address the memory wall such as the
cache-less Grid of Processing Cells (GPC). In this work, we model
the GPC architecture using SystemC TLM-2.0 at the instruction-
level with high accuracy, while retaining the characteristic high
simulation speeds of transaction-level modeling. To compare the
performance of our modeled GPC with existing architectures,
we also model a single core and an 8-core SMP with optimized
caches and run a bare-metal Canny application on the three
architectures. We show promising performance evaluation results
in architectures without caches.

Index Terms—Embedded Systems, Memory Bottleneck, Vir-
tual Prototyping, Grid of Processing Cells

I. INTRODUCTION

While processor speeds increase significantly every year,
main memory access speed improvements remain significantly
slower [1]. As many cores try to access the shared memory, it
leads to contention and delays each core. This memory bottle-
neck applies to most modern CPUs which are usually shared
memory processors (SMP). Almost all modern processors have
local cache memories to store frequently used data [2] and
avoid contention. Caches are becoming increasingly complex
with multi-level hierarchies so that a miss is rare.

In this paper, we model and evaluate SMPs with highly
optimized caches and a scalable alternative called Grid of
Processing Cells (GPC) where cache-less processors paired
with local memories are arranged in a 2D array [3]. Fig. 1
shows the GPC architecture in a 4x2 configuration. The gray
boxes depict cores whereas the blue boxes show memories.

The GPC is a cache-less architecture with the primary goal
of addressing the memory bottleneck. The checkerboard GPC
has an alternating pattern of cores and memories, with four
memories available per core. This design limits the maximum
possible contention at a memory [4] and promises scalability
[5]. This paper models the GPC accurately at the ISS level and
provides extensive simulation results that show the cache-less
performance benefits.

II. RELATED WORK

Computer architecture began with two types of initial ar-
chitectures, the von-Neumann architecture [6] and Harvard
architecture [7]. von-Neumann architectures share both data
and instruction memory, while for Harvard architectures they
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are separated. The von-Neumann architectures are simpler
but quickly experience contention between data and instruc-
tions. This is termed as the von-Neumann bottleneck [8].
The most widely used architecture has been the modified
Harvard architecture for most general purpose computers [9],
in which there exist separate caches for both instruction and
data but the address space is shared. Caches have behaviour
that is application-dependent and may not provide the same
expected improvement in performance depending on how the
programmer writes code [10]. Caches also implement cache
coherence protocols in the case of multi-core processors [11]
which creates complexity in their hardware design.

Most of all, caches consume significant space on the chip
as well as power [12]. When the workload of a processor
increases, caches do not provide sufficient performance in-
creases. Non-Uniform Memory Access (NUMA) architectures
are required where each core can access near memory faster
than distant memory. Even with NUMA, the time to maintain
cache coherency is usually high [13] and leads to contention
as the interconnect is still shared for every core. There have
been other works related to addressing the memory wall, such
as the Illusion system [14], Tilera Tile64 processor [15], or
the Epiphany-V [16]. Similarities exist between the GPC and
these architectures, such as the fact that they use a cache-less
memory model, but the GPC has a few differences. The GPC
architecture uses an addressing map where each memory has a
unique address space associated with it. GPC has no operating
system and our current implementation is bare-metal. GPC
uses interconnect multiplexers through which cores can only
access neighbouring memories, and does not have a mesh
network to support communication between distant cores. This
reduces the complexity of the architecture, but requires the
programmer to carefully map functions and pass data between
the cores. In particular, the GPC is different from Network-
on-Chip architectures [17] as communication between distant
nodes is not supported in hardware. To run an application on
the GPC, it must be manually mapped to the architecture, with
the programmer being aware of which memories are used to
communicate with other cores.

Our main objective in this work is to model and simulate
these architectures with a high degree of precision, and to
evaluate the practical viability of the GPC when compared
to SMPs. We use an ISS [18] integrated in SystemC as a
virtual prototype and customize its components so that the
GPC architecture is accurately modeled at the ISS-level.
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Fig. 1.

A detailed diagram of the SystemC instruction-level model of the GPC architecture proposed in [3] with a mapped Canny application. The blue

arrows on the left indicate inter-core data flow. On the right, blue arrrows represent TLM-2.0 blocking transport calls (b_transport).

III. PROBLEM DEFINITION

In this work, we model and simulate the GPC, SMP, and a
reference single core architecture, and run a Canny application
on the three models. Our simulation is instruction accurate
and takes into account complex caching behaviour for the
classic models. We compare the three architectures in terms of
execution time and other parameters as the clock rate increases
and with varying memory configurations. Lastly, we discuss
the practical viability of the GPC architecture.

A. The Canny Application

Our Canny edge detector [19] application is a bare-metal
implementation of the original source code [20]. We choose
Canny as reference application because it is a diverse stream-
ing application in embedded systems. Canny has seven func-
tions, namely Gaussian Smooth (GS), Blur in X direction
(BX), Blur in Y direction (BY), Derivative (Deriv), Magnitude
(Mag), Non-Maximum Suppression (NMS), and Apply Hys-
teresis (AH). Each function requires partially computed image
frames from the previous step. Some functions, such as BX,
BY, Mag and NMS, use extensive floating-point operations'.
Moreover, the Canny application exercises different memory
access patterns in each block. For example, BX performs
a horizontal filter and BY a vertical one. In contrast, AH
performs a non-regular pixel traversal along the detected edges
of the image by use of a recursive function FollowEdges
with high stack usage. Other functions traverse multiple image
arrays in parallel. So Canny exhibits diverse memory access
patterns and is a well-suited benchmark for cache evaluation.

Fig. 1 shows the mapping of the Canny application on the
GPC, with core functionality and the location of channels for
communication. The testbench consists of Image and Edge
devices which read the input and write the output images.

IThis results in an unbalanced pipeline as the cores we use do not have
any floating-point unit and use the SoftFloat library instead.

The Canny application is mapped identically on both the
GPC and the SMP models. The models only differ in terms
of where they read data from or write data to. The single core
model has an advantage in this situation as it does not need
to perform any memory-copy operations and does not need to
wait for others to provide data. Each core’s hardware thread
is programmed to first copy the data from the neighbour’s
local memory (GPC) or shared memory (SMP), compute the
function, and place the data back into another local or shared
memory, respectively. Cores interrupt the others for new data
as needed. This improves memory contention compared to
using polling, but we also simulate polling and compare the
two communication methods.

IV. ARCHITECTURE MODELING IN SYSTEMC TLM-2.0

Given the growing complexity of embedded systems, it is
necessary to first model a design at higher abstraction levels
to check whether it is suitable for implementation. For this,
Electronic System Level (ESL) design and verification was
introduced in the early 21st century [21]. An entire system
can be modeled by using System-Level Design Languages
(SLDLs), such as SystemC [22]. SystemC uses Transaction-
Level Modeling (TLM) which allows communication between
modules using a method call [23]. The original TLM-1 used
channels to perform communication between modules. The
channels were modeled as FIFOs or buses. However, to obtain
a more accurate model of a real world design, it is essential
to also include memories and explicit address-accurate trans-
actions. For this purpose, SystemC TLM-2.0 was introduced
where communication between modules takes place through
explicit memories. Access to memories occurs through the
call of a function, b_transport, whenever a read or write is
required. Since SystemC TLM-2.0 provides memory-accurate
modeling, we therefore choose it to model our GPC and other
architectures at the instruction-level.

The GPC architecture consists of an array of cells. As
shown on the right side of Fig. 1, each cell contains an
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in-order 32-bit RISC-V ISS, a fast on-chip memory, a bus
and other peripherals. Both instructions and data are stored
in the local memory which is as fast as a cache (SRAM)
but does not carry its coherence and update complexity. The
RISC-V core accesses the memory in word sized b_transport
function calls. The memory is primarily accessed by the core
in the cell, but other cores may read and write from the
memory through the use of the interconnect multiplexer for
communication purposes. Instructions are loaded into the local
memory through the use of an ELF loader SystemC module.
This needs to be done for every cell, so a different cross-
compiled executable file must be loaded which has the text
segment shifted to match the address space of the GPC. A
bus is present in each cell which maps addresses seen by the
programmer to the physical addresses that the peripherals use.

Each memory has a unique address space associated with
it. This changes based on the size of the local memories.
To access a specific memory which is a neighbour to the
core, the programmer can create a pointer to the address and
read or write to the address of the pointer. Both the bus and
interconnect multiplexer are modeled to show contention [24].
So memory accesses slow down if two cores attempt to access
a memory at the same time. Other peripherals attached to the
bus include a Core Local Interrupt controller (CLINT), system
calls interface, and a Programmable Logic Interrupt controller
(PLIC). These peripherals are present in every cell so that
the GPC is fully scalable to any number of cores. A cell can
communicate with its neighbours using polling or generating
interrupts. A GPC core interrupts all of its neighbouring cells
when it generates an interrupt.
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Fig. 2. Cache simulation results validate the functionality of the cache.

For a fair comparison between the GPC and the SMP, it is
necessary to model SMP caches, as the main novelty of the
GPC is the idea that it is cache-less and does not have the
complexity that caches bring. We model a highly configurable

write-through? cache module for the SMP and single core
architectures. We use the least recently used (LRU) cache
replacement with fully associative placement policy>.

To confirm the correct functionality of our cache, we
simulate the last four stages of the Canny application on a
single core model with hundred different cache configurations
of block sizes and number of cache blocks. Running the simu-
lation (Fig. 2) shows that larger cache sizes uniformly perform
better than smaller ones, which perform poorly because of
high miss rates. While there is some variation in terms of
block sizes compared to the number of blocks, it is not too
significant, and only matters when the size of the cache is
small.
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Fig. 3. Modeled shared memory processor. The blue lines represent SystemC
blocking transport calls (b_transport).

Using the modeled caches, we create an SMP model (Fig. 3)
which has eight cores and a single shared memory. Since
the SMP model has multiple caches, it is necessary that
the data is coherent between every single cache. Maintaining
cache coherence can be time consuming and can cause main
memory accesses, leading to contention. Our modeled cache
is write-through, and we update every cache when a write
happens. This process is assumed to take no time beyond the
cache access itself and provides a fair comparison between
the GPC and the SMP architectures. The SMP architecture
only experiences contention on the bus. Similar to the SMP
model we also create a single core model which performs the
entire Canny computation on a single core. The model closely
matches the SMP architecture shown in Fig. 3 but has only
one core.

V. MODEL EVALUATION

Before evaluating the models, we first provide details about
our experimental setup. To provide maximum accuracy for the
simulation, we set the SystemC tlm_global_quantum to 0. The
Image and Edge modules, which are the test bench, have both
zero delays associated with them. They use a SystemC event to
synchronize reading or writing, which represents an interrupt.

Table I shows the parameters which will be modified when
running the simulation. The main memory access time is set to
50 ns for the single core and SMP models. The GPC does not
use any main memory. The caches and the on-chip memory

2We choose write-through caches because they are simpler to model with
cache coherency and bus contention. Other caches are future work.

3While a fully associative cache may not be realistic, it minimizes the miss
rate and thus models best-possible SMP performance (which GPC still beats).
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are varied in access time from 10 ns, to 5 ns and lastly 2 ns.
CPU cycle time is approximately halved from 20 ns five times
to 1 ns. This varies the clock rate from 50 MHz to 1 GHz.

TABLE II
MEASURED EXECUTION TIMES (S) AND CONTENTION TIMES
AT 2 NS SRAM ACCESS TIME (100X56 RESOLUTION IMAGES)

Three different cache sizes are used for the purposes of the Single Core SMP [ GPC
simulation, with different configurations. This gives us an idea 8kB [ 64 kB [ 512 kB ¢ ls;‘,B ‘ . 234 kB | S12kB | none
. . ycle Time o ns
of the performance of these architectures across a wide span 7696 | 37302 | 37137 | 32720 13546 13358 12103
of configurations. ) ‘ o ‘ = (74 ms) | (89 ms) ‘ (52.9 ms) ‘ (14.2 us)
Cycle Time of 10 ns
TABLE I 2.3551 0.8189 0.7891 0.6457
TABLE FOR EXPERIMENTAL PARAMETERS 31891 ‘ 21497 ‘ 213321 (144 ms) | (199 ms) ‘ (116 ms) ‘ (5.85 us)
Cycle Time of 5 ns
Memory Access Time Cycle Time Cache Size 1.9304 0.5799 0.5437 0.3634
Model Name CS) (ns) | (Blocks x Byte blocks) 23989 ‘ 13594 ‘ 13429 1 275 ms) | (368 ms) ‘ (250 ms) ‘ (19.7 us)
Mgzc‘r‘ier:‘)‘r‘;f/;;o 1 S =128 ced Cyaf 7T1i(I)];e e 2654?37 0.4201 0.1940
. 10 . ! . .
L Cache read hit = 10/5/2 1.9247 | 0.8853 | 0.8688
Single Core | e write it = 06572450 | 641K = 256 x 256 | | L 657 ms) | 64 mo | ioms | ditw
Cache read/write miss = ycle Time o ns
10/5/2+50 ! 512 KB = 2048 x 236 17667 | 07272 | 07107 | 16518 [ 04415 [ 03905 | 0.1376
Main memory = 50 : : : (561 ms) | (706 ms) | (509 ms) (130 us)
Cache access = 10/5/2 20 8 kB =128 x 64
Cache read hit = 10/5/2 10
8 Core SMP | ‘he write hit = 10/5/2+50 5 64 kB = 256 x 256
Cache read/write miss = 2
Cdcég/ﬁ:fg -0 ! 312 KB = 2048 x 236 Table II shows the variation in simulated times as the
On-chip memory = 10 %8 cycle time reduces for the different models with small images.
4 x 2 GPC On-chip memory = 5 5 No Cache The execution time is noted above the contention time which
2
1

On-chip memory = 2

We configure Canny to send four frames through the
pipeline. We use small images of 100x56 pixels in resolution
and 4x larger ones (200x112 pixels) for cache evaluation.

VI. EXPERIMENTAL RESULTS

We now present our simulation results which show the
superior performance of the cache-less GPC over the classic
architectures.

A. Initial Validation

To confirm the functionality of our model, we first simulate
the 4x2 GPC and 8-core SMP with no contention, without
caches, and 0 ns memory access time. The CPU cycle time is
set to 10 ns. We compile the code for both architectures with
flags -march=rv32ima and -mabi=ilp32, with no additional
compiler optimizations. The SMP completes this execution in
0.656 seconds and the GPC in 0.658 seconds. Here, the GPC
is slightly slower since its startup code is more complex. This
verifies that both models and executables are correctly and
fairly implemented. Despite the small image resolution, the
single core, SMP and GPC models take around 20 minutes to
simulate due to the instruction-accuracy.

B. Variation in Cache Sizes with 2 ns Hit Time

In our first experiment, we set the cache hit time (single
core and SMP) and on-chip memory access time (GPC) to
2 ns. We use the same flags mentioned above to compile
our code, but also add the -O3 flag to enable aggressive
optimizations. This is the fastest possible memory access time
that we have simulated. Now we compare the effect that the
cache configurations have on the execution times as the clock
speed rises. Initially the clock cycle time is 20 ns (50 MHz).
This value is stepwise improved by a factor of 20x and the
final simulation has a cycle time of 1 ns (1 GHz).

denotes how much total time was spent waiting to access the
memory by every core. This value can exceed the execution
time of the model as the time spent by every core is added up.
For the GPC, the contention time of every multiplexer in the
system is noted and summed up. This value is always zero for
the single core model and is not shown. The data is visualized
in Fig. 4 for our two image sizes. We observe that the single
core and SMP models perform better with a 64 kB or 512
kB cache over a 8 kB cache. The 8 kB cache is too small
resulting in a high number of capacity and conflict misses.
The contention time reduces, thereby improving the execution
time. Increasing the cache size to 512 kB from 64 kB only
results in slight performance increases, as the cache becomes
saturated. The larger image size slows down the single core
model considerably because the amount of data processing
increases. More cores to increase parallelism is beneficial for
both the SMP and GPC models, but the GPC performs best.

The GPC and SMP models perform roughly the same at
high CPU cycle times, while being significantly better than the
single core model. At high clock rates/low CPU cycle times
the performance of the SMP model starts to stagnate (around
5 ns cycle time), when compared with the single core model
and the GPC. This can be attributed to the increased contention
between the cores as they become faster. The average hit rate
of the modeled caches is listed in Table III. The hit rates are
quite high, as Canny is an application which uses large arrays,
which are stored next to each other in the memory. As the
image resolution is increased, the cache hit rates vary, but the
overall hit rate goes down, especially for the smaller caches
which cannot hold the entire images. Despite the very high hit
rate, the performance is slower than the GPC, because a miss
and subsequent main memory access is expensive and can lead
to contention. Overall, these results show that the GPC is the
faster architecture at high clock rates, and more importantly
scales better due to reduced memory contention.
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Fig. 4. Comparing the execution times when the SRAM (fast) memory has a 2 ns access delay for two different image sizes.

TABLE III
CACHE HIT RATES FOR SMP MODELS

Core Functionality 100x56 Resolution Image 200x112 Resolution Image
8 kB Cache | 64 kB Cache | 512 kB Cache 8 kB Cache 64 kB Cache 512 kB Cache
Core 0: Gaussian Kernel 98.87% 99.84% 99.85% 98.74% (-0.13%) 99.84% (0.00%) 99.84% (-0.01%)
Core 1: Blur X 99.98% 99.99% 99.99% 99.93% (-0.05%) 99.98% (-0.01%) 99.99% (0.00%)
Core 2: Blur Y 99.88% 99.99% 99.99% 99.96% (+0.08%) | 99.89% (-0.10%) 99.99% (0.00%)
Core 3: NOP 99.70% 87.06% 87.06% 86.44% (-13.26%) | 92.52% (+5.46%) | 92.52% (+5.46%)
Core 4: Derivative 98.02% 99.91% 99.98% 94.55% (-3.47%) 99.78% (-0.13%) 99.98% (0.00%)
Core 5: Magnitude 99.94% 99.98% 99.99% 99.90% (-0.04%) 99.97% (-0.01%) 99.99% (0.00%)
Core 6: Apply Hysteresis 99.97% 99.79% 99.97% 99.08% (-0.89%) | 99.82% (+0.03%) | 99.98% (+0.01%)
Core 7: Non-Maximum Suppression 98.87% 99.99% 99.99% 99.95% (+1.08%) | 99.98% (-0.01%) 99.99% (0.00%)

C. Variation in SRAM Access Time and CPU Cycle Time

For our next set of simulations, we set the cache size to
512 kB, which executes the fastest as shown in Fig. 4. The
simulations are run on the different set of parameters listed in
Table I. Our results are graphically shown in Fig. 5. In these
results the x-axis denotes the speed at which the cache or on-
chip memory can be accessed. The y-axis is the cycle time of
the CPU. The z-axis is the total time it takes for the Canny
simulation to complete. We show this plot for the small images
on the left and the larger images on the right. The inference
that we obtain from Fig. 5. is that as the clock speed rises,
execution times fall drastically at first. However, for the change
of cycle time from 5 ns to 1 ns the execution time of the SMP
model does not change much. We observe that in this instance,
it is more important to improve the cache access speed.

The SMP and GPC have similar execution times when the
cycle time and cache access times are higher, and even when
only one of the two is high. We discuss these results for the
small images first. When both of these values start to decline,
the GPC becomes significantly faster, which we observe when
the clock cycle time is 1 ns and memory access time is 2 ns. In
this situation, the GPC simulates in 0.1376 seconds compared

to the SMP which takes 0.3905 seconds. The GPC has an
execution speed advantage of around 3x in this situation. This
happens because as the cores become faster relative to the
memory, they request data and instructions from the main
memory in shorter time, which increases bus contention and
thus slows down the execution time. The GPC also experiences
this issue, but since the memories are shared by few cores at
a time the contention is far less, even without caches. This
trend is weaker at low cycle times and cache hit times, such
as at 20 ns cycle time and 10 ns hit time. In this situation, the
SMP simulates in 1.3358 seconds while the GPC simulates
in 1.2103 seconds. The SMP is only 10% slower for this set
of parameters. There are other configurations in which the
performance of the SMP and GPC are very close to each
other. When using the larger images, we see similar results
with the GPC performing about the same as the SMP at
high CPU cycle times and low memory access speeds. We
conclude from Fig. 5 that as the clock rate and SRAM access
speeds increase, the contention also increases, which results
in the SMP model having slower execution times. The slower
execution speeds due to contention can be minimized with
GPC-based architectures.
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Fig. 5. Detailed performance comparison between the three models when the cache size is set to 512 kB for two different image sizes.

TABLE IV
EXECUTION SPEED COMPARISON OF INTER-CORE COMMUNICATION METHODS WITH 1 NS CPU CYCLE TIME AND 2 NS SRAM ACCESS TIME
(100X56 IMAGE RESOLUTION)

Communication Method SM!J 512 kB Cache. ] GPC ‘ Separate. Instruction Memm.'y GPC
Exec. Time Cont. Time Exec. Time Cont. Time Exec. Time Cont. Time
Interrupts 390446572 ns | 509774095 ns | 137614168 ns 116770 ns 137556163 ns 5002 ns
Polling 393557136 ns | 516821654 ns | 150965762 ns | 38479247 ns | 137697451 ns 45876 ns
Polling w/ 10 ms Timer 417862965 ns | 547786437 ns | 172559562 ns 158117 ns 172556324 ns 7 ns
Polling w/ 1 ms Timer 395031155 ns | 529033013 ns | 140560011 ns 145459 ns 140557310 ns 12 ns
Polling w/ 0.1 ms Timer | 431762008 ns | 781635331 ns | 138530176 ns 207582 ns 138428065 ns 4747 ns
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Fig. 6. The GPC cell with a separate memory for instructions. The memory
multiplexer experiences less contention in this model.

D. Adding a Separate Memory for Instructions

Polling is a simpler method to communicate between
threads or cores. But the disadvantage of it is that the mem-
ory is frequently accessed to check whether a variable has
changed. For the SMP model, this is not an issue, because if
the data does not change, then the memory access only goes
to the local cache and not to the main memory. The increase
in contention due to polling is minimal, but multiple clock
cycles are spent checking if the variable has changed in the
local cache. This causes an increase in power consumption,
but the execution speed remains similar. Polling can have a

significant impact for the GPC architecture however. Since the
instructions of every core are stored in its own memory, when
a neighbouring core attempts to access the same memory to
check whether the polling variable has changed, it leads to
increased contention in the interconnect memory multiplexer.
To resolve the increase in contention due to polling we have
also modeled a variant of the GPC in which the instruction
memory is directly connected to the bus and the memory
used for communication is connected to the interconnect
multiplexer (Fig. 6). Both of these memories will become
smaller in size. The performance improvement is measured
in Table IV. The disadvantage of separating the instruction
memory is that the code segment and communication arrays
must be smaller to fit inside the reduced memory sizes.

E. Comparing Different Communication Methods

The GPC is designed to communicate using interrupts, as
interrupts reduce the power consumption when the core goes
to sleep. We also compare the communication when the cores
communicate using polling and when they communicate using
a timer-generated interrupt. Special addresses are present in the
on-chip memory on the GPC which, when written to, generate
an interrupt waking up its neighbours. A similar mechanism is
present for the SMP model in which only a specific core wakes
up when the interrupt is generated by writing to a designated
memory address. In other words, in the SMP model a core can
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TABLE V
TABLE FOR INSTRUCTION COUNT COMPARISON WITH 1 NS CPU CYCLE TIME AND 2 NS SRAM ACCESS TIME (100X56 IMAGE RESOLUTION)

Communication Method: Interrupts
Core Functionality SMP 5_12 kB Cache GPC Separa?e Instruction Memory GPC
Instructions WFI Instructions | WFI | Instructions WFI
Core 0: Gaussian Kernel 0.1 M 2 0.1 M 0 0.1 M 0
Core 1: Blur X 19.0 M 8 185 M 9 185 M 9
Core 2: Blur Y 355M 1 328 M 3 328 M 3
Core 3: NOP ~ 0.0 M 0 ~ 0.0 M 98 ~ 0.0 M 101
Core 4: Derivative 1.4 M 20 14 M 16 1.3 M 16
Core 5: Magnitude 217 M 14 214 M 36 214 M 36
Core 6: Apply Hysteresis 22 M 4 22M 24 22 M 24
Core 7: Non-Maximum Suppression 264 M 1 263 M 1 26.3 M 1
Communication Method: Polling
Core Functionality SMP 5!2 kB Cache GPC Separa!:e Instruction Memory GPC
Instructions WFI Instructions | WFI | Instructions WEFI
Core 0: Gaussian Kernel 0.1 M 0 0.1 M 0 0.1 M 0
Core 1: Blur X 50.8 M 0 351 M 0 322 M 0
Core 2: Blur Y 384 M 0 343 M 0 342 M 0
Core 3: NOP ~ 00M 0 ~00M 0 ~ 00M 0
Core 4: Derivative 709 M 0 292 M 0 27.6 M 0
Core 5: Magnitude 577 M 0 364 M 0 342 M 0
Core 6: Apply Hysteresis 67.1 M 0 293 M 0 277 M 0
Core 7: Non-Maximum Suppression 41.8 M 0 33.6 M 0 334 M 0
Communication Method: Polling with a 0.1 ms Timer
Core Functionality SMP 5‘12 kB Cache GPC Separa%e Instruction Memory GPC
Instructions WEFI Instructions | WFI | Instructions WFI
Core 0: Gaussian Kernel 04 M 4277 0.2 M 1383 02 M 1382
Core 1: Blur X 194 M 1625 185 M 648 185 M 648
Core 2: Blur Y 358 M 152 329 M 73 329M 73
Core 3: NOP 04 M 4313 0.1 M 1385 0.1 M 1384
Core 4: Derivative 1.8 M 3816 1.4 M 1322 14 M 1321
Core 5: Magnitude 22.1 M 1888 215 M 628 215 M 628
Core 6: Apply Hysteresis 26 M 3559 23 M 1285 23 M 1284
Core 7: Non-Maximum Suppression 26.8 M 848 264 M 359 264 M 359

interrupt any other specific core. The cores can communicate
using polling as well. The last method of communication is
timer generated interrupts (polling at a regular interval) where
the core goes to sleep when it is waiting for data, but wakes
up periodically due to a timer-generated interrupt to check
for the availability of new data. We compare the execution
times of these three communication methods for the SMP,
GPC and Separate-Instruction-Memory GPC. Our results for
small images are tabulated in Tables IV and V.

From Table IV, we observe that the execution times for
interrupts and polling in the SMP model are very close to each
other. When using timer-based interrupts we observe that the
fastest execution speed is achieved with an interrupt frequency
of 1 ms. For the GPC model polling slows down the execution
from 0.137s when using interrupts to 0.15s, a slow down of
roughly 9.4%. When using a separate instruction memory in
the GPC, the slowdown is very small, which implies that
creating two separate memories per cell can be beneficial if
the user decides to communicate using polling. Polling at a
regular interval does not improve execution speeds beyond
only interrupts/polling, but we observe that the memory access
contention is reduced in some cases. The fastest execution
times are observed when using interrupts only, with no polling
in all of the three models.

Table V shows the amount of instructions executed per

core in the three models. When using interrupt-based com-
munication, the models nearly match in terms of instructions
executed. When the communication method is polling, the
SMP model performs significantly more instructions depend-
ing on the core. For example, Core 4, responsible for the
Derivative function, performs 1.37 million instructions when
using interrupts to communicate compared to 70.9 million
instructions when using polling, an increase of 50x. This
leads to much higher power consumption, even though the
execution time remains similar for the SMP model. The GPC
models execute more instructions, but the increase is not as
high as for the SMP model. The reason for this is that the
multiplexer contention increases the delay of memory access
requests, which leads to fewer memory accesses to check
whether the variable has changed. When polling, the models
with the fastest execution time also have cores which execute
less instructions since they do not poll for new data as much
as a core in a model which takes longer to execute.

The number of wait-for-interrupt (WFI) instructions has
also been noted in Table V. We see that the number of
WFI instructions is high when the communication method
is timer-based interrupts. When handling an interrupt, the
program context needs to be stored on the stack, and this
results in memory accesses. These memory accesses can lead
to increased contention in the SMP model as we use write-
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through caches, and slow down the execution. This issue also
exists in the GPC models, but the lesser chance for contention
and faster memory writes result in the execution time not
dropping as much. Some cores, such as core 0 and core
4, which have little work to do, execute WFI instructions
proportional to the execution time of the Canny application.

The best communication method for the GPC is using inter-
rupts, as it has the best execution times, with the least number
of instructions being executed. Ideally, a GPC implemented on
hardware would communicate using solely using interrupts.
However, in a real hardware implementation, it may not be
possible to communicate solely using interrupts, so timer-
based interrupts may be the better option.

FE. Cache vs On-chip memory

The GPC stores both instructions and data in the same on-
chip memory. This results in a situation where the on-chip
memory is very similar to a main memory but has very fast
access times. The practical viability of such a memory must
also be evaluated. When compiling the Canny code for the
SMP architecture, the text segment was 92 kB. For the GPC it
varied from between 7 kB to 17 kB. The size of the executable
program/instructions is not an issue for the GPC as the code
becomes smaller when less functions and variables are present.
Memory is also required for the large arrays created, which
is dependent on the processed data sizes. Since the GPC does
not have a large shared memory in the current configuration,
the data size that it can process is limited compared to the
SMP and single core architectures. To alleviate this, the four
edges of the GPC can be connected to larger off-chip memories
which can increase the processing data size, but accessing the
off-chip memory will be slower and can cause a performance
bottleneck. In future work we plan to record the memory
utilization of each core precisely.

Another advantage of the on-chip memories is that they do
not require any replacement policies or coherency protocols.
Every core sees the same data, thereby providing a simpler
design from a hardware point of view. This reduces the hard-
ware logic requirements of the memory components, thereby
reducing the surface area on the chip. We anticipate that the
GPC architecture will be cheaper to synthesize and have less
die area.

VII. CONCLUSION

We have modeled the GPC architecture at the instruction-set
level with high accuracy and have shown in extensive simu-
lation and evaluation that the cache-less GPC has significant
performance advantages over traditional single and multi-core
architectures. In the future we would like to continue to try a
more diverse range of applications. Complex data-intensive
applications which use a large number cores will be ideal
for the GPC architecture to excel at. The more challenging
and long term objective is to create an advanced compiler
which can automatically take a program and find an optimized
mapping for the given GPC configuration, as well as create
executable files for each core.
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