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Abstract

The semiconductor roadmap estimates the design complexity for digital systems to continue
to increase according to Moore’s law. In the next years, embedded systems with 10ths of
millions of transistors on one chip will be standard technology. System-on-Chip (SOC)
designs will integrate processor cores, memories and special-purpose custom logic into a
complete system fitting on a single die. However, the increased complexity of SOC designs
requires more effort, more efficient tools and new methodologies. Increasing the design
time is not an option due to market pressures.

System-level design reduces the complexity of the design models by raising the level
of abstraction. Starting from an abstract specification model, the system is step-wise re-
fined with the help of computer-aided design (CAD) tools. Using codesign techniques, the
system is partitioned into hardware and software parts and finally implemented on a tar-
get architecture. Established design methodologies for behavioral synthesis and standard
software design are utilized. However, moving to higher abstraction levels is not sufficient.

The key to cope with the complexity involved with SOC designs is the reuse of Intel-
lectual Property (IP). The integration of complex components, which are predesigned and
well-tested, drastically reduces the design complexity and, thus, saves design time and al-
lows a shorter time-to-market. Since the idea of IP reuse promises great benefits, it must
become an integral part in the system design methodology. Furthermore, the use of IP com-
ponents must be directly supported by the design models, the tools and the languages being
used throughout the design process. For example, it must be easy to insert and replace IP
components in the design model (“plug-and-play”).

This work addresses the main issues in SOC design, namely the system design method-
ology, system-level modeling, and the specification language.

First, an IP-centric system design methodology is proposed which is based on the reuse
of IP. It allows the reuse and integration of IP components at any level and at any time
during the design process. Starting with an abstract executable specification of the system,
architecture exploration and communication synthesis are performed in order to map the
design model onto the target architecture. At any stage, the systems functionality and its
characteristics can be evaluated and validated.

The model being used in the methodology to represent the system must meet system
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design requirements. It must be suitable to represent abstract properties at early stages
as well as specific details about design decisions later in the design process. In order to
support IP, the model must clearly separate communication from computation. In this work,
a hierarchical model is described which encapsulates computation and communication in
separate entities, namely behaviors and channels. This model naturally supports reuse,
integration and protection of IP.

In order to formally describe a design model, a language should be used which directly
represents the properties and characteristics of the model. This work presents a newly devel-
oped language, called SpecC, which allows to map modeling concepts onto language con-
structs in a one to one fashion. Unlike other system-level languages, the SpecC language
precisely covers the unique requirements for embedded systems design in an orthogonal
manner. Built on top of the C language, the de-facto standard for software development,
SpecC supports additional concepts needed in hardware design and allows IP-centric mod-
eling. Recently, the SpecC language has been proposed as a standard system-level language
for adoption in industry by some of Japan’s top-tier electronics and semiconductor compa-
nies.

The proposed methodology and the SpecC language have been implemented in the
SpecC design environment. In a graphical framework, the SpecC design environment inte-
grates a set of CAD tools which support system-level modeling, design validation, design
space exploration, and (semi-) automatic refinement. The framework and all tools rely on a
powerful, central design representation, the SpecC Internal Representation (SIR).

Using the SpecC design environment, the IP-centric methodology has been success-
fully applied to several designs of industrial size, including a GSM vocoder used in mobile
telecommunication.
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Chapter 1

Introduction

The semiconductor roadmap [SIA97], published by the Semiconductor Industry Associ-
ation (SIA), estimates the design complexity for digital systems to continue to increase
according to Moore’s law [Ham99]. Applied to the design of embedded systems, Moore’s
law estimates the number of transistors on a chip to double every 18 months. The expo-
nential growth of chip capacity is based on the continuing decrease in geometry size and
increase in chip density.

In the next years, deep sub-micron design, dealing with process technologies of 0.18µm
and below, will allow to integrate 10ths of millions of logic transistors on one chip.
This makes it possible to implement complex embedded systems entirely on a single
chip. System-on-Chip(SOC) designs will integrate system components including processor
cores, memories and special-purpose custom logic blocks into a complete system fitting on
a single die.

SOC design is desirable especially for multi-media applications and portable devices
where embedded systems save space, power and cost. In contrast to traditional ASIC de-
sign, which implements one sub-system in application-specific hardware, SOC design con-
sists of the integration and implementation of special-purpose, complex components which
are interacting with each other. Typically, a SOC includes one or more microprocessors,
several peripheral units, memory blocks, and application-specific logic portions intercon-
nected by on-chip busses.

While the availability of a huge chip capacity enables SOC designs, it, at the same time,
significantly raises the complexity of these systems. The increased complexity requires
substantially more effort, more efficient tools and new methodologies for building such
embedded systems. In fact, the complexity of SOC design is beyond the size that currently
established electronic design automation (EDA) tools and methodologies can handle.

The SIA roadmap shows that aproductivity gapexists between the available chip ca-
pacity and the current design capabilities. While the chip capacity grows by 58% per year

1
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(according to Moore’s law), the support provided by computer-aided design (CAD) tools is
estimated to increase by only 21% each year [SIA97]. If this growing gap cannot be over-
come, it will result in under-utilization of the available chip capacity and thus unnecessarily
increase the cost of embedded systems.

In the past, automated hardwaresynthesiswas used to bridge the productivity gap.
Logic synthesis and recently behavioral synthesis, also known as high-level synthesis (HLS)
[GDW+91], supported designers in order to increase their productivity. Unfortunately, the
help of hardware synthesis is not sufficient for SOC design, since embedded systems require
more and more software content.

It should be clear that an increase in the design time for embedded systems is not an
option in order to solve the productivity problem. Thetime-to-marketis critical for the suc-
cess or failure of a product in the market. Thus, it is necessary to develop and manufacture
the next-generation product (and its embedded system) as quickly as possible in order to
promote “product-on-demand”. Ignoring the market pressures, which require to offer better
products with more features for less money in shorter periods of time, is not acceptable.

The threatening under-utilization of available chip capacity due to the productivity gap
and the strong market pressures force the electronic industry to search for new design
methodologies. More efficient EDA support is required in order to build successful SOC
designs. This is the motivation for system-level design which is defined in the following
section.

1.1 System-level Design

System-level design (SLD) addresses the problem of the increased complexity of embed-
ded systems by raising the level of abstraction. In contrast to behavioral synthesis, which
deals with the implementation of algorithms in application-specific hardware (ASIC de-
sign), system-level design focuses on the problem of mapping an abstract specification
model of an entire system onto a target architecture (SOC design). As mentioned earlier, a
typical target architecture consists of a set of processor cores, memories, peripheral units,
and custom hardware blocks. These system components are interconnected by on-chip
busses whose implementation is part of system-level design as well.

The cost-effective implementation of complex embedded systems requires a high soft-
ware (SW) content. Compared to the high cost of developing dedicated hardware (HW), a
software implementation is inexpensive. In addition, software can easily be modified if re-
quirements change or new features need to be added. However, a software implementation
may not be possible due to performance constraints. It is one task of system-level design
to trade-off an inexpensive and flexible software solution versus a high-speed hardware
implementation. Therefore, system-level design is also referred to as HW/SW codesign.

Codesignis defined as the design of systems involving both hardware and software.
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The main task of codesign is thepartitioning of a single system specification into hardware
and software parts. Then, depending on whether a specific component is to be implemented
in software or hardware, standard software technologies and established hardware design
methods, respectively, are used for the final implementation of the component.

In general, any system consists of parts from different domains. Therefore, system
design often is defined as to also include the mechanical domain in addition to the domain of
electronics (see for example [CHM+99] and [Sch99]). The inclusion of mechanical aspects
extends the coverage of the system model compared to the real system. It also allows trade-
offs to be made between mechanical versus electronic implementation of certain features.

On the other hand, these orthogonal domains are quite independent in most cases and
thus can be treated separately. This separation significantly simplifies the design tasks as
well. Hence, in this work, system design is considered exclusively within the domain of
electronics.

Furthermore, some system-level design environments explicitly support the specifica-
tion and use of analog and mixed signals. While this is useful for sub-systems, for example
in the telecommunication area, the majority of embedded systems is specified completely
digital. Also, the decision whether a signal is implemented as either analog or digital,
can be viewed as an implementation issue that is resolved later in the design flow by back
end tools. Within this work, system-level design targets on the design of digital systems
[Gaj97], including hardware and software parts.

The system design flow usually starts from a formal, abstract specification of the in-
tended design. After the specification has been validated for functional correctness, it is
refined by a sequence of refinement tasks which eventually map the initial specification
onto a selected target architecture. Section 1.1.4 discusses in detail the steps in a typical
system design process including architecture selection, partitioning, scheduling and com-
munication synthesis.

A very important issue in system-level design is the reuse of predesigned, complex
components, often referred to asIntellectual Property(IP). In fact, the reuse of IP is the
main key to cope with the complexity involved with SOC design. In contrast to redesigning
a system completely from scratch, the use and integration of complex components, which
are predesigned (possibly by somebody else) and well-tested, drastically reduces the design
complexity. Thus, reuse of IP saves a great amount of design and testing time and, hence,
allows a shorter time-to-market.

While the idea of IP reuse promises great benefits for system design, there are also
problems to be solved. In order to allow easy and seamless integration in a new system,
IP components need to be portable to different technologies and must provide standard or
flexible interfaces. Good documentation about the IPs functionality, its requirements with
respect to the environment, and its performance and other metrics are required as well.

The reuse of IP must become an integral part in the system design methodology. The
selection, easy insertion and replacement of IP components (“plug-and-play”) in the system
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must be directly supported by the design models, the tools and the languages being used
throughout the design process. These and other issues involved with the reuse of IP are
addressed in more detail in Section 1.1.5.

1.1.1 Levels of abstraction

In computer science, a well-known solution for dealing with complexity is to exploit hier-
archy and to move to higher levels of abstraction. This effectively reduces the complexity
in terms of the number of objects to be handled at one time.
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Figure 1.1: Abstraction versus complexity

Figure 1.1 illustrates this for digital systems. An embedded system, which at the lowest
level consists of 10ths of millions of transistors, typically reduces to only thousands of com-
ponents at the register-transfer level (RTL). Furthermore, RTL components are grouped to-
gether at the algorithm level. Finally, at the highest, the so-called system level, the one sys-
tem is composed of only few components which include microprocessors, special-purpose
hardware, memories and busses. From Figure 1.1, it is obvious that a complex embedded
system is easier to deal with at the abstract system level than at the detailed gate or transistor
level.

The level of abstraction is a trade-off with the level ofaccuracy. A high abstraction level
implies low accuracy, and vice versa. The design process of a new system usually starts
from a highly abstract specification model and ends with a highly accurate implementation
model which reflects the real system with all its details.

The advantage of such a top-down approach is that all necessary design decisions can
be made at an abstraction level where all irrelevant details are left out in the model. This
allows the design tasks to work with a system model with minimum complexity.
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The concepts of abstraction and hierarchy are closely related. In digital systems,hi-
erarchy is inherent in the structure of a system. Every system is composed of a set of
components, and each component is a (sub-) system that, again, is composed of (sub-)
components. In other words, the termssystemandcomponentare recursively defined.

In order to break the recursion in this definition and to clearly identify the system and
its components, it is necessary to name the currentabstraction level. The abstraction level
defines the type of the components used and, thus, also determines the system. For example,
at the gate level, the components are logic gates and the system is the composition of such
gates. One level below, at the transistor level, a single gate can represent an entire system
that is composed of a set of transistors.

It should be pointed out that the termsystem, in general, refers to different things in
different contexts. For example, a modern aircraft can be viewed as one single system
or as a collection of thousands of systems. Within this work, unless stated otherwise, the
term system refers to a digital, embedded system which can be implemented by use of
application-specific hardware and software running on one or multiple processors.

Please note that this definition of a system is consistent with the term system-on-chip.
It is also well-defined with respect to the abstraction level for SOC design, the system level.
A precise definition of system-level design will be given in the following section by use of
the Y-Chart.

1.1.2 The Y-Chart

The Y-Chart [GK83], shown in Figure 1.2, is a conceptual framework which coordinates
abstraction levels in different domains. This can be used to compare and classify different
design tools and design methodologies.

The Y-Chart distinguishes threedomainsrepresented by three axes. A typical design
process starts from the behavioral domain which specifies the pure behavior of the system
without any implementation details, for example in form of program functions or mathe-
matical equations. The design is then mapped onto an architecture in the structural domain.
The structural architecture is composed of components, for example logic gates or RT com-
ponents, depending on the level of abstraction. Finally, an implementation of the design is
manufactured in the physical domain.

The level of abstraction, as introduced in Section 1.1.1, is orthogonal to the domains.
Starting from the center of the chart, the abstraction level, indicated by the dashed, concen-
tric circles, increases from the transistor level up to the system level.

The Y-Chart allows to illustrate design flows and design tasks as paths on the chart. For
example, a complete system design flow starts on the behavioral axis at the system level.
After step-wise refinement towards the center of the chart and mapping onto a structural
and physical implementation, it finally ends on the physical axis at the transistor level.

On the Y-Chart,synthesisis represented by an arc from the behavioral to the structural
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Figure 1.2: System-level design in the Y-Chart

axis. The definition of system-level design is indicated by the arrow in Figure 1.2. The task
of system-level design is to synthesize a structural system architecture from a behavioral
system specification.

As another example, high-level synthesis (HLS) is represented by an arc from the be-
havioral to the structural axis on the RT level.

Furthermore, the tasks of refinement and optimization can be demonstrated on the Y-
Chart as well.Refinementis represented by an arrow on the behavioral axis from a high to
a lower abstraction level. On the other hand,optimizationcan be represented as an arrow at
any point in the chart which points back to its starting point. Thus, such optimization is a
task that is performed in-place and can occur at any level in any domain.

Recently, the Rugby model [JKH99] was proposed as a new conceptual framework tar-
geted to represent codesign tasks. In contrast to the Y-Chart, the Rugby model explicitly
separates software and hardware design. Furthermore, the Rugby model distinguishes five
orthogonal dimensions, namely time, data, computation, communication and transforma-
tion. As such, the Rugby model is much more complex and not as abstract as the Y-Chart1.

1The “beauty” of the Y-Chart lies in its simplicity.
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1.1.3 Models of computation

In order to design an embedded system, a formal model of the system is needed. This
section lists the models of computation which are commonly used in system-level design.
For an in-depth discussion of these models, please refer to other sources in the literature.
Good overviews, including detailed comparisons of the models, can be found in [GVN+94,
GZD97c] or [LS96, LSS99], for example.

Models of computation can be classified into language oriented and architecture ori-
ented models. Among the language oriented models, thecontrol flow graph(CFG) repre-
sents the control flow of a program (for example,if-then-else andloop statements)
in form of a directed graph. Adata flow graph(DFG) is a (typically acyclic) graph used, for
example, to represent expression trees. CFG and DFG can be easily combined into acontrol
data flow graph(CDFG), which is a CFG whose nodes contain DFGs. A CDFG is com-
monly used as an intermediate model for systems specified with imperative programming
languages.

Architecture oriented models represent an abstraction of the target architecture for a
system. The basis for these models is thefinite state machine(FSM) model which is a pop-
ular model to describe control. A FSM consists of states and transitions between the states.
The output of a FSM is either state-based (Moore-type FSM), or input-based2 (Mealy-type
FSM). A FSM model can be easily implemented in hardware as a controller consisting of a
state register and a block of combinatorial logic.

The FSM model has several extensions. Combined with the DFG model representing
computation, thefinite state machine with datapath(FSMD) is a typical target model for
behavioral synthesis. The implementation of a FSMD consists of a controller and a datap-
ath. Very similar to the FSMD model is thefinite state machine with coprocessors(FSMC)
as defined in [JDK+97].

In order to represent complete systems consisting of several concurrent processing ele-
ments, more complex models are required. For example, thecodesign finite state machine
(CFSM) model, described in [CGH+93], can be used to represent a set of concurrent execut-
ing and communicating FSMs. Alternatively, hierarchy and concurrency can be explicitly
added to the FSMD model. This results in thehierarchical concurrent finite state machine
with datapath(HCFSMD) which allows to have sequential or concurrent sub-states in each
state of the FSM.

Finally, programming language constructs can also be added. Theprogram state ma-
chine (PSM) model, defined in [GVN+94], is a HCFSMD whose leaf states contain pro-
gram statements. The PSM is a powerful computational model that is used, for example, as
the underlying model of the SpecCharts language [GVN93].

Many other models exist with focus on different features. The model ofcommunicat-

2The output of a state-based FSM depends solely on the current state, whereas the output of a input-based
FSM depends on the current stateand the current input.
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ing sequential processes(CSP), described in [Hoa85], emphasizes communication. The
synchronous data flow(SDF) model is used in [LM87] to represent data flow intensive ap-
plications and digital signal processing.Petri nets, first described in [Pet62], are used in
several variants and provide a well-defined, formal background for the static analysis of
systems.

The model of computation used for embedded systems design should meet certain re-
quirements and objectives. First, it should beintuitive to understand so that it is easy to
specify the intended system with the model. Second, it must beexecutablein order to allow
early system simulation. Furthermore, the model should beverifiable, in other words, it
should provide support for formal verification. Finally, it must besynthesizableso that an
implementation of the model can be obtained.

The models listed in this section achieve these goals more or less. It is not possible
to decide which model of computation is best suited for the design of embedded systems.
For the SpecC system, which is described later in this work, the PSM computational model
was chosen. Since the PSM model is close to the target architecture, it simplifies the de-
velopment of CAD tools. The model also is easy to understand and sufficient powerful for
the large complexity of SOC design. The PSM model is directly supported by the SpecC
language, the SpecC CAD tools, and the SpecC methodology.

1.1.4 System design process

The system design process starts with a specification of the intended design at a high level
of abstraction and ends with an implementation model that accurately describes the im-
plemented system and its components. In order to obtain the implementation from the
specification, a set of refinement tasks is applied to the system model. This section defines
the necessary tasks in a typical system design process.

Figure 1.3 illustrates a top-down design process using step-wiserefinement. Starting at
the top of the pyramid, the specification model is transformed by a sequence of design tasks
into refined models. At each stage, the availabledesign space, as indicated by the shaded
triangles in Figure 1.3, has to be explored. The goal of this design space exploration is to
make a good design decision that will lead to an implementation model close to the target.

Each design decision affects the subsequent one in the way that the available design
space shrinks. Obviously, it is important to choose the right model from the set of possible
alternatives so that the target stays well inside the design space. Otherwise, if the decision
is made in the wrong direction, the implementation will miss the target.

In general, each design task can be performed manually by designers or automatically
by CAD tools. Also, both ways can be combined using semi-automatic refinement. Typi-
cally, it is up to the designer to make the design decision. Then automated tools are used
to actually perform the tedious refinement with the design such that the decision made is
reflected in the refined model.
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Figure 1.3: Design process using step-wise refinement

It should be noted that the termsspecificationandimplementationare relative to a par-
ticular design task or abstraction level. The implementation model generated by one task
usually serves as the specification model for the next task.

1.1.4.1 Specification

The specification of the intended system is the starting point for the design process. The
specification must meet several requirements. First, it should becomplete. In other words,
it should cover the entire design with all its features, its functionality and its requirements.
On the other hand, the specification should also beabstract. It should not include any
premature implementation details.

Furthermore, it is required that the specification is captured unambiguously in aformal
language so that it can be processed by automated tools. More specifically, the specification
must beexecutableso that simulation can be used to validate the functionality of the system
from the beginning.

The specification is the first formal and functional description of the system. It serves
as an initial model against which all subsequent, refined models will be compared.

1.1.4.2 Validation

In order to ensure the correctness of a system model, it has to be validated.Validationcan
be performed either statically by model analysis or dynamically by simulation.
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As mentioned earlier,simulationrequires the system model to be executable. Simu-
lation validates the functionality of the system model in terms of the outputs generated
for given input vectors. At different levels of accuracy, it can also be used to check the
correctness of communication, synchronization, and timing.

Simulation usually is performed by a software simulator running on a host work station.
However, system simulation in software is typically several orders of magnitude slower
than the real system, in particular at low levels of abstraction. Hence, the system can only
be validated for a short period of simulation time and a small set of test vectors. If this
is not sufficient and more effort and higher cost are acceptable,rapid prototypingcan be
used to increase simulation speed by use of reprogrammable hardware, for example, field
programmable gate arrays (FPGA) [Ros97].

It should be emphasized that simulation only validates a system model for the given
test vectors and therefore, unless exhaustive simulation is performed, does not cover all
possible cases. In contrast to validation,verificationyields a 100% test coverage. Formal
verification is a static analysis technique which can be used to prove certain properties of
the system model. Formal verification requires a well-defined, formal model and, because
of its complexity, can usually only be applied to very small systems.

In order to evaluate characteristics of a system which are not directly observable from
the model, estimation techniques can be used. The task ofestimationis to quickly determine
critical quality metrics of the system such as performance, power consumption, size, cost,
and others. Estimation can be performed either statically by analysis of the system model,
or dynamically during simulation, for example, by use of profiling.

For estimation, there is a trade-off of accuracy versus time. The emphasis of estimation
is on fast, rather than exact, system evaluation. Thus, the use of estimation enables the
designer to make a reasonable design decision in short time. This is in contrast to a con-
servative approach which actually synthesizes all alternatives in order to make an optimal
decision, as proposed in [Nie98], for example.

When finally a system has been manufactured, it must be tested for full functionality
and no manufacturing defects. The high complexity of SOC designs requires that the chip
is prepared for itstestingalready during the design process. Typically, built-in self-test
(BIST) and other techniques are used to allow testing of chips with IP cores [ZMD99].

1.1.4.3 Refinement

After the system specification is captured and validated, it is the task ofarchitecture explo-
ration to allocate the system architecture, to partition the specification into hardware and
software parts, and to map all parts of the design to the components in the architecture.
During architecture exploration, estimation is used to determine the quality characteristics
of the architecture under consideration. If the metric goals are not satisfied, the system is
repartitioned or a different architecture or different components are selected. In the worst
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case, if no acceptable solution is found, the specification must be changed in terms of goals,
constraints, or features.

It is the task of architectureallocation to determine the number and types of the pro-
cessing elements (PE) and the connectivity for the system architecture. The components in
the target architecture typically include processors, application-specific hardware, memo-
ries, peripheral units and IP cores. These components are interconnected by system or local
busses. All components and busses are selected from the component library.

Most parts in a system specification can be implemented in either software or hardware.
It is the task of HW/SWpartitioning to trade off an inexpensive software solution versus
a high-speed hardware implementation. Typically, only performance-critical parts of the
system are implemented in hardware and all other parts are compiled into software to be
executed on the allocated processors.

In general,schedulinghas to be performed for the software parts of the system, since
sequential processors can only execute one thread at a time. Scheduling determines the or-
der of execution for the tasks assigned to a processor. Scheduling can be static or dynamic.
A static schedule can be computed at design time if all constraints, including task execu-
tion times, delays, and dependencies, are known beforehand and do not change at run-time.
Otherwise, dynamic scheduling must be used. In that case, the execution order for all tasks
is determined dynamically at run-time, for example, by use of a real-time operating system
(RTOS).

At the end of architecture exploration, each object in the specification is mapped to
a particular hardware or software component. The quality of thismappingdepends very
much on the granularity of the objects. A coarse grained granularity, which, for example,
considers entire processes as smallest, indivisible units, simplifies the refinement tasks since
less objects need to be handled, but also limits the implementation options. On the other
hand, a fine granularity enables more options allowing a possibly better implementation,
but also increases the complexity and, thus, the refinement time.

After architecture exploration,communication synthesismust be performed. This in-
cludes the selection of communication protocols for the selected busses, hardware interface
synthesis, and software driver generation. More specifically, accesses to data, which is as-
signed to a different PE, must be converted to remote procedure calls (RPC). Then, the
RPCs can be implemented by use of the native bus protocol provided by the bus connecting
the PEs. For hardware, interfaces need to be synthesized, and for software, device drivers
must be generated. In case busses with different protocols need to be connected, protocol
transducers must be inserted. In summary, the task of communication synthesis is to re-
fine the abstract communication between the components in the architectural model into an
implementation using the actual bus protocols.

The system-level design process is completed with theback end. The task of the back
end is to make the refined system model available to established design methodologies for
behavioral synthesis and standard software design. In order to allow a seamless integration,
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it is important that the output generated by the back end can be used without modification
as input to the subsequent tools.

For the software parts of the system, program code, for example C or assembly code, is
generated so that standard compiler, assembler and linker tools can be used for the software
implementation. If available, a retargetable compiler can generate code for all the allocated
processors. Otherwise, a processor-specific tool set is needed for each type of processor in
the system.

For the hardware parts, a synthesizable hardware description is generated, typically in
VHDL or Verilog. This description can then be fed into high-level synthesis tools in order
to implement the custom hardware.

1.1.4.4 Methodology

In the previous sections, the typical tasks used in the system-level design process have been
discussed. It must be emphasized that most of these tasks are interdependent. Moreover,
there are cyclic dependencies. For example, the architecture allocation heavily influences
the partitioning task, and vice versa. Also, timing constraints are input and output for
both scheduling and communication synthesis. Because of these dependencies, there is no
sequence of tasks which guarantees an optimum solution.

A heuristic solution to this problem uses an iterative approach. A set of tasks is repeated
until an acceptable solution is found. The decision, whether a solution is “good enough” to
proceed to the next task, is made by the system designer based on estimation data and his
experience.

However, the design tasks must be supported by CAD tools and CAD tools place restric-
tions on the order they are executed. Thus, the system designer has to follow the guidelines
under which the CAD tools were developed. Such a set of guidelines, which refine the
abstract specification model into a detailed implementation model ready for manufacturing,
is called amethodology.

A top-down methodology starts with a specification at the highest level of abstraction
and moves down to lower levels while step-wise refining the model. With each step, the
design model becomes a more accurate representation of the final implementation.

On the other hand, a bottom-up methodology starts from the lowest level, composing
components together. These composed components then can be used in the next step to
build even more complex components.

Both methodologies can be combined in order to achieve the best productivity. Usually,
the top-down methodology is used until the system is decomposed into components which
can be selected from the component library. The component library, on the other hand, is
built using the bottom-up strategy.

With this combined approach, only the top-down phase affects the crucialtime-to-
marketfor the product, because the component library can be built beforehand. Thus, the
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key to a short design time enabling“product-on-demand” is the use of IP components,
which are predesigned and can be easily integrated in order to build the product. The sys-
tem design methodology, which is based on the integration of IP components, is called
IP-centric [GDZ99a, GDZ99b].

1.1.5 Intellectual Property

As stated earlier, the reuse of IP is a key issue in SOC design. In fact, it is considered a
paradigm shift that can be compared to the introduction of high-level synthesis a few years
ago. This section elaborates on IP components and the benefits, problems and requirements
with IP reuse.

1.1.5.1 IP components

At the system level, predesigned components are frequently called IPs. IP components are
independent processing elements, in other words, they have their own flow of control and
interact with the other system components via the system busses. Unlike full-custom com-
ponents, which are synthesized from scratch specifically for the application, IP components
are selected from an IP library and are fixed or allow only limited customization.

Typical IP components include memories, processors, and industry standard circuits.
Memory IPs, like RAM and ROM blocks, can usually be customized in their size, whereas
processor IPs come typically as fixed cores. Processor IPs include embedded micro-
controllers, general-purpose, and digital signal processors (DSP). Special-purpose IPs im-
plement industry standards, for example, encoding and decoding algorithms like MPEG,
JPEG, etc., or communication devices like PCI or VME bus interfaces.

IP components can be categorized into hard and soft IPs.Hard IP components are
developed by use of a standard design process and are fully implemented in a specific
technology. In particular, for hard IPs, there is a physical representation of the layout, for
example, in form of a GDS-II file [KB98]. Since hard IPs are fully implemented, their
performance characteristics and other metrics are very accurate and predictable. However,
hard IPs are inflexible and limited to a specific target technology.

Soft IPcomponents, in contrast, are very flexible IPs which come typically in form of
synthesizable RTL code. Usually, soft IPs can be parameterized or are user-configurable in
terms of data size, features, etc. Since soft IPs are synthesizable, they can be implemented
in any target technology as well. However, the implementation metrics of soft IPs are not
as predictable as for hard IPs, because the final implementation has yet to be synthesized.

IP components can also be classified into internal and external IPs. Since the process of
developing the system is decoupled from the development of the IP components, these tasks
can be performed independently by separate design teams in possibly different companies.
Internal IPs are developed inside the same company which builds the system. Typical
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internal IPs include legacy designs which can be reused from former products that have
been proven to be successful.

The use ofexternal IPis part of a new business model in the EDA industry. External IP
components are developed and provided by IP providers outside the company building the
system. While the system house, also called IP integrator, can focus on the problem of the
system specification, integration and implementation, IP vendors develop and offer the re-
quired IP components. With this approach, the system house benefits from a large library of
optimized, well-tested and well-documented components which are available when needed.
The IP providers, on the other hand, can take advantage of their expertise in specialized de-
sign areas without the need to build and sell complete systems. This business model works
well because, in many cases, it is cheaper for the system house to purchase an IP component
as to invest time and money to develop it from scratch.

1.1.5.2 IP reuse

The reuse of predesigned components is well-known in the EDA. For example, at the RT
level, reuse includes the instantiation of components from the RTL library, such as reg-
isters, multipliers, arithmetic-logic units (ALU), etc. Similar to IPs, the components in a
RTL library can be internal legacy components or external components supplied by another
company.

The advantages of reuse are similar at the RT and the system level. At both levels, reuse
of components drastically reduces the time and the cost of the design because the reused
components are already designed, optimized, and tested. However, in order to exploit these
benefits, several problems have to be overcome.

The main two problems involved with design reuse are component matching and com-
ponent integration. First, the task ofmatchingis to find a corresponding counterpart in
the component library for a part of the design specification. A component can only be
used in the implementation, if it matches the functionality and meets the constraints in the
specification.

Then, the task of componentselectionis to choose one component from the set of
matching components which best meets the design goals. Typical design goals are minimal
cost or best performance.

Finally, when a suitable component is chosen, it must be integrated with the rest of the
design. The task ofintegration is to ensure that the component is properly connected and
controlled so that it cooperates with the other system components and works with the right
data at the right time.

Component matching and integration are more difficult at the system level than at the RT
level because of the higher level of abstraction. At the RT level, the behavioral and structural
models of the components are close to the behavioral specification so that mapping and
integration are usually straightforward.
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For example, the behavioral model of an adder is simply an add operation indicated
by a plus sign. The structural model is a component with two bit vector input ports and
one bit vector output port. With these models, it is easy to map an addition onto an adder
component by feeding the left and right arguments into the input ports and reading the result
from the output port3.

At the system level, however, the tasks of component matching and component inte-
gration are not as straightforward because the behavioral and structural models of system
components are much more complex.

The functionality of both, the system specification and the IP components, is described
by algorithmsrather than primitive arithmetic operations. Hence, IP matching essentially
has to deal with the comparison of algorithms. Whether two algorithms match, however, is
undecidable in the general case. Therefore, IP matching requires special handling by the
tools4 or the help of the designer.

The integration of IPs includes similar problems. Instead through plain ports, IP com-
ponents usually communicate via non-trivial interfaces by use of possibly complex commu-
nication protocols. Hence, IP integration typically requires interface synthesis and protocol
translation to be performed.

While the matching, selection and integration of IP components are tasks performed
by system integrators, IP providers have to deal with the task of IP protection which is
discussed in the following section.

1.1.5.3 IP protection

Since the business of IP vendors depends on selling their intellectual property to other
companies, IP providers have to protect their IP from being copied, modified, or reverse-
engineered. IP protection addresses the security issues for external IPs.

In general, IP components are covered by a copyright and can be further protected by le-
gal contracts and non-disclosure or non-distribution agreements. However, it is usually very
difficult to detect and to prove that an IP is used without permission. Therefore, technical
measures are taken in addition to legal guarantees.

For hard IPs, protection can be easily achieved by keeping the final implementation
with the IP provider. This works well if the IP is provided by the same silicon vendor
who also performs the final layout and manufacturing of the system. Instead of the real
implementation, the system integrator is supplied with simulation models and estimation
data of the IP. With these models, the system can be developed without the need for the
real IP. Typically, the deliverables for a hard IP include simulation and timing models at

3Given a properly annotated component library, matching and integration is not significantly more difficult
for other RTL components.

4For example, the matching of IP components could be indicated by use of a naming convention or some
form of annotation recognized by the CAD tools.
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different levels of abstraction, performance, power, and other metrics, a floor plan model,
and comprehensive documentation about the functionality and interface specification of the
IP [KB98].

For soft IPs, a different approach is necessary. Since the final implementation will be
synthesized by the system integrator, the complete, synthesizable model must be made
available. In order to still hide the implementation or algorithm details, the IP can be
provided in precompiled format without source code. This is basically the same, well-
known idea used in the software business to protect proprietary code from being reverse-
engineered.

Watermarking can also be used for IP protection. This technique inserts a unique iden-
tifier, a so-called watermark, into the component. Such a watermark is typically hidden and
difficult to remove. The existence of a watermark ensures that the component can always
be identified. Watermarking can be easily applied to hard IPs [KLM+98], but is difficult for
soft IPs since it must be ensured that the watermark is not lost during synthesis.

1.1.5.4 IP requirements

This section summarizes the requirements for successful reuse of IP. Different requirements
apply to the components, the methodology, the design model, and the tools being used in
system level design.

In order to be reusable, IP components must provide support for IP matching, selection
and integration. IP matching requires a clearly specified functionality. For IP selection,
accurate quality metrics are needed, such as performance, power consumption, size and
cost. In order to allow seamless IP integration in a system, IP components must provide
standard or flexible interfaces. In other words, the IP interfaces and the communication
protocols used must be clearly specified.

Furthermore, IP components need some form of protection and should be highly opti-
mized and well-tested. In order to increase the reusability, IPs should also be customizable
to different environments and portable to different technologies. The deliverables for IP
components include simulation models at different abstraction levels, quality metrics and
comprehensive documentation [KB98, SK+99].

The system design methodology must be IP-centric. In other words, IP reuse must be an
integral part of the methodology. The methodology must encourage the reuse of IP by use
of guidelines and IP-centric models. Last but not least, the methodology must be supported
by suitable tools.

Well-defined, IP-centric models are required for the design and component representa-
tion throughout the design process. The design model must allow the easy insertion and
replacement of IP components (“plug-and-play”) at any time in the design process. This re-
quires that the model clearly separates communication and computation in the design. This
ensures that communication and computation portions can be clearly identified and easily
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replaced with different communication protocols or computation algorithms.
Finally, tools are required to support the user with design maintenance and refinement.

System-level tools must recognize and support IP components. While design decisions usu-
ally are made by the system designer, CAD tools are needed for all tedious and error-prone
tasks during the design process, including specification capture, architecture exploration,
communication synthesis, and hand-off to semiconductor manufacturing.

This work addresses the issues of system-level design in general, and, in particular,
the problems involved with the reuse and integration of IP components. An IP-centric
methodology is presented which is based on well-defined design models and a language
that specifically supports the requirements of system-level synthesis.

1.2 Related Work

This section contains a brief overview about related work in system-level design.
While there are efforts, such as the virtual socket interface alliance (VSIA) [BS99],

which address general system design issues like the definition of SOC design, system data
formats, IP interfaces and modeling guidelines, the majority of interesting projects resemble
actual design systems. A subset of such systems for codesign and system-level design is
presented in the following section.

Furthermore, Section 1.2.2 lists traditional languages which are commonly used for
software, hardware, and system development.

1.2.1 Design systems

For system-level design and codesign, promising approaches and methodologies have been
proposed in the academia as well as in the industry. A set of interesting tools and design
environments has already been developed.

Table 1.1 lists promising system-level design projects developed by universities. Fur-
thermore, a set of commercial tools and design systems is shown in Table 1.2. It should
be noted that many commercial tools have evolved from university projects. For example,
CoWare and SystemC5 originated in academia

Although it is very difficult to classify all these approaches, the main emphasis for each
project is noted in Table 1.1 and Table 1.2. Most systems try to cover many aspects of
system-level design, but have their strength in the area indicated in the tables. Each of these
projects really focuses only on a subset of the tasks. Furthermore, the target architectures
addressed by the tools are, in many cases, quite specific and do not cover the whole design
space.

5SystemC originally is Scenic.
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Project University Main Focus
Chinook Univ. of Washington Communication synthesis
Cobra Univ. of Tübingen Rapid prototyping
Cool Univ. of Dortmund Synthesis
Cosmos TIMA Laboratory Synthesis
Cosyma TU Braunschweig Synthesis
JavaCAD Univ. of Bologna Networked framework
JavaTime UC Berkeley Simulation
Lycos TU Denmark Synthesis
Polis UC Berkeley Formal specification
Ptolemy UC Berkeley Simulation
Scenic UC Irvine Simulation
SpecSyn UC Irvine Exploration
Tosca Politecnico of Milan Synthesis
Vulcan UC Irvine Synthesis
Weld UC Berkeley Networked framework

Table 1.1: System-level design projects in academia

The SpecC design environment described in this work compares well with the set of
academia projects listed in Table 1.1. As described later, the SpecC system addresses sys-
tem specification, simulation, as well as synthesis. However, the main focus of SpecC is
design modeling, which is described in detail in Chapter 2.

System-level design and codesign systems can be classified by either homogeneous or
heterogeneous specification.

� Homogeneous specification: A single language is used for specifying the system
including hardware and software parts.

� Heterogeneous specification: Different languages are used for specifying the system,
for example, VHDL (for hardware) and C (for software).

Examples for both types of systems are given in the next two sections.

1.2.1.1 Homogeneous specification

Chinook: Chinook6 [COB95] is a codesign tool that addresses in particular interface and
communication synthesis. Cosimulation and cosynthesis with timing constraints are ad-

6Online information about Chinook is available at:
http://www.cs.washington.edu/research/projects/lis/www/chinook/
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Project Company Main Focus
COSSAP Synopsys, Inc. Capture
CoWare CoWare, Inc. Interface synthesis
Eaglei Synopsys, Inc. Simulation
SystemC Synopsys, Inc. Simulation
Seamless Mentor Graphics Corp. Simulation
SPW Cadence, Inc. Capture
XE Y Explorations, Inc. Reuse

Table 1.2: System-level design projects in industry

dressed as well. Chinook is targeted at the design of control-dominated, reactive systems.
The system specification is homogeneous since Verilog is used as the only input language.

Tosca: Tosca7 [BFS95] is a synthesis-oriented system which, just as Chinook, targets at
the design of reactive real-time embedded systems. Tosca is an early, pragmatic approach
to codesign automation of control-dominated systems. The target architecture consists of a
single micro-processor core and several ASICs. Assembly code is generated for execution
by the processor and the ASICs are described in VHDL.

Cool: In contrast to the control-dominated systems Chinook and Tosca, Cool [Nie98] is
a codesign system for data-flow dominated embedded systems. With Cool, a system is
specified in VHDL. The synthesis result consists of assembly code for possibly multiple
processors and synthesizable VHDL for possibly multiple ASICs. Cool emphasizes a pre-
cise partitioning approach using mixed integer linear programming (MILP) based on exact
cost and performance measures.

Vulcan: Vulcan [GM96] is an early, synthesis-oriented system with homogeneous specifi-
cation. HardwareC is used as description language for both hardware and software. Vulcan
starts with a complete hardware solution (everything is implemented in ASICs) and then
iteratively moves tasks to a single CPU in order to reduce the costs while obeying the given
performance constraints.

Cosyma: Cosyma [EHB93, HE97,̈OBE+97] is a synthesis-oriented system focusing on
hardware/software partitioning. The system is specified in Cx, a variation of the C language.
The target architecture consists of one RISC processor with a coprocessor implemented in

7Online information about Tosca is available at:
http://www.cefriel.it/eda/projects/tosca/html/default.htm
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an ASIC. In contrast to Vulcan, Cosyma starts with an all-software implementation (the
complete system is executed on a single CPU) and then moves tasks to the ASIC if the
performance constraints are not satisfied.

Lycos: Just as with Cosyma, the target architecture of Lycos [MGK97] is an embedded
micro-architecture consisting of one processor with a coprocessor implemented as an ASIC
or FPGA. With Lycos, the system is homogeneously specified in either VHDL or the C
language. The main emphasis of Lycos is the partitioning task.

Cosmos: Cosmos [VRD+97, IAJ94] targets at the development of multiprocessor archi-
tectures using a set of user-guided transformations on the design. In contrast to Cosyma
and Lycos, the target architecture consists of possibly multiple processors. In Cosmos, the
system is specified in SDL. The generated output consists of VHDL for the hardware, and
C for the software parts of the system. It should be noted that the Cosmos system has been
extended to support cosimulation with parts in the mechanical domain which are described
in Matlab [CHM+99].

SpecSyn: SpecSyn [NVG91, GVN93, GVN+94] is a codesign environment for systems
specified in SpecCharts, which is a front end language for VHDL. The main focus of the
SpecSyn system is design estimation and design space exploration. The target architecture
consists of multiple processors, ASICs and memories, connected via system busses.

Scenic/SystemC: The academic Scenic project [GL97, LTG97, GKL99] recently has
been commercialized in form of the SystemC8 initiative. In Scenic (or SystemC), the de-
sign system is described with the software programming language C++. Required modeling
features not present in the language, like, for example, concurrency and synchronization,
are specified by use of special methods implemented in standard classes provided with the
Scenic libraries. Although Scenic targets also at system synthesis, its main focus is simu-
lation. In other words, Scenic is a simulation-oriented system, in contrast to the synthesis-
oriented systems listed earlier.

For a more detailed description of Scenic including a comparison with the SpecC system
described in this work, please refer to [DG98].

XE: Although hardware oriented, the explorations environment XE9 is a commercial tool
for system design. Based on a behavioral synthesis system, the strengths of XE are design
space exploration and reuse of IP components. In XE, the system is specified with VHDL.

8Online information about SystemC is available at:http://www.systemc.org/
9Online information about XE is available at:http://www.yxi.com/
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The target architecture consists of custom hardware and reused components including pro-
cessors.

Polis: The Polis10 system [BGJ+97, CGH+93] is targeted at small reactive embedded
systems. Its main focus is a formal approach to codesign enabling formal verification. Polis
internally represents a system by use of the codesign finite state machine (CFSM) model.
The design specification for Polis is described in Esterel [BG92]. The output consists of a
HDL description (e. g. VHDL) for the hardware and C for the software parts.

Cobra: Cobra11 [KKR94, Ros97] is a prototyping and emulation environment for code-
sign. VHDL is used as specification and implementation language. In Cobra, the target
architecture consists of a set of interconnected field programmable gate arrays (FPGAs).

JavaTime: JavaTime [YMS+99] is a codesign system which focuses on simulation. The
standard software programming language Java is used as modeling language. As in Scenic,
required modeling features not present directly in the language are specified by use of spe-
cial methods implemented in a supplied class library. It should be emphasized that, in the
JavaTime system, the Java language is used to syntactically describe the system. The stan-
dard Java classes, for example the support of internet communication, etc., are not used.

JavaCAD: JavaCAD [DBB99] is another example of a codesign system which uses Java
as the specification language. As JavaTime, JavaCAD focuses on simulation. However,
JavaCAD also is a networked framework for codesign. In other words, it utilizes the net-
working capabilities of Java for distributed codesign. In particular, JavaCAD uses net-
worked simulation for protection of IP components, as mentioned in Section 1.1.5.3.

1.2.1.2 Heterogeneous specification

Ptolemy: Ptolemy12 [LM87, KL93] is a typical example of a system design framework
with heterogeneous specification. Multiple languages, such as C, VHDL, and Java, can be
used for the system specification. Furthermore, heterogeneous models of computation, such
as the synchronous data flow (SDF) model, can be mixed and simultaneously simulated in
the system. Ptolemy is a typical representative for simulation oriented systems.

10Online information about Polis is available at:
http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html

11Online information about Cobra is available at:
http://www.fzi.de/divisions/sim/projects/cobra.html

12Online information about Ptolemy is available at:
http://ptolemy.eecs.berkeley.edu/
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CoWare: CoWare13 [RVB+96, Arn99] is a commercialized codesign environment that,
similar to Chinook, addresses interface synthesis for hardware/software communication.
CoWare also targets at the simulation and design of heterogeneous DSP systems. Input
languages supported include VHDL, Verilog, and C.

SPW: The signal processing work system SPW14 offered by Cadence is a commercial
framework for heterogeneous system specification and cosimulation. SPW is data flow
oriented. In other words, SPW addresses in particular DSP and communication systems
design. As does CoWare, SPW supports simultaneous simulation with multiple languages,
such as VHDL and Verilog for hardware, and C for software.

COSSAP: COSSAP15 is a block diagram based framework offered by Synopsys. COS-
SAP is very similar to SPW and targeted at DSP applications as well. A system is specified
by use of block diagrams which can be simulated. The output generated consists of synthe-
sizable HDL for the hardware and C code for the software parts of the system.

Seamless: The Seamless16 co-verification environment (CVE), offered by Mentor Graph-
ics, is another example for hardware/software cosimulation. As CoWare and SPW, Seam-
less CVE supports VHDL and Verilog for the hardware portions of the system, and C for
the software portions.

Eaglei: Eaglei17, offered by Synopsys, is a cosimulation tool very similar to Seamless.
Eaglei focuses on hardware/software co-verification from post-partitioning through a phys-
ical prototype. Again, VHDL and Verilog are used for the hardware parts of the system,
and C is used for the software.

Weld: The Weld18 project [CSN98] is a networking framework for heterogeneous sys-
tems. It addresses the use of networking in electronic design. The Weld project defines a

13Online information about CoWare is available at:http://www.coware.com/
14Online information about SPW is available at:

http://www.cadence.com/technology/hwsw/cierto spw.html
15Online information about COSSAP is available at:

http://www.synopsys.com/products/dsp/cossap ds.html
16Online information about Seamless CVE is available at:

http://www.mentor.com/seamless/products.html
17Online information about Eaglei is available at:

http://www.synopsys.com/products/hwsw/eagle ds.html
18Online information about Weld is available at:

http://www-cad.eecs.berkeley.edu/Respep/Research/weld/index.html
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design environment which enables web-based CAD and supports distributed operation via
the Internet.

1.2.2 Languages

As seen with the systems listed in the previous section, a large set of languages is currently
being used in embedded systems design. The main reason for this is that the ”perfect”
language to be used for system-level design has not yet been determined, and it is doubtful
if such a language can actually exist. However, this indicates the need for research for a
possibly new language targeted specifically at system-level design.

In order to determine how well a specific language is suited for a given purpose, the
requirements and goals for the language have to be identified. For example, a typical re-
quirement for languages used in computer science is preciseness. In contrast to languages
for human interaction, such as English, German, or Chinese, languages used for automated
processing must not allow any misunderstandings. In other words, these languages must be
formal and unambiguous.

In addition to these general necessities, many other requirements and goals exist for a
system-level design language. In Chapter 4, these requirements will be discussed and iden-
tified. Furthermore, a new language called SpecC will be proposed which exactly matches
the identified requirements.

In the following sections, some traditional languages used for software design, hardware
design, combined software and hardware design (codesign), and system design are briefly
reviewed.

1.2.2.1 Software programming languages

Literally hundreds of software programming languages exist today. For real applications,
mostly imperative programming languages are used. Among these, some also have been
used for the design of embedded systems. The most important ones are the following three
languages.

C: The C programming language [X3/90], originally developed and used with the UNIX
operating system, has been officially standardized by the ISO and ANSI. Since then, C has
become the de-facto standard for software design.

C++: The C++ programming language [ES90, X3/97, Str97] is an object oriented exten-
sion of the C language. It also has been standardized and is being used widely for software
development.
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Java: Java [AG96] is a recently developed language, whose syntax is very similar to C.
Java has gained much of its popularity because it is specifically suited for network applica-
tions such as the use of executable code in the world-wide web (WWW).

1.2.2.2 Hardware description languages

Hardware description languages (HDLs) are used for the formal specification and descrip-
tion of hardware. The following is a list of languages commonly being used in industry and
academia.

VHDL: VHDL [IEEE87, IEEE93] is a hardware description language standardized by
the IEEE. Although VHDL is primarily a simulation language, it is being used widely for
synthesis as well19 [JDK+97].

It should be noted that extended versions of VHDL exist. For example, VHDL+
[ICL97], which is developed by ICL, provides language extensions for interfaces and so-
called activities. A comparison of VHDL+ with the SpecC language proposed in this work
can be found in [GZG98].

Verilog: Verilog [IEEE96, TM91] is another hardware description language commonly
being used for simulation and synthesis20. Verilog also has been standardized by the IEEE.

HardwareC: HardwareC [KM90] has been developed specifically as a language for hard-
ware design [Mic94]. Syntactically, HardwareC is similar to the C programming language,
but provides additional constructs needed for describing hardware. HardwareC is not as
complex and powerful as VHDL or Verilog.

Handel-C: Handel-C [APR+96] is another language used for hardware design which is
syntactically similar to C. Semantically, Handel-C is based on the model of communicating
sequential processes (CSP). In comparison to the previous hardware description languages,
the expressive power of Handel-C is quite limited.

1.2.2.3 Codesign languages

Since codesign consists of the design of systems including both software and hardware,
languages combining the features of software programming languages and hardware de-
scription languages are preferably being used. Two early approaches should be mentioned.

19For synthesis, only a subset of VHDL can be used since some constructs in VHDL are not synthesizable.
20As for VHDL, only a subset of Verilog is synthesizable.
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Statecharts: Statecharts [Har87, DH89] is a state-based specification language for code-
sign, particularly targeted at the design of reactive systems. Statecharts uses an extended
finite state machine model with support of hierarchy, concurrency and other common con-
cepts. Statecharts is based on a visual formalism with a graphical representation and has
been extended in several variations.

SpecCharts: SpecCharts [NVG91, GVN93, GVN+94], a combination of Statecharts and
VHDL, is based on the program state machine (PSM) model. SpecCharts has a textual and
an equivalent graphical representation. It is used in the SpecSyn system for design space
exploration and estimation.

1.2.2.4 System-level languages

In addition to the features provided by codesign languages, system-level languages typically
include other aspects of a complete system specification as well, for example, constraints
in the mechanical domain.

SDL: The specification description language SDL [BHS91, ITU92] is widely used in the
field of telecommunication. It is also applied to system design, for example, in the Cosmos
system. SDL has been standardized by the ITU.

SLDL: SLDL21 [Sch99] is a new system-level design language currently being defined
in the EDA industry. SLDL focuses on the formal specification of a systems requirements
and constraints and allows partial (incomplete) descriptions.

UML: The unified modeling language UML22 [RJB98] is an industry-standard language
for the specification of software systems. UML includes visualization, construction and
documentation. The goal of UML is to simplify the process of software design.

1.3 Goals

After the review of a set of promising design systems and important specification and mod-
eling languages in the last two sections, it should be noted that many weaknesses and limi-
tations exist in these approaches. Rather than pointing out specific weaknesses, two major
problems should be emphasized.

First, every system presented in Table 1.1 and Table 1.2 only focuses on a subset of
the system design tasks and hardly addresses the remaining tasks. In order to cover the

21Online information about SLDL is available at:http://www.inmet.com/SLDL/
22Online information about UML is available at:http://www.rational.com/uml/index.jtmpl
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whole spectrum of system-level design, it is not even possible to easily combine a set of ap-
proaches because of large differences in the methodologies, the models, and the languages
being used.

Second, the languages and the design systems are developed separately. Hence, they do
not match and modifications and adjustments are necessary. For all design systems listed
earlier, the languages used were originally developed for different purposes. Because of
this, most systems can only support a subset of the original language, and also are missing
features that the language does not support.

In this work, a new approach is taken. Instead of using an existing language, that origi-
nally was not designed for system-level design, a new language, called SpecC, is developed
that exactly matches the requirements and goals for this task. In addition, a methodology
with well-defined design models and explicit support of IP is proposed. The language, the
methodology, the models and the implemented design environment are all designed and
tuned for the specific requirements and goals of system-level design.

In particular, the following issues need to be solved concurrently and consistently in
order to make system-level design successful.

� The system-level language must

– be executable,

– be synthesizable,

– support all hardware-specific concepts, and

– support all software-specific concepts.

� The design models must

– be well-defined,

– separate communication and computation,

– support IP, and

– support a general (non-restricted) target architecture.

� The design methodology must

– be well-defined,

– support highly abstract specification,

– support validation and verification,

– support design space exploration,

– support synthesis, and
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– provide a clear hand-off for the final production.

� The design environment must

– be a coherent system,

– contain a complete set of tools, and

– allow manual and automatic refinement.

� The system design approach must

– be proven with a set of real-world examples, and

– gain wide acceptance, in particular in industry.

All these issues will be addressed in the remainder of this work.

1.4 Outline

In order to employ EDA at the system level, the increased level of abstraction and the
reuse of IP must be reflected in the system design methodology and, in particular, in the
design descriptions, the models and languages, the component library, and the CAD tools.
These issues are addressed in the following chapters which present the SpecC system design
approach.
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The rest of this work is organized as follows:
Chapter 2 introduces the SpecC design model which is based onbehaviorscontaining

computation andchannelsencapsulating communication. In particular, Chapter 2 describes
the models and the guidelines for modeling systems with IP components in the SpecC
design environment.

Then, Chapter 3 presents the IP-centric SpecC design methodology. Starting with an
abstract, executable specification of the intended system, the SpecC methodology uses step-
wise refinement to map the system model onto the target architecture. Using the modeling
guidelines defined in Chapter 2, the SpecC methodology is based on four well-defined
models representing the design at different stages during the refinement process. Thespeci-
fication modelis transformed into thearchitecture modelby architecture exploration. Then,
communication synthesis is applied generating thecommunication model. Finally, theim-
plementation modelof the system is obtained after software compilation and hardware syn-
thesis.

Chapter 4 discusses the requirements and objectives of system design languages and
examines traditional languages regarding their support of the required properties. Since
none of these languages satisfies all requirements, a new language, called SpecC, is pro-
posed. The SpecC language is used in the SpecC system to represent the design models
throughout the design process. Built on top of C, the SpecC language was developed to
directly support all the concepts needed in embedded systems design, including behavioral
and structural hierarchy, concurrency, state transitions, timing and exception handling. The
SpecC language also featuresplug-and-playsupport for the reuse of IP.

The implemented SpecC design environment is described in Chapter 5. The SpecC sys-
tem consists of a set of CAD tools for system validation, analysis, and synthesis, integrated
in a graphical user interface (GUI). The main tool in the system is the SpecC compiler
which allows the simulation and debugging of SpecC designs.

Chapter 5 also describes the central design representation which all SpecC tools rely
on. The so-called SpecC Internal Representation (SIR) offers an application programming
interface (API) for the SpecC tool developer, which allows to easily read, write, maintain
and transform design models specified with the SpecC language. As such, the SIR provides
an abstraction layer above the specific details of the SpecC language and allows the quick
development of CAD tools for the SpecC design environment.

Chapter 6 addresses the protection of IP components in the SpecC design environment.
Using the SpecC compiler, an IP provider can automatically generate public IP interface
descriptions and secret IP simulation libraries for any design model. With this approach, it
is ensured that no information about the internal implementation of the IP is revealed and
the IP is fully protected against reverse-engineering.

Finally, Chapter 7 summarizes this work and its contributions and concludes with a
brief discussion of open issues and future work.



Chapter 2

IP-centric Modeling

As described in the introduction, system-level design starts from an initial design specifi-
cation which is then transformed, typically by use of several refinement steps, into a final
implementation. Throughout this design process, the intended design is represented by a
designmodel. A design model is an abstract representation of the real design. The level of
abstraction of this model decreases with every refinement step.

The design model itself is typically described by use of a formal language. Many such
languages exist already, and one new language, specifically targeted at system-level design,
is described in Chapter 4 later in this work. However, it is important to understand that the
design model being used in the design process is more important than the design language.

In other words, it must be emphasized that not every description that can be expressed in
the language actually represents an usable model for the design process. Rather, the design
description must match a well-defined model that can be recognized and processed by the
design tools.

More specifically, the use of a well-defined model will also ensure that the design de-
scription can be efficiently synthesized. The ability to synthesize a particular design in an
efficient manner is more a property of the design model rather than a characteristic of the
language.

In order to obtain a well-defined model when specifying a system, modeling guidelines
must be followed. Such guidelines will ensure that the described model matches the re-
quirements of the design tools and also fits the design methodology. Modeling guidelines
are commonly specified in form of a set of general and also specific rules. For example,
please refer to [KB98] or [AG98].

In this and the following chapter, the design models and the modeling guidelines used
in the SpecC design environment are presented. This chapter introduces the basic models
and their characteristics. Then, Chapter 3 describes the methodology that, based on these
models, consists of a set of well-defined transformations performed with these models.

29
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2.1 Computation and Communication

For the design of embedded systems, the key representation for any design is ablock dia-
gram. Block diagrams consist of a set of blocks and a set of interconnections between the
blocks. Block diagrams can also be hierarchical. Thus, each block in a block diagram can
itself represent an inner block diagram.

The standard interpretation of block diagrams is that blocks represent components
which perform a particular function or computation. These blocks can also interact or
communicate with each other through the interconnections in the diagram. It is important
to note that there are two types of distinct actions performed by the blocks, namelycompu-
tation andcommunication.

B1 B2

P2P1

v1
v2
v3

v1
v2
v3

C1

(a)

(b)

Figure 2.1: Separation of computation and communication

For example, a simple block diagram is shown in Figure 2.1(a). Two blocks,P1 and
P2, are communicating via the interconnectionsv1 , v2 andv3 . These interconnections
can represent wires in hardware or shared variables in software. By assigning values to
these connections and following a defined protocol, e. g. two-way hand shaking, the blocks
can communicate and exchange data.

In this scenario, the blocksP1 andP2 contain code for both communication and com-
putation. In Figure 2.1(a), the communication in the code is illustrated as a shaded portion.
However, it must be emphasized that there is no way to automatically distinguish the code
for communication from the code used for computation. Because communication and com-
putation are freely intermixed and cannot be identified, it is neither possible to automati-
cally change the communication protocol, nor to switch to a new algorithm to perform the
computation.

In order to allow automatic replacement of communication protocols and computation
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algorithms, theseparationandencapsulationof communication and computation is needed.
This is supported in form ofbehaviorsand channelsin the SpecC model, as shown in
Figure 2.1(b). Here, the computation is encapsulated in the behaviorsB1 andB2, and the
communication is contained in the channelC1.

More specifically, the channelC1 encapsulates the communication protocol in form of
function definitions such asread andwrite or send and receive . These functions
represent the interfaces of the channel. A channel also may contain necessary local func-
tions and the communication media, such as the variablesv1 , v2 andv3 . On the other
hand, the behaviors only contain computation. In order to communicate, the behaviors call
the functions provided by the connected channel.

An important difference between the functions defined in a channel and the functions
defined in a behavior is that a behavior is anactiveelement, whereas a channel ispassive.
In other words, the functions in a behavior specify the functionality of the behavior itself.
On the other hand, the functions in a channel are only executed when they are called from
a connected behavior.

(a)

(b)

B1 B2
v1
v2
v3

C1

B2B1

v2
v3

v1

Figure 2.2: Communication inlining: (a) before, (b) after.

This difference is exploited when the model is finally implemented. For the implemen-
tation of a channel, its functions areinlined into the connected behaviors and the encapsu-
lated communication media are exposed. This is illustrated in Figure 2.2. After the inlining
process, the channelC1has disappeared. The internal variablesv1 , v2 andv3 are exposed
and the communication protocol has been integrated into the behaviorsB1 andB2. Please
note that in this final implementation model communication and computation are no longer
separated.
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2.2 The SpecC Model

In the SpecC model, behaviors and channels are used to encapsulate communication and
computation, respectively. Following the style of standard block diagrams, behaviors and
channels can further be composed in form of a structural hierarchy.

2.2.1 Basic structure

The basic structure of a SpecC model is a hierarchical network of behaviors and channels.
A simple example is depicted in Figure 2.3.

b1 b2

c1

p1 p2

v1

B

Figure 2.3: Example of a SpecC model

The example shows a behaviorB which has two ports,p1 andp2 , through which it
can communicate with its environment. Internally, these ports are connected to two child
behaviors,b1 andb2 , which execute concurrently. These child behaviors can communicate
in two ways. First, both are connected to a shared variablev1 which, for example, could
be written byb1 and then read byb2 .

Second,b1 andb2 can communicate by use of a communication protocol provided by
the channelc1 . For example, the behaviorb1 could call a functionsend provided by the
left interface of channelc1 . Then, when behaviorb2 calls thereceive function provided
by the right interface, the communication protocol implemented in the channel will ensure
that the data is transferred correctly, for example, by use of explicit hand shaking or some
specific synchronization mechanism and timing.

Please note that Figure 2.3 only shows one level of the structural hierarchy of the sys-
tem. The child behaviorsb1 andb2 could again consist of a network of behaviors and
channels. On the other hand, the behaviorB can be part of a bigger system as well.
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2.2.2 Test bench

For any design model, the root of the hierarchy tree typically represents the test bench of
the system. Since this is the top level, there are no ports for this behavior. Furthermore, it
is a SpecC convention, that this top level behavior is always calledMain .

v1
v2

v3
v4

Main

B_in B_outB_test

Figure 2.4: Typical test bench model

Figure 2.4 shows a typical example of a test bench model. The actual design model
B test is embedded in the test benchMain as a child behavior. It is connected to two
other child behaviorsB in andB out . B in represents a stimuli generator which supplies
test vectors to the input ports of the design. The output produced by the design model is
observed and verified with the monitor behaviorB out .

2.3 Computation Models

In addition to the structural hierarchy described in the previous section, the SpecC model
also supports behavioral hierarchy. Behavioral hierarchy is the composition of computation
tasks over time. For example, a set of tasks can be executed one at a time or in parallel.

The SpecC behaviors, which encapsulate the computation tasks to be performed by a
system, can be classified into eight different models. These behavior models are illustrated
in Figure 2.5. Their characteristics are described in the following sections.

2.3.1 Algorithmic program

A SpecC behavior is called a composite behavior if it contains instantiations of child be-
haviors. Otherwise, it is called a leaf behavior. In Figure 2.5, a leaf behavior is shown in
(a). On the other hand, composite behaviors are shown in (b) through (f).

The functionality of a leaf behavior is described by an algorithmic program. This pro-
gram is started when the leaf behavior is activated and the termination of the program also
determines the completion of the execution of the behavior.
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(a) (b) (c) (d)

(e) (f) (g) (h)
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Figure 2.5: Behavior models: (a) leaf behavior, (b) sequential behavior, (c) concurrent
behavior, (d) pipelined behavior, (e) FSM behavior, (f) exception behavior, (g) IP behavior,
(h) mixed behavior.

The program in the leaf behavior can contain any type of programming statements, such
as assignments, conditional statements, loop statements and function calls. More specifi-
cally, the statements provided by the C programming language can be used in a SpecC leaf
behavior. In other words, a leaf behavior is equivalent to a C program.

A very important property of a leaf behavior is that it isatomic. In other words, for
synthesis and all refinement tasks involved with it, a leaf behavior represents the smallest
indivisible unit in the SpecC design model. For example, during the task of partitioning, a
leaf behavior will be assigned completely to either hardware or software. It will not be cut
into smaller parts.

The atomicity of the leaf behaviors determines thegranularity of the design model.
With a coarse granularity, the design system consists of only few behaviors and most of
the functionality of the system is specified inside the leaf behaviors. This simplifies the
refinement tasks which are dealing with only a few objects, but, at the same time, it heavily
restricts the design space and will typically lead to a sub-optimal solution.

On the other hand, with a fine granularity, the system is specified with many behaviors
with only simple functionality. As an extreme example, each arithmetic operation in the
design could be specified in a separate leaf behavior. Such a fine granularity implies a large
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design space, but also requires each refinement task to handle a large set of objects leading
to long run-times.

It is the task of the system designer to specify the system with the right granularity. In
other words, the system designer has to trade-off a fine grained model with a large design
space against a coarse grained model with easy refinement.

2.3.2 Sequential execution

The sequential execution of leaf behaviors can be specified with two types of composite
behaviors. First, as shown in Figure 2.5(b), the leaf behaviorsb1 , b2 and b3 can be
executed in a fixed, unconditional order, one at a time. The execution of the behavior
B sequential will start with the execution ofb1 and finally terminate whenb3 has
finished its execution.

Second, sequential execution can be specified in a SpecC model in form of a finite
state machine (FSM), as shown in Figure 2.5(e). The FSM model allows arbitrary transi-
tions between the child behaviors and, thus, supports conditional execution and loops. The
execution of a FSM behavior starts with the indicated initial behavior, such asb1 in Fig-
ure 2.5(e). A FSM behavior terminates when a transition on completion is performed, as
shown atb4 .

2.3.3 Concurrent execution

For the parallel execution of behaviors, again two types of composite behaviors are pro-
vided. First, the concurrent execution, as shown in Figure 2.5(c), will execute all child
behaviors simultaneously. The execution ofB concurrent starts the child behaviors
b1 , b2 andb3 at the same time and finishes as soon as all children have completed their
execution.

Second, as a special form of concurrency, a pipelined behavior, as shown in Fig-
ure 2.5(d), executes its child behaviors in a pipelined fashion. Pipelined execution implies
the iterative execution of the children. For Figure 2.5(d), onlyb1 will be executed in the
first iteration. In the second iteration,b1 andb2 will be executed concurrently. In the third
and all following iterations, all three children are executed in parallel.

The pipelined behavior also ensures that the data exchanged between the child behaviors
is shifted to the next stage each time a new iteration starts. This is described in detail in
Section 4.5.2.2.

2.3.4 Exceptions

A special behavior type allows the specification of exceptional execution. As illustrated
in Figure 2.5(f), an exception behavior contains one child behaviorb1 for standard exe-
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cution, and several other child behaviors, such asi1 , i2 , a1 anda2 , for the handling of
exceptions. Two types of exceptions are distinguished, namelyinterrupt andabortion.

In case of an interrupt, the behaviorb1 is stopped immediately in its execution and an
interrupt behavior, such asi1 and i2 , is executed. Once the interrupt behavior finishes,
the main behaviorb1 can resume its execution.

In case of abortion, the execution of the behaviorb1 is aborted immediately and will
not be resumed. Instead, an abortion behavior, such asa1 anda2 , will take over and finish
the execution.

The execution of an exception behavior starts with the execution of the main behavior.
The execution is terminated when the main behavior completes or an abortion behavior has
been executed.

2.3.5 IP model

In order to model IP components, a special IP behavior is supported. The essential property
of IP components is that their internals are hidden and cannot be seen from the outside.
Therefore, an IP behavior, as shown in Figure 2.5(g), is modeled as a black box whose
contents are not accessable. Furthermore, an IP behavior is fixed and cannot be modified
during synthesis and refinement.

Because of these restrictions with IP behaviors, special care has to be taken when design
models with embedded IPs are transformed. This is described in detail in Section 2.5.

For the sake of completeness, a mixed behavior is shown in Figure 2.5(h). As described
later in Chapter 4, the SpecC language allows such behaviors consisting of a mixture of
child behaviors and algorithmic code. However, this behavior model is depreciated and
should not be used in a well-specified design model1.

2.4 Communication Models

The communication models mentioned earlier are reviewed in Figure 2.6. There are two
models of communication, namely the shared memory model and the channel model.

2.4.1 Shared memory model

The shared memory communication model is realized by use of variables declared in the
behavior that encapsulates the communicating child behaviors2. As shown in Figure 2.6(a),

1It is possible and also straightforward to automatically convert such mixed behaviors into a set of well-
defined behaviors by introducing additional child behaviors and levels of hierarchy. However, currently such a
tool has not been implemented yet.

2As described in Chapter 4, the SpecC language allows global variables, declared outside of any behavior,
to be accessed from the inside of behaviors. Thus, such global variables could also be used for a shared
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Figure 2.6: Models of communication: (a) shared memory model, (b) channel model.

the variablesv1 , v2 , . . . , vn are declared in behaviorB1 and represent communication
wires which hold their value over time, acting as a memory. The instantiated child behaviors
b1 , b2 , . . . ,bmhave access to these wires through their ports, so that the stored values can
be shared among the connected children.

In the shared memory model, the child behaviors communicate by assigning values to
their output ports (send) and observing values at their input ports (receive). While this
basic scheme of communication is sufficient for simple cases, communication protocols
are typically needed in the more general case, involving synchronization, timing, buffering,
error correction, etc. As stated earlier, such communication protocols should be separated
from the computation and should be encapsulated in channels, which are described next.

2.4.2 Channel models

In the SpecC model, channels are used to encapsulate communication. Six different channel
models are shown in Figure 2.7.

A basic orleaf channel, as shown in Figure 2.7(a), consists of a set of local variables,
such asv1 andv2 , and a set of communication functions. The functions of the channel
use the local variables to realize the communication. These functions are made available
through the interfaces of the channel and can be called by behaviors whose ports are con-
nected to these interfaces.

Similar to behaviors, channels can also be hierarchical, as shown in Figure 2.7(b). A
channel is called ahierarchical channelif it contains a child channel. A typical example for
hierarchy in channels is a communication protocol stack. For example, a channel providing
send andreceive functions for large blocks of data might use an internal channel that

memory communication model. However, this is not recommended since there is no explicit connectivity to
these variables. When using local variables in parent behaviors, which can only be accessed through ports, as
shown in Figure 2.6, the connectivity is obvious and the model becomes less error prone.
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Figure 2.7: Channel models: (a) leaf channel, (b) hierarchical channel, (c) grouping chan-
nel, (d) mixed channel, (e) wrapper channel, (f) adapter channel.

providessend byte andreceive byte functions.

A channel, that instantiates a set of child channels, as shown in Figure 2.7(c), is called
agrouping channel. This channel model can be used to combine a set of channels into one.
For example, a system bus, that is capable of many communication transactions represented
by different channels, can be well-modeled as a grouping channel.

Two special channel models, namely wrapper and adapter channels, are used for the
communication with fixed behaviors, such as hard IPs, whose ports cannot be modified. A
channel is called awrapperif the channel instantiates a behavior, as shown in Figure 2.7(e).
Typically, the behaviorb1 represents an IP core with fixed, bit-level ports. In order to raise
the abstraction level for the communication, a channelC wrapper is wrapped around
the behavior. This channel provides a communication interface which translates high-level
operations, such assend and receive , into the required bit-level transactions. Thus,
other components in the system can easily communicate with the IP via common, high-
level functions.

An adapter channel, as shown in Figure 2.7(f), is very similar to a wrapper channel.
However, instead of encapsulating the IP behavior, an adapter channel provides ports to
which the behavior can be connected. Thus, an adapter allows to drive low-level wires by
use of a high-level, functional interface. Since an adapter can simply be plugged in between
incompatible behaviors while leaving both behaviors on the same level in the structural
hierarchy, it is preferred, in this work, over the wrapper model.

Similar to the mixed behavior model, the SpecC language described later, also allows
mixed channels, as shown in Figure 2.7(d). Although syntactically possible, the mixed
channel model is depreciated and should not be used in a well-defined specification.
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2.5 Modeling with IP

For a specification model to be IP-centric, it must naturally and explicitly represent the reuse
and integration of intellectual property (IP). While IP components must be represented in
a way so that they can be easily identified, they must not be used differently than other
components. In other words, IP models must not create an exception.

As discussed in the introduction, IP can usually be classified into soft IP and hard IP.
Soft IP, which comes in form of synthesizable source code, applies to both, behaviors and
channels. For both, the IP models are exactly the same as the non-IP models in the system
specification.

On the other hand, hard IP, which represents a fixed core component whose internal
structure is hidden from the user, only applies to behavior models. There is no channel
model for hard IPs. The reason for this is that channels can only be used in the system
specification and during intermediate refinement steps, but need to be inlined for the final
implementation. The process of inlining requires knowledge about the internal structure of
the channel.

In the following, three models representing IP in a system model are presented, first,
the channel model for communication protocol IP, and then, the wrapper and adapter mod-
els representing hard IP cores. With all these three models, “plug-and-play” with IPs is
possible.

2.5.1 Channel model

A proprietary communication protocol, or a proprietary implementation of a standard pro-
tocol, is represented by an IP channel in SpecC. With one exception, such a channel is not
different from other channels in the system and therefore can be treated the same way.

The only exception is that an IP channel typically needs to be wrapped by another
channel which performs data type conversion. For example, an IP channel might provide
native functions to send and receive single bytes and also blocks of 512 bytes of data.
However, in order to use this channel in an application that needs to transfer pictures of a
certain size, e. g. 1024 by 768 pixels, a data type conversion is required from the picture type
into the transferrable block type, and vice versa. This conversion can be easily performed
by a channel surrounding the IP channel.

Figure 2.8(b) shows this situation. The channelIP is encapsulated in channelC2which
takes care of the necessary conversions. Assuming that in the initial system specification a
virtual channelC1, shown in Figure 2.8(a), is used to transfer the picture, the channelC2
can be used as an equivalent replacement at any time. Thus, it is possible to immediately
plug in the IP protocol into the system model once the decision for its use has been made
(“plug-and-play”). Also, this change is only local and does not affect any other channels or
behaviors in the system.
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Figure 2.8: IP channel model: (a) virtual channel, (b) IP protocol channel.

2.5.2 Wrapper model

Similar to the IP channel in the previous section, a hard IP core is wrapped in a channel as
well. This IP wrapper model is shown in Figure 2.9(b).
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IP1

(b)

Figure 2.9: IP wrapper model: (a) synthesizable behavior, (b) IP replacement using a wrap-
per.

The IP behaviorIP1 contains ports which accurately describe the ports of the real IP
core. Typically, these ports are modeled in a bit-exact manner. These behavior ports are
mapped to variables in the channel. Communication with the IP is established by use of a
set of high-level communication functions provided by the wrapperW1. These functions
contain the detailed interface protocol to drive the variables connected to the IP. Thus, by
using the wrapper functions, other behaviors can easily communicate with the IP.

In order to allow “plug-and-play”, atransducer, such asT1, is required in addition to
the wrapperW1. A transducer is a synthesizable behavior used to connect two channels.
Later, in the implementation model, the tranducer will contain two communication proto-
cols, transformingreceive requests from one protocol intosend requests of the other,
and vice versa. Note that a transducer can be eliminated in an optimization step if the two
communication protocols are identical.

The reason for the need of a transducer stems from the fact that two channels cannot
be directly connected because they are passive components. In order to connect passive
channels, an active behavior is needed in the middle.
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In summary, a synthesizable behavior, such asB1 in Figure 2.9(a), can be replaced by
an IP wrapper model, shown in Figure 2.9(b), at any time in the design process without
affecting any other objects. The wrapper model consists of a transducerT1 and the IP
behaviorIP1 encapsulated in the wrapperW1.

2.5.3 Adapter model

The adapter model for incorporation of IP components is essentially the same as the wrapper
model presented in the previous section. However, instead of the wrapper channel, an
adapter channel is used to capture the communication functions.
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T2

A1

(c)

IP2

Figure 2.10: IP adapter model: (a) synthesizable behavior, (b) IP replacement using an
adapter.

Figure 2.10 shows the equivalence of a synthesizable behaviorB1 and the adapter model
which consists of the IP coreIP2 , the adapterA1 and the transducerT2.

2.5.4 Inlining

It has been already mentioned that, in order to obtain a final implementation model, the
communication functions from the channels are inlined into the behaviors and the contained
variables are exposed, forming the connecting wires. This process of inlining has been
demonstrated in Figure 2.2 for two synthesizable behaviors connected by a standard channel
(see page 31).

Although the principles of inlining are the same, the situation is slightly different when
IP behaviors, wrappers, adapters, and transducers are part of the system model. Wrappers
and adapters need to be inlined since they are essentially channels. IP behaviors are fixed
and therefore cannot be modified to incorporate protocols. Transducers, however, can be
treated just as standard behaviors.

Three common cases are illustrated in the following. Figure 2.11 shows the process
of inlining with a wrapper model. Before the inlining, the wrapperWis connected to a
synthesizable behavior3 B1. After the wrapper has been inlined, the IP communication

3Note that the transducer in the wrapper model is nothing else but a synthesizable behavior.
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Figure 2.11: Wrapper inlining: (a) before, (b) after.

protocol has been integrated into the behaviorB1 and the variablesv1 andv2 are exposed,
forming the connecting wires to the IP. Note that the IP behavior has been exposed as well,
but was not changed during the process.

B1 IP

v1

v2

A

B1 IP

v1

v2

(a)

(b)

Figure 2.12: Adapter inlining: (a) before, (b) after.

As shown in Figure 2.12, the inlining process is very similar when using an adapter
model. After the inlining, the adapterA has disappeared. Its communication functions have
been incorporated into the behaviorB1. Please note that the result from this inlining process
is exactly the same as the one from the wrapper model, shown in Figure 2.11.

Figure 2.12 also shows that the inlining process for the adapter model does not change
anything at all for the behaviorIP and the wiresv1 and v2 . This is in contrast to the
wrapper model whereIP , v1 andv2 are moved up by one level in the structural hierarchy
of the system.
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Figure 2.13: Inlining with transducer: (a) before, (b) after.

Finally, Figure 2.13 illustrates the need for transducers. For example, a processor core,
represented by the behaviorIP , needs to be interfaced with the system bus, represented by
channelC1. Because the communication protocol used by the system busC1 is incompat-
ible with the native processor bus, represented byv4 andv5 , a transducerT is necessary.
After the inlining of the channelC1 and the adapterA, the transducerT has incorporated
both bus protocols and therefore can translate between the system bus and the processor.
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Chapter 3

The SpecC Design Methodology

In the previous chapter, the basic SpecC models consisting of behaviors, channels and in-
terfaces, have been introduced. In this chapter, these models are used as building blocks to
form and define the models on which the SpecC design methodology is based.

As described in the introduction, a design methodology is a specific design flow that,
with the help of CAD tools, transforms an initial, functional specification of the intended
design into a detailed, structured implementation. In other words, a methodology consists
of a set of model transformations that step-wise refine an abstract specification model of the
design into an implementation model ready for manufacturing.

The SpecC design methodology is based on four well-defined models, namely a spec-
ification model, an architecture model, a communication model, and finally an implemen-
tation model. These models, and the tasks performed with these models, are described in
detail in the following sections, starting with an overview.

Please note that the SpecC design methodology presented in this chapter is a refinement
of the generic codesign methodology described in [DGZ98, GAC+98, GZD97b, GZD97c].
In contrast, the models and tasks defined in this chapter are of much finer detail and reflect
the actual status of the SpecC design environment.

3.1 Overview

An overview of the SpecC design methodology is shown in Figure 3.1 as a directed flow
graph. The graph contains two types of nodes, namelytasks, indicated as rectangular boxes,
andmodels, shown as ellipses. The models represent the input and output of the tasks, as
indicated by the arcs in the graph.

The SpecC design methodology consists of a vertical synthesis flow, a horizontal vali-
dation flow, and a back end, as indicated by the dashed boxes in Figure 3.1.

Thesynthesis flowstarts with thecaptureof the intended design, followed by a series

45
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Figure 3.1: System design methodology with the SpecC design environment
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of refinement steps. The initialspecification modelof the design is captured by use of
a graphical or textual design entry. It consists of an abstract, executable description that
includes the functionality and the constraints of the intended design.

The specification model is the input of the first refinement task, calledarchitecture
exploration. During architecture exploration, the target architecture of the system is deter-
mined in two major steps. First, a set of components, such as processors, ASICs, memories
and busses, is allocated from the component library, forming the target architecture. Then,
the specification model is mapped onto the selected architecture and a refinedarchitecture
modelof the design is generated.

The architecture model is further refined by the task ofcommunication synthesis. Dur-
ing communication synthesis, communication protocols are selected, inserted and refined
for each bus in the system. Also, interface components will be inserted and realized in the
system, if necessary. The result of communication synthesis is output as acommunication
model, which is passed on to the back end.

It is the task of theback end, to actually implement each component in the system.
For software, binary program code has to be compiled for each processor, using a compiler
for the particular instruction set. For hardware, a control unit and a datapath need to be
synthesized for each ASIC, by use of behavioral synthesis, for example.

After software compilation and hardware synthesis, animplementation modelis gen-
erated, representing a clock-cycle accurate description of the system. This description, in
turn, is used by the final task ofmanufacturing.

Note that the abstraction level of the design model decreases with each refinement step
in the synthesis flow. In other words, the design decisions made by each task are reflected
in the generated models, making them a more and more accurate description of the final
design.

Thevalidation flowis organized orthogonally to the synthesis flow. For each of the four
design models,validation, analysisandestimationcan be performed statically on the model
itself. Furthermore, for each design model, a correspondingsimulation modelcan be gen-
erated bycompilation, in order to perform dynamic validation. The generated simulation
model is a program that can be run on the host computer, simulating the execution of the
corresponding model.

The validation flow serves several purposes. First, each design model can be validated
for correctness. This includes the correctness of the functionality, as well as the correctness
of the performance, the timing, etc., if this is applicable to the model. Second, important
characteristics and properties of the model can be obtained, verified, and also be reported to
the designer. Furthermore, these results can be fed back into the synthesis flow, supplying
data for further design decisions.

Note that the tasks performed in the validation flow are identical for the models at the
four different abstraction levels, and therefore can be implemented by the same set of tools.

For the SpecC design methodology, two important features should be emphasized.
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First, the SpecC methodology is homogeneous. All design models in the methodology
are composed of the basic SpecC models introduced in Chapter 2. Moreover, all these
models are represented by use of the same formal language, called SpecC, which will be
described in detail in Chapter 4.

This is beneficial in several ways. Not only does this approach avoid cumbersome
and error prone translations between languages with different semantics, it also yields a
minimal number of design representations which use the same semantics and therefore can
be easily compared and verified. Also, this allows for a minimal number of tools which
need to be developed and maintained, and these tools can even share the same internal
design representation and most data structures. Last, but not least, it makes the use easier
for designers, since they only have to learn and deal with one language and one set of
models.

Second, is should be pointed out that the design flow in the SpecC methodology only
contains small loops, locally within the refinement tasks. This avoids large design iterations
which are expensive in terms of both, design time and money.

In the following sections, the SpecC design methodology is described in detail. For
each task, the input and output models with their particular characteristics and properties
are defined, as well as possible intermediate models. In particular, the four main models are
defined, namely the specification model, the architecture model, the communication model,
and finally the implementation model.

Please note that, in the following, thetasksof the SpecC methodology are specified.
Thealgorithmsfor these tasks, however, are beyond the scope of this work. In other words,
it is describedwhatthe tasks do, nothow they do it.

3.2 Specification Capture

The synthesis flow of the SpecC methodology begins with the capture of the design spec-
ification. The specification is usually captured textually by use of a standard text editor.
Alternatively, a graphical design entry tool, such as VisualSpec [AIG99], can be used which
allows to enter the specification in form of graphical diagrams and flow charts.

In both cases, the system specification is eventually represented formally by use of the
SpecC language. The SpecC language has been specifically developed to represent the
design models introduced in Chapter 2 and is described in detail in the next chapter.

The functionality of the intended system is captured in form of anexecutable specifica-
tion. Thus, the specification model can be easily simulated on a host computer in order to
verify that the system and its algorithms work as expected.

Along with the functionality, given design constraints are specified as well. Typical
constraints include the required performance, maximal power consumption, maximal man-
ufacturing cost, etc. These constraints are specified in form of annotations to the design
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description.
It should be emphasized that the specification should be as abstract as possible. Except

for the given constraints, it should not include any details which restrict the implementation
in any way. This will enable a large design space, leading to a better implementation.

3.2.1 The specification model

In the SpecC methodology, the specification model is the model with the highest level of
abstraction. It is an accurate model of the intended system in terms of pure functionality,
but does not reflect its structure or its timing.

Typically, the specification model executes in zero simulation time. Neither the com-
putation, nor any communication, is modeled with timing. In other words, there is no
waitfor statement in the SpecC description of the specification1.

Communication can be modeled in two ways, either as shared variables, or by use of
channels from the SpecC communication library. For a specification model, useful com-
munication channels are channels with basic synchronization, such as one-way or two-way
hand shaking, and buffered channels, such as blocking and non-blocking FIFOs. Note that
with both types of communication, complex data types may be used for the exchanged data.

The specification model can be freely composed out of any of the basic SpecC models
discussed in Chapter 2. A typical specification model is shown in Figure 3.2.

The specification modelSa consists of an arbitrary, hierarchical network of behavior
and channel models. It includes sequential behaviors (s1 , f1 , f2 ), concurrent behaviors
(c1 , c2 , p1), exception behaviors (e1), and program code in leaf behaviors (l1 ). Com-
munication is performed via shared variables (v1 , v2 , . . . , v13 ) or basic channels (ch1 ,
ch2 , . . . ,ch5 ).

It should be emphasized that all “natural” features, that are inherent in a design, should
be specified explicitly in order to obtain a well-written specification model. In particular,
any potential concurrency should be expressed by use of concurrent behaviors, since it is
difficult to extract such concurrency later, if it is not modeled explicitly.

3.3 Validation and Analysis

As shown earlier in Figure 3.1, validation and analysis are performed in the validation flow
for each of the four design models. After the design has been captured, the specification
model is validated for functional correctness in order to ensure that the captured model ac-
tually behaves as intended and the specified algorithms work correctly. The functionality of
each following model is also checked and compared against the initial specification model.

1Please refer to Section 4.10.1 for a description of the SpecCwaitfor statement.
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Figure 3.2: Specification model

For each refined model, the modified portions and the added features need to be veri-
fied as well. More specifically, for the architecture model, the new structural organization
and the introduced synchronization between the concurrent components must be validated.
For the communication model, the inserted communication protocols must be verified. Fi-
nally, the implementation model must be checked whether it actually meets the given design
constraints, such as performance, size, etc.

It has been stated in the introduction that, in contrast to general validation, only the
formal verification of a model guarantees its correctness for all cases. However, the true
verification of a medium sized system model is, as of today, still too complex and cannot
be performed in reasonable time. Because of this, the SpecC design methodology relies on
validation rather than verification. In particular,simulationandestimationare performed
with each design model.

3.3.1 Simulation

In system-level design, simulation is the most common form of design validation. In con-
trast to static analysis, simulation is dynamic and, thus, requires the design model to be
executable.
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In the SpecC methodology, simulation is performed in two steps. First, the design model
is compiled into a correspondingsimulation model. More specifically, the SpecC compiler
takes the design model, together with a corresponding test bench model, and generates
an executable program that is linked with the SpecC simulation library. The simulation
library implements the semantics of the simulation. In particular, it maintains an event
queue, advances the simulation time, and also takes care of concurrent execution and the
synchronization facilities.

Then, the generated simulation model can be run on the host computer, simulating the
execution of the corresponding model. Typically, the test bench included in the simulation
model will supply the test vectors, automatically check the computed output values, and
report any problems to the user.

If any problems occur, a debugger can be used to set break points, interrupt the sim-
ulation, and inspect intermediate values, in order to locate and fix the design errors in the
model.

It should be noted that there is a trade-off between the time and the accuracy of the
simulation. In other words, the length of the simulation time depends on the accuracy of
the design model. For example, compared to the specification model, the communication
model will need longer time for a simulation, because it performs any communication in a
clock-cycle accurate manner. The implementation model will spend even more time for the
same simulation, since communication and computation are both cycle accurate.

However, because of the “plug-and-play” capability of the SpecC models, it is easily
possible to simulate a model at a mixed level of accuracy, saving simulation time. In partic-
ular, only the parts of the system, which need special attention, can be simulated accurately,
whereas all other parts can be executed at the pure functional level. For example, in order
to observe the detailed behavior of a particular bus transaction, the architecture model can
be used where only the particular bus is replaced with the detailed communication model.

3.3.2 Estimation

The task of estimation is to obtain quality metrics from a design model. Although the
obtained metrics should be accurate, the main emphasis of estimation is to deliver these
values quickly.

In the SpecC methodology, estimated quality metrics are especially needed for the task
of architecture exploration. In particular, the trade-off between a software or a hardware
solution for each behavior in the design model requires metrics for performance and cost.

More specifically, the execution time and the area of each behavior is estimated for a
potential hardware implementation. Also, the execution time, code size and data size will
be determined for a potential implementation in software, for each allocated processor. In
addition, metrics, such as bit width and throughput, need to be determined for all channel
and bus models, since these are needed for the task of communication synthesis.
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All these estimation results are annotated in the design model at the particular behaviors
and channels. Thus, they are fed back into the synthesis flow so that this data is immediately
available when it is needed by the synthesis algorithms.

Estimation is typically performed in form of static analysis of the design model. How-
ever, by use ofprofiling, estimation data can also be obtained dynamically during simula-
tion. In the SpecC system, profiling can be used to count the execution frequency of each
behavior. Based on these counter values, branching probabilities can be determined, for
example, for the conditional transitions in FSM behaviors. These branching probabilities
are then used to estimate the average execution time for such behaviors.

3.4 Architecture Exploration

The first major refinement step in the synthesis flow of the SpecC methodology is the task
of architecture exploration, which includes the traditional design steps of component al-
location, hardware/software partitioning and scheduling. More specifically, architecture
exploration consists of architecture allocation and architecture mapping, as shown in Fig-
ure 3.1 at the beginning of this chapter.

Architecture allocationdetermines the connectivity and the number and the types of
the system components, such as processors, ASICs, memories and busses, which will be
used to implement the specified system. Note that this also includes the reuse of intellectual
property (IP), when IP components are selected from the component library.

Then,architecture mappingis performed for all behaviors, channels and variables in the
specification, assigning them to processing elements (PEs), busses and memories, respec-
tively. Behavior mappingdistributes the behaviors to the allocated PEs.Variable mapping
assigns variables, which cannot be stored locally in the PEs, to the allocated memories.
Finally, channel mappingassigns the non-local communication channels to the allocated
busses. In addition,schedulingis performed to determine the execution order of the behav-
iors assigned to sequential processors.

Although architecture exploration is described in the following as a set of tasks which
are only once and sequentially executed, it is free to be implemented as an iterative process
whose final result is the definition of the system architecture. In each iteration, estimation
is used to evaluate the satisfaction of the design constraints. As long as any constraints are
not met, component and connectivity reallocation is performed and a new architecture is
evaluated, with different components, connectivity, partitions, or communication.

Such an iterative approach is calleddesign space exploration. It will eventually result
in a better system architecture and an optimized design implementation with good perfor-
mance and less cost.
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3.4.1 Architecture allocation

Given a library of system components, such as processors, memories and busses, the task
of architecture allocation is defined as the selection of the type and number of these com-
ponents. The interconnection among the selected components must also be determined.
Further, the system architecture has to be defined in a way so that the functionality of the
system can be implemented, all design constraints are satisfied, and the objective cost func-
tion is minimized.

During architecture allocation in the SpecC methodology, three types of components
are selected from the component library. First, processing elements (PEs), including stan-
dard processors and custom ASICs, are needed as active elements performing the systems
functions. Second, memories are needed to store the processing data, and finally, busses are
allocated for the communication among the PEs and memories. Note that for each com-
ponent type, either a synthesizable, custom component can be selected, or a predesigned
component, such as an IP.

The network of selected components is called thetarget architectureof the system. In
the SpecC methodology, the target architecture is defined by customization of a generic
architecture. In other words, parameters are defined for the generic architecture, so that it
becomes a specific target architecture for the system.

...

...P2P1 ...P2P1 ...P2P1

...
...

Port1

Port2

Bus1

Bus2

Component1 Component2 Component...

Bus...

Port...

P... P... P...

Figure 3.3: Generic system architecture

The generic system architecture is shown in Figure 3.3. The architecture consists of a
set of system ports, a set of system busses, a set of system components, and a connectivity
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matrix which determines the interconnections among the ports, busses, and components.
In order to define a specific target architecture, all parameters have to be fixed. For

each set, the number of elements and the type of each element must be defined. Then,
the connectivity matrix is filled, determining whether a connection exists between each
component and each bus or port. Note that a connection can only be set, if the connected
elements are of compatible type.

M1 M2P2P1

I1 I2

I3

M3M4

A1IO1

B1 B2

B3

Figure 3.4: Example of a system architecture

Figure 3.4 shows a typical target architecture created as a result of this customization.
The architecture consists of two processors,P1 andP2, one ASICA1 and four memories,
M1, M2, M3andM4. Further, an input/output unitIO1 and three bus interfaces,I1 , I2 and
I3 , have been allocated. Note that, because of the selected connectivity, both processors,
P1 andP2, and the ASICA1, each have a dedicated local memory, whereasM3serves as a
global memory for storage of shared data.

3.4.2 Architecture mapping

After the target architecture has been defined, the specification model needs to be mapped
onto the architecture. This mapping process is often referred to aspartitioning2. However,
because the term partitioning typically is used to describe the assignment of parts from the
system model to either hardware or software in general, and not to a particular processing
element, the termmappingis preferred in this work.

Architecture mapping in the SpecC design methodology consists of behavior mapping,
variable mapping, and channel mapping. In addition, scheduling is included as well. Note

2Further, other common terms for the mapping process also include binding, grouping and assignment.



3.4. ARCHITECTURE EXPLORATION 55

that, technically, these subtasks can be executed in any order, or even simultaneously. For
simplicity, however, they are described sequentially in the following sections, starting with
behavior mapping.

Please note also, that the creation of the mapping itself is beyond the scope of this chap-
ter. It is assumed that the mapping has been determined by some optimizing algorithm3.
Rather, it is described how the mapping is applied to the design model in order to reflect the
design decision.

3.4.2.1 Behavior mapping

The task of behavior mapping assigns each behavior in the specification model to one of
the allocated processing elements and updates the design model according to this decision.
Note that behavior mapping includes the core task of codesign, the hardware/software par-
titioning of the system.

The design model after behavior mapping differs from the specification model in the
way that an additional level of hierarchy has been introduced. At the top-level of the struc-
tural hierarchy, behaviors are inserted that represent the allocated PEs. In each PE behavior,
only the behaviors from the specification model, that have been mapped to the particular
PE, are included. Behaviors, which have been assigned to a different PE, are replaced with
control behaviors that are used to synchronize the execution of such behaviors.

Note that the inserted PE behaviors simply group the behaviors for each PE together.
The correlation of PE behaviors with the allocated components in the library is established
as an annotation of the library and component name at the PE behavior.

b1

ch2b

d
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x y

ch1

c

b2

S1a

Figure 3.5: Design exampleS1 before behavior mapping

The process of behavior mapping is illustrated with the design exampleS1 shown in
Figure 3.5. The design is specified as two concurrent behaviorsx andy , communicating via

3For information on such algorithms, please refer to [Wol97] or [YW97], for example.
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channelch1 . The behaviorx consists of two sequential child behaviorsa andc , whereas
y contains two childrenb and d. The behaviorb, in turn, is composed of the parallel
behaviorsb1 andb2 which can communicate via the channelch2 .

For the example, two processing elements,PE1andPE2, have been allocated. Further-
more, it is assumed that all behaviors are to be executed byPE1, except forc andb2 which
are assigned toPE2.
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Figure 3.6: Design exampleS1 after behavior mapping

Given these assumptions, Figure 3.6 shows one possible design generated as a result
after behavior mapping. The two allocated processing elementsPE1 andPE2 have been
introduced as top-level, concurrent behaviors reflecting the two components of the selected
system architecture.

Since most of the behaviors were assigned toPE1, its structural composition is al-
most the same as the initial design. Only the behaviorsc andb2 have been replaced with
c ctrl and b2 ctrl , respectively. These controller behaviors consist of a start and a
wait behavior, e. g.c s andc w, which serve to synchronizePE1 with PE2. PE1 can be
seen as a client which sends a start signal toPE2 and then waits for the behaviorc to be
completed. The serverPE2 waits in a ready statec r for commands fromPE1, and sends
a done message back inc d once the behaviorc has been executed.

Note that two new channels,c syn andb2 syn , have been introduced for the syn-
chronization betweenPE1 andPE2 regarding the behaviorsc andb2 . Furthermore, the
channelch2 has been moved up to the top-level of the hierarchy so that the behaviorsb1
andb2 can still communicate.

Please note also that, after the behavior mapping has been performed, infinite loops
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have been introduced for the behaviorsx , y , c srvr andb2 srvr in Figure 3.6. This
reflects the fact that processing elements, such as processors and ASICs, never terminate.

So far in the design process, the behaviors in the design specification have been grouped
into the allocated PEs according to the selected mapping. However, the behaviors assigned
to sequential executing PEs, such as processors, still need to be serialized. This is the task
of scheduling which is described next.

3.4.2.2 Scheduling

The assignment of concurrent behaviors to a sequential PE, for example a processor, re-
quiresschedulingto be performed. The task ofschedulingdetermines the order of the ex-
ecution for these behaviors. Hereby, the scheduler ensures that the selected order does not
violate any dependencies or timing constraints imposed by the specification model, while
optimizing the execution time and other objectives specified by the designer.

As mentioned in the introduction, scheduling can be performed either statically or dy-
namically. With a static scheduler, the schedule is determined beforehand and the behaviors
will be executed in a fixed order. On the other hand, a dynamic scheduler, determines the
execution order at run-time. Typically, this is implemented by use of a real-time operating
system (RTOS). In the SpecC methodology, however, a static scheduler is used [CG99].

After a satisfactory schedule is determined, the design model is refined so that it reflects
the sequential execution of the behaviors in the sequential PEs. Note that the design model
is only changed inside the scheduled PEs. Everything else is left unchanged.
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Figure 3.7: Design exampleS1 after scheduling
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The process of scheduling can be demonstrated continuing the design exampleS1 from
Figure 3.6, assuming that both,PE1 andPE2, are sequential components. A scheduled
model of this example is shown in Figure 3.7. Note that the top-level structure of the design
has not changed. Only the internal structures ofPE1 andPE2 have been modified so that
there is no concurrency left.

In b2 s , PE1 first sends a start signal toPE2 in order to initiate the execution ofb2 ,
and then executes behaviora. After that,c is given a start signal inc s andb1 is executed.
BeforePE1 can continue with behaviord, it has to wait inb2 w for b2 to finish, because
performingd in parallel would violate the execution order specified in Figure 3.6. Finally,
PE1 waits for the completion ofc and then repeats the whole sequence.

In contrast toPE1, which executes in a single loop, a solution with use of an interrupt
model has been selected forPE2. The main execution ofPE2 consists of the behavior
c srvr includingc and its synchronization pointsc r andc d. However, wheneverPE2
receives a signal to startb2 , the interrupt handlerb2 int is called which will executeb2
immediately. Onceb2 is finished,PE1 is notified inb2 d and the execution ofc srvr
can continue. Please note that the behaviorb2 r from Figure 3.6 has been replaced by this
interrupt model.

It should be emphasized that the schedule found for this example takes advantage of
scheduling both PEs simultaneously. In other words, a global scheduling approach for the
whole design is used, as opposed to two local schedulers working independently inPE1
andPE2.

3.4.2.3 Variable mapping

Variables used in the system specification need to be assigned to memories. Such memories
are either standard memory components allocated in the target architecture, or local mem-
ories within the PEs. However, local memory space in PEs is usually quite limited. ASICs
can store only a small set of variables in register files, and processor cores typically contain
only very small built-in memories.

For variables mapped to memories, communication functions, such asRead and
Write , need to be used by the PEs in order to access these variables. The same applies
when a PE needs to read or write a variable stored within another PE.

In the SpecC design model, such variable access functions are represented explicitly
by so-calledvariable channels, which are introduced and maintained automatically. These
variable channels encapsulate the necessary functions which communicate with the memory
component that actually contains those variables.

Later in the design flow, the variable channels will be grouped into virtual busses which,
in turn, will then be refined into the allocated system busses.

The refinement step of variable mapping is illustrated with the simple design example
S2 shown in Figure 3.8. The design consists of two behaviors,PE1andPE2, which initially



3.4. ARCHITECTURE EXPLORATION 59

int x;

...

...

a = x;

x = b;
b = g(a) + c;

int a, b, c;

inout int x
PE2

...

...

int a, b;

b = f(a);
x = b;

PE1
out int x

S2a

Figure 3.8: Design exampleS2, initial specification

communicate via a shared integer variablex . More specifically,PE1 writes the result of a
function f through its output port into the connected variablex . For simplicity, the output
port is namedx as well4. On the other hand,PE2 reads the shared variablex through its
port, computes a functiong with the value, and writes the result back intox . Note that the
port of PE2, which again is namedx , is bidirectional, allowing both read and write access.

...

...

int a, b;

b = f(a);
x.Write(b);

PE1
W x

...

...

b = g(a) + c;

int a, b, c;

a = x.Read();

x.Write(b);

PE2
RW x

RWW int x;
C1

S2b

Figure 3.9: Design exampleS2 before variable mapping

In a preprocessing step, the shared variablex is first encapsulated in a variable channel
C1, as shown in Figure 3.9. The channelC1 provides a left interfaceWfor write access,
and a right interfaceRWfor bidirectional access tox . These interfaces are used as the new
port types forPE1andPE2. Furthermore, in order to accessx in the channelC1, the direct
assignments to the ports are replaced with the function callsRead andWrite provided by

4In the SpecC language, the scope of a port name is limited to the behavior body. Thus, there is no naming
conflict between the portx and the external variablex .
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C1.
As a result, the design has been transformed so that all shared variables are replaced

with channels and all communication is performed by explicitRead andWrite function
calls. This preprocessing step prepares the next step and is also needed for communication
synthesis performed later in the design process.

while(true)
int x;

case W:
case R:{

}

{

}

break;
break;p.Put(x);

x = p.Get();

M1

...

...

int a, b;

b = f(a);
x.Write(b);

PE1

...

...

b = g(a) + c;

int a, b, c;

a = x.Read();

x.Write(b);

PE2
RW x

RW
C2

PG

PG pRW x

S2c

switch( p.Cmd() )

Figure 3.10: Design exampleS2 after variable mapping

Under the assumption that the variablex has been assigned to a memoryM1, the design
model can be further refined, as shown in Figure 3.10. The memoryM1 is placed into the
design as a new behavior in parallel toPE1 andPE2, and the former shared variablex is
declared as a local variable inM1.

The functionality of the memoryM1 can be specified as an infinite loop that serves
incoming requests for reading and writing to the storagex . In Figure 3.10, the function
Cmdis used to determine the type of the request. For a read requestR, the value ofx is
output by use of the functionPut . For a write requestW, x is set to a new value obtained
with Get .

The functionsCmd, Put andGet are provided by a new channelC2which replaces the
former channelC1. C2 contains two interfaces. The interfacePGconnects to the memory
M1, and the interfaceRWconnects to the behaviorsPE1 andPE2. Note thatPE1 andPE2
need not to be changed, because the interfaceRWis the same as before5.

3.4.2.4 Channel mapping

After behavior mapping and variable mapping have been performed, the design model con-
sists of a set of PE and memory behaviors connected by a typically large set of variable
channels. In particular, there is one channel for every variable in the design that is trans-
ferred between any of the PE and memory components.

5For space reasons, the interfaceWis ignored andRWis connected to both behaviorsPE1 andPE2.
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In order to obtain the architecture model, the variable channels need to be mapped onto
the allocated busses in the target architecture. More specifically, the variable channels are
combined by use of grouping channels, as defined in Section 2.4.2. Each grouping channel
is called avirtual bus, representing a particular bus in the system architecture.

Later, during communication synthesis, these virtual busses will be replaced with cycle-
accurate models of the allocated busses. For the architecture model, however, the virtual
busses are only annotated with the real bus name.

PE2

b xx

PE1

x

M1 M2

a b

RW

RW

RW

Ca

Cb

Cx

a

PG

PG

PG

S3a

Figure 3.11: Design exampleS3 before channel mapping

The refinement step of channel mapping is illustrated with the design exampleS3
shown in Figure 3.11. The design consists of two processing elements,PE1 and PE2,
and two memories,M1andM2. For simplicity, only three variables,a, b andx , are used in
the design. Variablesa andb are stored in memoryM1, whereasx is stored inM2. For each
variable, there exists a corresponding channel that contains the required access functions
Read, Write , Put andGet , as discussed earlier with Figure 3.10.PE1 can access the
variablesa andx by use of the channelsCa andCx, whereasPE2 has access tob andx
via channelsCb andCx, respectively.

Since this is a small design, one single bus is sufficient to connect all four components.
In other words, it is assumed that all three channels,Ca, Cb andCx, are to be mapped onto
the same bus.

The result of channel mapping for this example is shown in Figure 3.12. The allocated
busB1, represented as a grouping channel, has been inserted into the design, containing the
channelsCa, Cb andCx. The busB1 provides two interfaces, a master interfaceMfor use
by PE1 andPE2, and a slave interfaceS for the memoriesM1andM2.

The busB1 introduces a new communication layer that references each variable in the
design by a uniqueID . More specifically, the master interfaceMprovidesRead andWrite
functions similar to theRWinterfaces of the internal channels. However, these functions
take a variableID as an additional argument in order to identify which one of the internal
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C3 C4
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RW

RW

Ca

Cb

Cx
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B1

M SPG

PG

PG
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Figure 3.12: Design exampleS3 after channel mapping

channels is to be used. For example, the function callB1.Read(IDx) will in turn call
Cx.Read() , and the callB1.Write(42,IDa) will in turn call Ca.Write(42) . The
same scheme is used for the memory interfaceS with the functionsPut andGet .

The added communication layer is also reflected by the newly introduced component
modelsC1, C2, C3andC4, which encapsulatePE1, PE2, M1andM2, respectively. Further-
more, in order to compensate the change in the communication protocol, adapter channels
have been inserted for each component port. These adapters essentially provide the reverse
functionality of the channelB1. In other words, the adapters will supply the requiredID to
each function call. For example, an adaptera will convert the function callRead() into
Read(IDa) and the callWrite(27) into Write(27,IDa) .

Please note that the level of hierarchy added to the design model due to the bus grouping
channels, component behaviors and adapters, does not imply any decrease in performance
of the final system. The process of inlining will eliminate the structural overhead.

Please note also that the design model obtained after channel mapping has been per-
formed, accurately reflects the system architecture. Each component and each bus in the
real system is represented by a corresponding top-level behavior or top-level channel in the
design model.

3.4.3 The architecture model

After behavior, variable, and channel mapping have been performed, the task of architecture
exploration is complete. As a result, the initial specification model of the design has been
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refined into the architecture model.
The architecture model is an abstract model of the system under design, that accurately

reflects the functionality and the overall structure of the final implementation. However, the
model is not accurate yet in terms of timing and communication.

Communication is performed by use of channels representing virtual busses. As such,
communication still uses the original, possibly complex data types and takes zero time.

For the computation parts, execution times have been estimated for all behaviors in the
PEs. Assuming that the estimated execution times for the leaf behaviors have been inserted
into their code in form ofwaitfor 6 statements, the architecture model will reflect these
timing delays in the simulation when it is executed.

b4

b1

b3

b2

SW1 HW1 IP1

b1

PE1 PE2 PE3

IP

M1

PE4

b2

B2

B1

Sb

v1
v2
v3
v4

s1 s2

s3 s4

v5 v6
v7

v8
a

T1

c1 c2

c3 c4c5

c6

Figure 3.13: Architecture model

A typical architecture model is shown in Figure 3.13. The architecture modelSb con-
sists of four components, namely a processorSW1, an ASICHW1, an IP coreIP1 , and
a memoryM1. Internally, each of these components consists of a set of adapters for the
added communication layer discussed with Figure 3.12, and a PE behavior which, in turn,
contains a set of behaviors describing the functionality of the particular component.

Communication is performed via the virtual bussesB1 andB2. B1 serves as a system
bus, connecting all four components. On the other hand,B2 is a local bus between the
processorSW1and the ASICHW1.

6Please refer to Section 4.10.1 for a description of the SpecCwaitfor statement.
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Note that, in contrast to the specification model shown earlier in Figure 3.2, the archi-
tecture model clearly reflects the structure of the target architecture.

3.5 Communication Synthesis

In the SpecC methodology, it is the task of communication synthesis7 to further refine the
generated architecture model into the communication model. The communication model
will accurately reflect the detailed communication between the components in the design,
including cycle accurate timing. Thus, the purpose of communication synthesis is to resolve
the abstract communication in the architecture model into an implementation.

During communication synthesis, the virtual communication protocol used in the archi-
tecture model is replaced with real communication protocols implemented on the system
busses. In other words, the virtual busses in the architecture model are replaced with the
actual busses selected during architecture allocation. On top of the native bus protocols, an
application layer communication protocol is selected and inserted in the design model. For
incompatible bus protocols, transducers are further inserted into the system model which
bridge the gap between the protocols by translating the transactions between those busses.
Finally, the communication protocols are implemented in the PEs by use of inlining.

Communication synthesis includes the interfacing of hardware and software compo-
nents. For synthesizable hardware components, the ports of the components can be easily
adapted to different busses. This, however, is not true for software components, because
processor ports are fixed. In order for software to communicate with connected hardware,
processor specificdevice driversare needed. Since the implementation of device drivers is
a special problem in communication synthesis, it is ignored in this section. Two case studies
with the SpecC methodology, which involve the communication between a processor and
an ASIC, can be found in [GZG+99] and [KG98].

In the SpecC methodology, communication synthesis is separated in three tasks, namely
protocol selection, transducer insertion and protocol synthesis. These are described next.

3.5.1 Protocol selection

Communication synthesis deals with communication protocols which, in general, are orga-
nized in severallayers. A communication protocol stack typically starts at the lowest level
with the physical layer and extends over several intermediate layers up to the application
layer at the highest level.

In the SpecC methodology, two communication layers are distinguished. The low-
level layer, called thebus layer, is dependent on a particular bus. It contains the native

7In the literature, communication synthesis is sometimes referred to asinterface synthesis.
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communication functions provided by the bus. The bus layer is stored in form of a channel
in the bus library and is selected for the design as part of the architecture allocation.

On the other hand, the high-level layer, called theapplication layer, is independent from
the allocated busses. Rather, it consists of an application specific communication protocol,
built on top of the bus layer.

As the first step of communication synthesis, it is the task of protocol selection to select
and customize the application layer for the particular design.

The application layer essentially provides two necessary services which enable the PEs
in the design to exchange data of any data type, including user-defined records and multi-
dimensional arrays.

The first service, calledsizing, converts the data types used in the application into blocks
that can be transported via the busses. For example, assuming that a native bus protocol only
supports the transfer of single bytes and small blocks of 256 bytes, an array of 1024 integers
could be transferred as a sequence of 16 blocks8.

The second service, calledaddressing, basically replaces theID mechanism discussed
with Figure 3.12. In order to identify particular variables during the communication and
in the memories, unique addresses are assigned to each of them. Each variable is then
referenced by its address, identifying a particular PE and the location in the PE.

In the design model, the application layer is represented by a hierarchical channel that
encapsulates a low-level bus channel.

3.5.2 Transducer insertion

After the communication protocols have been determined for each bus in the design, it is
possible that the selected protocols conflict with the built-in protocols of some components.
In particular, this situation occurs often times with hard IP components, processors and
memories, when these are connected to the system bus.

In case of a protocol mismatch, a transducer needs to be inserted. As discussed in
Chapter 2, the transducer then acts as a translator for the two protocols.

Please note that the creation and insertion of a transducer can be easily automated,
because of the “plug-and-play” feature of the SpecC model.

The refinement step of transducer insertion is illustrated with the design exampleS4
shown in Figure 3.14. The design consists of a behaviorPE1 and a memoryM1, connected
by a virtual busVB1, as discussed earlier with Figure 3.12. For simplicity, the adapters
known from Figure 3.12 have been left out in Figure 3.14. Instead, the code shown in the
behaviors uses the virtual bus protocol provided by the interfacesMandS directly9.

Assuming that architecture exploration has already been performed for the design,PE1
has been assigned to a synthesizable ASIC and the memoryM1 has been allocated as a

8This assumes that the size of integer is 4 bytes.
9The code shown in the behaviors can actually be obtained by inlining of the adapters in Figure 3.12.
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...

...

int a, b, c;
while(true)

case W:

case R:{

}

{

}

break;

break;

PE1 M1

VB1

c = f(a) + g(b);

int id, m[N];

M SS4a

p p

p.Put(m[id]);

m[id] = p.Get();

switch( p.Cmd(&id) )a = p.Read(IDx);
b = p.Read(IDy);

p.Write(IDz, c);

Figure 3.14: Design exampleS4 before communication synthesis

standard memory core. Also, the virtual busVB1 is to be implemented as a particular
system bus. Further, it is assumed that the native bus of the selected memoryM1differs
from the allocated system bus. Thus, a transducer is required to translate the transactions
on the system bus into requests on the memory bus, and vice versa.

p2.Write(id, p1.Get());

p1.Put(p2.Read(id));

while(true)

case W:

case R:{

}

{

}

break;

break;

p1 p2T1

int id;
...

...

int a, b, c;
while(true)

case W:

case R:{

}

{

}

break;

break;

PE1 M1

c = f(a) + g(b);

int id, m[N];

M SS4b

p p

p.Put(m[id]);

m[id] = p.Get();

a = p.Read(IDx);
b = p.Read(IDy);

p.Write(IDz, c);

switch( p1.Cmd(&id) ) switch( p.Cmd(&id) )

M SVB1 VB2

Figure 3.15: Design exampleS4 after transducer insertion

Figure 3.15 shows the designS4 after the required transducer has been introduced. The
transducerT1 has been inserted as a new, synthesizable component, running concurrently
with PE1 andM1. The virtual busVB1 has been reconnected and another virtual busVB2
has been inserted, so that any communication betweenPE1 andM1 is performed through
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the transducerT1.
Please note thatPE1 andM1 have not been modified during the transducer insertion

and, up to this point, all three components still communicate via the virtual bus protocol.
The real protocol for the selected system bus and the selected memory will be inserted next
during the task of protocol synthesis.

3.5.3 Protocol synthesis

After the transducers have been inserted, the virtual communication protocol used so far
in the design model can finally be replaced with the actual bus protocols embedded in the
added application layer.

In the design model, this change is just a matter of “plug-and-play”. For each bus, the
grouping channel, that represents the virtual bus, is replaced with the hierarchical channel
that contains the application layer with the encapsulated real bus channel. At the same time,
the adapter channels, that were used to supply theID for each variable, are replaced with
new adapters that now provide the addressing for the variables.

Note that the intermediate design model obtained at this point is fully functional and
also features bus-cycle accurate communication. However, the application layer commu-
nication protocol, in particular the operations necessary for sizing and addressing, are still
performed in zero time. In order to obtain accurate execution times for these functions, they
need to be inlined into the connected PEs.

Inlining is the last step of communication synthesis. As described in Chapter 2, inlining
is performed for each channel in the design. It moves the functions contained in the channel
into the connected behaviors and exposes the encapsulated variables which then represent
wires.

The process of protocol synthesis can be demonstrated continuing the design example
S4 from Figure 3.15. Note that in Figure 3.15, the componentsPE1, T1 and M1 still
communicate via the initial protocol provided by the virtual bussesVB1 andVB2. More
specifically,PE1 uses theRead andWrite functions of the interfaceM, whereasM1calls
Put and Get of the interfaceS. Further, all these functions use anID to identify the
particular variable being accessed.

Figure 3.16 shows the exampleS4 after the actual bus protocolsSBandMBhave been
inserted, replacing the virtual bussesVB1 andVB2, respectively. Please note that in Fig-
ure 3.16, the application layer has already been inlined into the behaviors in order to demon-
strate the change in the communication protocol10. Thus, the code shown in the behaviors
uses the native communication functions of the selected busses. For this example, the bus
SB is assumed to provide the functionsSend1 , Send2 , Send3 , as well as the equivalent
Recv functions, whereas the memory busMBprovidesPut andGet functions in the same

10Without inlining, the protocol change would have been invisible, since the code in the channel is not shown.
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p1 p2T1

...

...

int a, b, c;
while(true)

case W:

case R:{

}

{

}

break;

break;

PE1 M1

S4c

int adr, m[N];

c = f(a) + g(b);

p1.Recv2(&cmd, &adr);
while(true)
{
switch(cmd)

case W:

case R:{

}
}

break;

break;

p1.Recv1(&data);
p2.Write(data);

int cmd, adr, data;

p1.Send1(data);
data = p2.Read(adr);

p.Send2(R, ADRx);
p.Recv1(&a);
p.Send2(R, ADRy);
p.Recv1(&b);

p.Send3(W, ADRz, c);

p p

switch( p.Cmd(&adr) )
p.Put(m[adr]);

m[adr] = p.Get();

M S
w1
w2
w3

v1
v2
v3

I1 I1

MBSB

Figure 3.16: Design exampleS4 after protocol insertion

manner as the virtual protocol before.
Note that, while sizing has been ignored, address assignment is shown with the example.

Instead of theIDs in Figure 3.15, the memory addressesADRx, ADRyandADRzare used
in Figure 3.16 to identify the variables.

The result of the final inlining process with the example is shown in Figure 3.17. The
channelsSBandMBhave disappeared. Instead, the former encapsulated variablesv1 , v2 ,
v3 , andw1, w2, w3 are used as communication wires. The ports of the componentsPE1,
T1 andM1have changed accordingly. Also, the code in the behaviors has been changed so
that the low-level bus protocols become visible11.

3.5.4 The communication model

After the communication functions have been inlined into the behaviors, the task of com-
munication synthesis is complete. As a result, the architecture model of the design has been
refined into the communication model.

The communication model is a design model at a medium level of abstraction. As the
architecture model, it is an accurate representation of the design in terms of functionality
and overall structure. In addition, the communication model features bit-exact, bus-cycle
accurate communication.

11For space reasons, only very small code fragments are shown.
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T1

int a, b, c;

PE1 M1

int adr, m[N];int cmd, adr, data;

w1
w2
w3

v1
v2
v3

S4d

v1 v2 v3 v1 v2 v3 w1 w2 w3 w1 w2 w3

v2 = true;
notify v3;

notify v3;

while (!v2)
wait v3;

v2 = false;
wait v3;

while (v2)

v1 = ADRx;

adr = v1;
wait 10;

while (!w1)
wait w2;

adr[7:0] = w3;

adr[15:8] = w3;
...

...

...

...

...

...

Figure 3.17: Design exampleS4 after protocol inlining

More specifically, the communication model is a bus functional model. The transactions
on the system busses are represented accurately in great detail, bit by bit and cycle by cycle.
On the other hand, the components in the system are still represented at a high abstraction
level, allowing fast simulation. However, the execution times of the components are not
exact, rather they are only estimated values.

A typical communication model is shown in Figure 3.18. Compared to the architecture
model shown earlier in Figure 3.13, the two virtual bussesB1 andB2 have been imple-
mented, represented by the wire variablesB1a, B1b, B1c, andB2a, B2b, respectively.
Further, three transducers have been introduced.T1 bridges the system busB1 to the native
busB4 of theIP component. Similar, the system bus is connected to the processorSW1and
the memoryM1by the transducersT2 andT3, respectively. On the other hand, the ASIC
HW1connects to the system busB1 and the processor busB2 directly, since the necessary
communication protocols have been inlined into the ASIC.

In order to emphasize the inlined communication protocols in Figure 3.18, the appli-
cation layer and the bus protocols are combined and shown as explicit adapters, called bus
drivers. D1, D2 andD3 drive the bussesB1, B2 andB3, respectively. Please note that
there is no driver shown for the busB4, since this is the native bus of theIP with a built-in
protocol.

3.6 Back end

The communication model is also the resulting model of the synthesis flow in the SpecC
methodology, as shown in Figure 3.1. It is handed-off to the back end of the design flow.

It is the task of the back end to implement each particular component in the design
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Figure 3.18: Communication model

model by use of standard EDA tools. More specifically, the components assigned to appli-
cation specific hardware need to be implemented by a hardware synthesizer and the software
components need to be compiled for the particular processor.

Please note that there is no need for a special interface synthesis tool any more, since
the transducers in the system are standard hardware components which can be synthesized
the same way as the allocated ASIC components.

3.6.1 Hardware synthesis

For each component in the design model, that is to be implemented as custom hardware,
hardware synthesis has to be performed.

Since currently the SpecC language is not accepted directly by any hardware synthe-
sizer, the SpecC code in the particular behavior needs to be translated into an acceptable
language, such as a synthesizable VHDL subset, for example. Note that this translation
should be straightforward, since there are no constructs in the component model left, which
are not acceptable for hardware synthesis.

After this translation, traditional behavioral or high-level synthesis (HLS) [Mic94,
Mar93, LMD94] can be performed, producing a netlist of RTL components as a result.
Please note that the generated RTL netlist can be translated back into a SpecC model, since
the SpecC language is capable of describing a hardware design model at this level of ab-
straction as well.
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3.6.2 Software compilation

For the processor components in the design model, the according SpecC code is first trans-
lated into the standard C++ language, by use of the SpecC compiler. Then, any standard
C++ compiler for the particular target processor can be used to produce the final ma-
chine code. Alternatively, a retargetable compiler, such as the GNU C/C++ compiler12,
that is capable of compiling C++ code for several target processors, can be used as well
[LP97, MG95, Lie97].

In order to create a final SpecC implementation model of the design, the generated
machine code can be used with an instruction set simulator of the target processor. Provided,
that the instruction set simulator supports a suitable programming interface, for example in
C, then this simulator can be easily hooked to the SpecC simulator.

As a result, a cycle-accurate simulation of the instruction set architecture (ISA) of the
processor is possible for each software component in the SpecC implementation model.

3.6.3 The implementation model

As a result of hardware synthesis and software compilation for each component in the com-
munication model, the final implementation model of the design has been generated.

The implementation model is the model with the lowest level of abstraction in the SpecC
methodology. It is an accurate model of the design implementation in terms of functionality,
structure, communication and timing. Note that the implementation model reflects both,
bus-cycle accurate timing for the communication, as well as clock-cycle accurate timing
for the computation performed in the system.

The implementation model differs from the previous communication model only within
the synthesizable components. A software component is described in form of an instruction
set architecture. On the other hand, a hardware component consists of a network of RTL
components, forming a control unit and a data path.

In summary, the implementation model is ready for manufacturing.
A typical implementation model is shown in Figure 3.19. In contrast to the communi-

cation model in Figure 3.18, only the processorSW1and the ASICHW1have changed. The
software componentSW1is modeled as an instruction set architectureISA1 . On the other
hand, the hardware componentHW1consists of a controller behaviorc1 and a data path
behaviord1 .

In this chapter, the SpecC design methodology was described, which is based on four
well-defined design models, namely the specification model, the architecture model, the
communication model, and the implementation model.

12Online information about the GNU C/C++ compiler is available at:
http://www.gnu.org/software/gcc/gcc.html
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Figure 3.19: Implementation model

Please note that, because of the modularity of the SpecC model (“plug-and-play”), a
design can also be easily represented as a mixture of these models. This is especially useful
if parts of a design are further refined as others, or if accuracy is only required for specific
portions in the design model.



Chapter 4

The SpecC Language

For the system design methodology presented in Chapter 3, it is desirable that a single
language is used for all models at all stages. Such a homogeneous methodology does not
suffer from language interfacing problems or cumbersome translations between languages
with different semantics. Instead, all models are consistent and one set of tools can be
used for all models at all stages. Also, synthesis tasks are merely transformations from one
program into a more detailed one specified with the same language.

Using a single language throughout the design process is beneficial for reuse of IP
as well. Design models from the component library can be reused in the system without
modification (“plug-and-play”) and a new design can be inserted immediately as a library
component.

As stated already in the introduction, a general requirement for any system language is
that it is formal and unambiguous. In order to employ automated refinement and synthesis
tools, the design process must start from a formal specification.

These, and other similar requirements are satisfied by many languages, but this does
not imply that all these languages are well-suited for the purpose of system-level design.
The real quality of a language is determined by itsexpressive power. The expressive power
of the language must match the purpose it is used for and must be sufficient to precisely
describe the models and concepts needed during the design process. In other words, it is
critical that the selected language meets the goals and requirements, but does not include
unneeded features.

The goal of this chapter is the identification of a minimal and orthogonal set of prop-
erties which are necessary to specify and model embedded systems on different levels of
abstraction. Once these properties have been identified and characterized, a language can
be chosen or developed which explicitly supports these properties of embedded systems.

In the following section, the unique requirements and objectives for system-level lan-
guages are analyzed. Then, some of the traditional languages listed in the introduction are
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compared to these requirements in Section 4.2.
Since none of these commonly used languages completely meets the identified require-

ments, a new language called SpecC [GZD97a, ZDG97b, ZDG97a] is proposed. It is also
shown that SpecC precisely covers the requirements of system-level design in an orthogonal
manner.

4.1 Language Requirements

The major requirements for a language being used for system-level design are easily iden-
tified. In particular, such a language must be

� executable,

� synthesizable,

� modular, and

� complete.

In addition, a well-defined language should be

� orthogonal,

� minimal, and

� easy to understand.

4.1.1 Executability

Executability of the language is of crucial importance for simulation. The system specifi-
cation must be validated to assure that exactly the intended functionality is captured. Then,
simulation is also necessary for the intermediate design models during the synthesis pro-
cess. Here, the functionality of the refined design can be compared against the behavior of
the model before the refinement.

4.1.2 Synthesizability

Synthesizability is a requirement whose importance cannot be ignored. In general, every
construct provided by the modeling language should have at least one possible implementa-
tion. If this is not the case, a synthesizable subset of the language must be defined and only
constructs from this subset can be used. Such a language subset, however, is essentially
another language.
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In other words, the requirement of synthesizability places a limitation on the descriptive
and expressive power of the language being used. For example, many languages, such as
VHDL, offer features which are simulatable but not synthesizable.

It should be obvious that, for a codesign language, it is desirable that the provided
constructs can be implemented in either hardware or software. This makes it possible to
trade-off a hardware implementation against a software implementation, and vice versa.
However, it is also acceptable to have only one possible implementation. For example, the
implementation of general pointers is only possible in software. On the other hand, parallel
execution, in general, can only be implemented in hardware.

Furthermore, it is acceptable if the language contains constructs which need to be re-
fined into a set of lower-level constructs in order to be implementable. Such constructs
allow a highly abstract system specification without the loss of synthesizability.

4.1.3 Modularity

Modularity is required to clearly separate functionality from communication. It also en-
ables the decomposition of a system into a hierarchical network of components.Behavioral
hierarchy is used to decompose a system’s behavior into sequential or concurrent child
behaviors, whereasstructural hierarchydecomposes a system into a set of interconnected
components [GZD97c].

Modularity is also required to support design reuse and the incorporation of IP. During
refinement, modularity helps to keep changes in the system description local so that other
parts of the design are not affected. For example, communication refinement should only
replace abstract channels with more detailed ones without modifying the components using
these channels. The locality of changes makes refinement tools simpler and the generated
results more understandable.

4.1.3.1 Behavioral hierarchy

The specification of behavioral hierarchy is defined as the process of decomposing a behav-
ior into distinct child behaviors, which can be either sequential or concurrent.

Thesequential decompositionof a behavior can be represented as either an algorithmic
program or a state machine. On the other hand, theconcurrent decompositionof behaviors
allows child behaviors to run in parallel or in pipelined fashion.

Figure 4.1 shows a behaviorX consisting of three child behaviorsA, B andC. In Fig-
ure 4.1(a), the child behaviors are running sequentially, one at a time, in the order indicated
by the arrows. In Figure 4.1(b),A, B andC run in parallel. In other words, they all will
start whenX starts, andX will finish when all of them have completed. In Figure 4.1(c),
A, B andC run in pipelined mode, which means that they represent pipeline stages which
concurrently process a stream of data, passing the data through all stages.
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Figure 4.1: Behavioral hierarchy

4.1.3.2 Structural hierarchy

With structural hierarchy, a system specification is represented as a set of interconnected
components. Each of these components, in turn, can have its own internal structure, which
is specified with a set of lower-level interconnected components, and so on. Structural
hierarchy is typically represented as a set of block diagrams.

4.1.4 Completeness

Completeness is an obvious requirement that needs to be further refined. For a system
language, completeness implies that all concepts commonly found in embedded systems
design need to be supported.

The concepts needed for modeling embedded systems have been studied for several
years. An in-depth discussion and definitions of these concepts can be found, for example,
in [GVN+94] and [GZD97c, GZD97b]. In addition to behavioral and structural hierarchy,
which have been discussed in the previous section, the important concepts include concur-
rency, synchronization, exception handling, timing, and explicit state transitions. These are
briefly reviewed in the following sections.

4.1.4.1 Concurrency

Concurrency is a necessary feature of any system-level language. Concurrency can be
classified into two groups, data-driven or control-driven, depending on how explicitly the
concurrency is indicated in the language. Furthermore, a special class of data-driven con-
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Figure 4.2: Exception handling: (a) abortion, (b) interrupt.

currency, called pipelined concurrency, is of particular importance to signal processing
applications. For more details about these concurrency classes, please refer to [GZD97c].

4.1.4.2 Synchronization

Concurrent behaviors usually need to be synchronized in order to be able to communicate
or to cooperate. For example, one behavior may generate data that needs to be received by
another behavior, or several behaviors have to execute some task simultaneously. In such
cases, these behaviors need to be synchronized in such a way that one is suspended until
the other reaches a certain point in its execution.

Common synchronization methods can be classified into two schemes, namely control-
dependent and data-dependent synchronization. One example of control-dependent syn-
chronization is the use offork andjoin constructs for processes or threads. An example
of data-dependent synchronization is the use of shared variables acting as valid-flags for
exchanged data.

4.1.4.3 Exception handling

Often, the occurrence of a certain event requires that a behavior is interrupted immediately,
prohibiting the behavior from further processing. This is called an exception. The behavior,
to which the control will be transferred in such an event, is called an exception handler.

Exceptions can be divided into two groups,abortion and interrupt, as illustrated in
Figure 4.2. In the case of abortion, the current behavior is terminated immediately and
the exception handler will finish the execution. In the case of an interrupt, the control is
transferred only temporarily to the handler. As soon as the interrupt handler terminates, the
control is transferred back to the interrupted behavior which can resume its execution.
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Typical examples of such exceptions are resets and interrupts in standard computer
systems.

4.1.4.4 Timing

Although many computational models do not explicitly contain timing, there is often a need
to include detailed timing information in the system specification. This is particularly true
for real-time systems where the tasks have to be executed within the specified time periods.

Timing can be specified either exactly or in form of minimum or maximum constraints.
For embedded systems, timing is typically measured in units of nanoseconds.

In general, a timing relation between two events can be described by a 4-tupleT =

(e1;e2;min;max), where the evente1 preceeds the evente2 by at leastmin time units and at
mostmaxtime units. Such timing relations can be used for both timing delays and timing
constraints.

Such timing information is especially important for describing parts of the system which
interact with the environment according to a predefined protocol. In this case, the protocol
defines the set of timing relations between signals, which both communicating parties have
to respect. Such protocols are typically described graphically in form of timing diagrams.

4.1.4.5 State transitions

In order to model finite state machines, for example the FSM, FSMD and PSM models,
explicit state transitions have to be supported. Such systems are often best conceptualized
as having various modes, or states, of behavior. For example, a traffic-light controller might
incorporate different modes for day and night operation and for the status of the traffic light
itself.

In systems with various states, the transitions between these states typically occur in an
unstructured manner. Such arbitrary transitions are similar to the use ofgoto statements
in programming languages.

Transitions between states can be triggered by the detection of certain events or cer-
tain conditions. Depending on the actual FSM model, actions can be associated with each
transition, and each particular state can have a behavior or computation associated with it.

4.1.5 Orthogonality

In addition to the requirements listed in the previous sections, there are additional goals and
objectives for system-level languages. For example, an obvious objective is that a language
is easy to understand.

Another important goal is the orthogonality of the concepts because this significantly
simplifies the development of the tools working with the language. More specifically, it is
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desirable that all the concepts listed in Section 4.1.4 are organized in an orthogonal way. In
other words, these concepts should be implemented independently from each other.

VHDL can serve as a counter example. In VHDL, signals incorporate synchronization,
data storage and timing. This makes it very hard to identify for which purpose a particular
signal is actually used, and thus an efficient implementation is hardly possible.

It should be noted that orthogonality implies minimality. If the concepts are organized
in an orthogonal manner, only a minimal set of constructs is required.

4.2 Language Comparison

A fair amount of work has already been done in research about languages. However, much
of previous work has focused on either languages for software design (programming lan-
guages) or languages for hardware simulation (hardware description languages). It can be
expected that software languages are not suitable for describing hardware, and vice versa.
Despite this, several system-level design approaches are using traditional languages, such
as C, C++ and VHDL, for modeling embedded systems, as described in the introduction.

In this section, some of the traditional languages are analyzed and compared against the
set of required concepts discussed in the previous sections. More specifically, C [X3/90],
C++ [X3/97], Java [AG96], VHDL [IEEE93], Verilog [TM91], HardwareC [KM90], Stat-
eCharts [Har87], and SpecCharts [NVG91] are compared. In addition, SpecC [ZDG97b],
which is described in the sections following this one, is included as well.

Figure 4.3 summarizes the results of the analysis1. For each language, it is shown
which requirements it supports and which are missing. Note that some concepts are only
partially supported by some languages, as indicated by the half-filled circle. Please note
also, that such a classification is only a rough characterization of a language. However, it
indicates quite well which problems a language incorporates if it is considered for system-
level design.

In addition to the features discussed earlier, the support of composite data types, which
is a typical software language property, has been included in the last row of the table.
Composite data types are user-defined data types such as arrays and records. These are
often not supported by hardware languages, but are definitely needed for modeling systems
containing software portions.

As shown in Figure 4.3, all the traditional languages lack one or more of the require-
ments. Hence, these languages cannot be used without problems for modeling embedded
systems. In order to model systems containing both hardware and software, new languages
need to be developed.

1Similar tables with language comparisons can be found, for example, in [GVN+94], [JRV+97] and
[Nie98].
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Figure 4.3: Comparison of language features

The SpecC language [DZG98] has been proposed as a new language that supports all
the required concepts, as shown in the last column of Figure 4.3. SpecC is described in
detail in the following sections.

4.3 Foundation

Accepting the fact, that a new language needs to be developed in order to meet all the
requirements of embedded systems design, it has to be determined how the new language
is being built. More specifically, the new language can either be developed from scratch, or
can be built based upon an existing language. While the first approach offers the advantage
of total freedom in terms of syntax and semantics, the second approach can easily leverage
knowledge that is already present in the given language. Because it is obviously beneficial
not to ‘reinvent the wheel’ (and possibly making mistakes while doing so), this approach
was chosen for the development of the SpecC language.

When starting from an existing language, the features of this language are inherited by
the new language. Hence, it is desirable to select a language which contains no unwanted
characteristics which then would have to be taken out. For example, no constructs should
be inherited which are not synthesizable.

Usually, it is easier to add a missing concept to a language, than taking an unwanted
feature out. A language extension also has the advantage that existing programs for the base
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language will usually still work without modification when used with the new language.
For the SpecC language, several languages were considered as starting point, including

C, C++, and Java. Eventually, C, or more precisely ANSI-C [X3/90], was selected because
of its maturity and its large amount of already existing code. Although both, C++ and
Java, offer advanced software features not present in C, the C language is still the de-facto
standard for software development.

It should be emphasized that with the selection of C all requirements for software de-
sign are already satisfied. Furthermore, there are no features in the C language which cannot
be implemented in an embedded system since, in the worst case, everything can be imple-
mented in software. However, the missing concepts required for hardware design have to
be added. This is described next.

The following sections introduce the SpecC language based on ANSI-C. For a fully
detailed description, please refer also to the SpecC Language Reference Manual [DZG98],
which includes a formally defined SpecC grammar usinglex andyacc notation.

4.3.1 Types and expressions

The SpecC language is a true superset of ANSI-C [X3/90]. In other words, every C program
that follows the ANSI-C standard can be used without modification as a SpecC program.
The only exception is that the newly introduced SpecC keywords cannot be used for identi-
fiers such as variable names. A complete list of these keywords is included in [DZG98].

Types and expressions supported by SpecC are mostly inherited from the C language.
SpecC supports all the standard basic types, such asint , float , double , etc., and all
aggregate and composite types, such as pointers, arrays and records (struct , union ),
together with the traditional operations known in C. In addition to these, SpecC provides
explicit support for boolean, event, and bit vector types, as described next.

4.3.1.1 Boolean type

Similar to C++, the SpecC language explicitly supports a boolean data typebool for the
representation of truth values.

1 bool f ( bool b1 , i n t a )
2 f
3 bool b2 ;
4

5 i f ( b1 == t rue )
6 f b2 = b1 j j ( a > 0 ) ;
7 g
8 e l s e
9 f b2 = ! b1 ;

10 g
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11 re turn ( b2 ) ;
12 g

A boolean value can have only one of two values,true or false . As illustrated in
the example above, boolean values are used to express the result of logical operations such
as comparisons. In expressions, a boolean type is converted implicitly to the integer type
int whenever necessary. In this case,true is converted to1 andfalse becomes0.

4.3.1.2 Bit vector type

In order to model hardware, explicit support for bit vectors of arbitrary length is required.
SpecC provides a built-in bit vector typebit[l:r] with arbitrary precision specified by
left (l ) and right (r ) bounds.

A bit vector can be thought of as a parameterized type whose bounds are defined with
the name of the type. SpecC semantics require that the left and right bounds of any bit
vector are constant expressions which can be evaluated statically. Hence, the length of any
bit vector expression is constant and known at compile time. It should be emphasized that
this is a synthesis requirement which, for example, is missing in VHDL.

A bit vector is eithersigned or unsigned and can be used as any other integral type
within expressions. For example, the typebit[sizeof(int)*8-1:0] is equivalent
to the integer typeint . Implicit promotion to integral types, such asint , long , or
double , is automatically performed when necessary. Furthermore, automatic conversion,
i. e. extension or truncation, is supported as with any other integral type. No explicit type
casting is necessary.

Bit vector constants are noted as a sequence of zeros and ones immediately followed by
a suffixb or ub indicatingsigned or unsigned bit vector constants, respectively.

1 t ypedef b i t [ 3 : 0 ] n i b b l e t y p e ;
2 n i b b l e t y p e a ;
3 unsigned b i t [ 15 : 0 ] c ;
4

5 void f ( n i b b l e t y p e b , b i t [ 16 : 1 ] d )
6 f
7 a = 1101B ; / / vec to r ass ignment
8 c = 1110001111100011ub ;
9 c [ 7 : 4 ] = a ; / / s l i c e ass ignment

10

11 b = c [ 2 : 5 ] ; / / b i t vec to r s l i c i n g
12 c [ 0 ] = c [ 16 ] ; / / s i n g l e b i t access
13 d = a @ b @ c [ 0 : 15 ] ; / / c o n c a t e n a t i o n
14 b += 42 + a � 12 ; / / a r i t h m e t i c
15 d = ˜ ( b j 10101010B ) ; / / l o g i c o p e r a t i o n s
16 g
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As shown in the example above, a concatenation operation, noted as@, and a bit slice
operation, noted as[l:b] , are supported in SpecC. Both operations can be applied to bit
vectors as well as to any other integral type. In this case, the integral type will be treated as
a bit vector of suitable length.

In addition, a bit access operation, noted as an array access[b] , is provided as a short-
hand for accessing a single bit ([b:b] ) in a bit vector. Please note that, in this case, it is not
required that the bit selectorb is a constant expressions which can be statically evaluated,
since the length of the resulting bitvector is always1 and, thus, synthesis is possible.

4.3.1.3 Event type

In SpecC, events serve as the mechanism that supports synchronization and exception han-
dling.

Events are represented by variables of the built-in typeevent . An event doesnothave
a value. Therefore, events cannot be used within any expressions.

Events are used exclusively in two cases. First, they can used with thewait and
notify statements in order to specify the synchronization of concurrent behaviors. For
example, the following code shows a very simple example which coordinates the access to
a shared variabled with send andreceive functions.

1 i n t d ;
2 event e ;
3

4 void send (i n t x )
5 f
6 d = x ;
7 no t i f y e ;
8 g
9

10 i n t r e c e i v e (void )
11 f
12 wait e ;
13 re turn ( d ) ;
14 g

Synchronization in SpecC is explained in more detail later in Section 4.8.
The second case, in which events are used, is exception handling supported by thetry -

trap -interrupt construct, which is described in Section 4.9.

4.3.1.4 Time type

In order for the SpecC language to support timing, a time type is used. However, strictly
speaking, time is not an explicit type. Moreover, time is an implementation dependent
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integral type. For example, the current SpecC implementation useslong long int , a
64 bit integer type, for the representation of simulation time.

The SpecC language supports timed and untimed behavior, as defined in [ZDG97b].
Typically, timed behavior is used to model hardware, and untimed behavior is used to model
software for which the execution time is not known.

In timed program sections, the time type is used with thewaitfor statement to rep-
resent exact timing, and with thedo-timing construct to represent timing ranges. Both,
waitfor anddo-timing , are described later in Section 4.10.

For untimed program sections, a special time variabledelta is provided. Thedelta
variable is of type time and is measured in implementation dependent units (e. g. nanosec-
onds). During simulation,delta evaluates to the elapsed real-time spent for executing the
current behavior. For example,waitfor(delta) can be used to advance the simulation
time by the actual amount spent on the host machine. In other words, assuming a software
portion of a system is to be implemented on the host machine, it can be synchronized easily
with a simulated, timed hardware portion.

4.3.2 Statements and declarations

Similar to types and expressions, the majority of statements, declarations and definitions in
the SpecC language are the ones inherited from C. These are assumed to be known and are
not described in this work.

The statements and declarations, that were added to the C language, are described sep-
arately in the following sections. However, first the basic structure of a SpecC program is
explained with a small example.

4.4 Basic Structure

As introduced in Chapter 2, a SpecC design model is captured as a hierarchical network
of behaviors interconnected by channels with interfaces. The SpecC language reflects
this model in a one-to-one fashion. Syntactically, a SpecC program consists of a set of
behavior , channel andinterface declarations.

A behavior is a class that can contain ports, component instantiations, and local
variable and method definitions. Every behavior also has a publicmain method which
specifies its functionality.

A channel is a class that encapsulates a set of local variables and methods. Hierar-
chical channels contain instantiations of child channels as well.

An interface class is used to declare the methods which are public in channels.
Interface classes consist solely of method declarations. The associated method definitions
are implemented in channels.
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Figure 4.4: Basic structure of a SpecC model

For example, the following SpecC description specifies the system illustrated in Fig-
ure 4.4:

1 i n t e r f a c e L
2 f
3 void Write ( i n t x ) ;
4 g ;
5 i n t e r f a c e R
6 f
7 i n t Read (void ) ;
8 g ;
9

10 channel C implements L , R
11 f
12 i n t Data ;
13 bool Val id ;
14

15 void Write ( i n t x )
16 f Data = x ;
17 Val id = t rue ;
18 g
19 i n t Read (void )
20 f whi le ( ! Val id )
21 wai t fo r ( 10 ) ;
22 re turn ( Data ) ;
23 g
24 g ;
25

26 behavior B1( in i n t p1 , L p2 , in i n t p3 )
27 f
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28 void main (void )
29 f / � . . . � /
30 p2 . Wr i te ( p1 ) ;
31 g
32 g ;
33

34 behavior B2( out i n t p1 , R p2 , out i n t p3 )
35 f
36 void main (void )
37 f / � . . . � /
38 p3 = p2 . Read ( ) ;
39 g
40 g ;
41

42 behavior B( in i n t p1 , out i n t p2 )
43 f
44 i n t c1 ;
45 C c2 ;
46 B1 b1 ( p1 , c2 , c1 ) ;
47 B2 b2 ( c1 , c2 , p2 ) ;
48

49 void main (void )
50 f par f b1 . main ( ) ;
51 b2 . main ( ) ; g
52 g
53 g ;

The example specifies a behaviorB consisting of two child behaviorsb1 andb2 . The
child behaviors are executing concurrently, specified by thepar statement. Furthermore,
b1 andb2 communicate via an integer variablec1 and a channelc2 which are connected
to the ports of the child behaviors.

The SpecC constructs used in this example are described in detail in the following
sections.

4.5 Behavioral Hierarchy

Behavioral hierarchy is the composition of child behaviors in time. In SpecC, child be-
haviors can either be executed sequentially or concurrently. Sequential execution can be
specified by standard imperative statements, or as a finite state machine (FSM) model
with explicit state transitions. On the other hand, concurrent execution is either parallel
or pipelined.
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4.5.1 Sequential execution

Syntactically, behavioral hierarchy is specified in themain method of the composite be-
havior. For sequential execution, themain method can either consist of an imperative
program calling the child behaviors in a specific order, or of an explicit FSM in which the
child behaviors take the role of states.

4.5.1.1 Imperative program

In the simplest case, child behaviors are executed in a fixed sequential order. For example,
a behaviorB consisting of three sequentially executed child behaviors can be specified as
follows.

1 behavior B;
2

3 behavior B seq (void )
4 f
5 B b1 , b2 , b3 ;
6

7 void main (void )
8 f
9 b1 . main ( ) ;

10 b2 . main ( ) ;
11 b3 . main ( ) ;
12 g
13 g ;

In a more general case, a conditional control-flow can be specified in a straightfor-
ward manner by use of standard C statements, such asif -then -else , for , andwhile .
However, this is not a recommended modeling style since the mixture of programming
statements with child behavior calls is difficult to analyze and thus aggravates the use of
automated refinement tools. Such a model represents the case (h) in Figure 2.5 discussed
earlier in Section 2.3.

In order to clearly specify a conditional, sequential control flow among child behaviors,
the FSM model should be preferred.

4.5.1.2 Finite state machine

The SpecC language provides thefsm statement to specify finite state machines (FSMs)
with explicit state transitions. Both Mealy and Moore type FSMs can be modeled with the
fsm construct.

1 behavior B;
2
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3 behavior B fsm ( in i n t a , in i n t b )
4 f
5 B b1 , b2 , b3 ;
6

7 void main (void )
8 f
9 fsm f b1 : f i f ( b < 0 ) break ;

10 i f ( b >= 0 ) goto b2 ;
11 g
12 b2 : f i f ( a > 0 ) goto b1 ;
13 goto b3 ;
14 g
15 b3 : f break ;
16 g
17 g
18 g
19 g ;

As shown in the example above, thefsm construct specifies a list of conditional state
transitions among states which are represented by instantiated child behaviors. A state tran-
sition is a triplehcurrent state;condition;next statei, wherecurrent stateandnext state
take the form of labels denoting child behavior instances. Theconditionexpression deter-
mines whether the transition is valid.

The execution of afsm construct starts with the execution of the behavior that is listed
first in the transition list (b1). Once this behavior has finished, its state transition determines
the next behavior to be executed. The conditions of the transitions are evaluated in the
order they are specified and, as soon as one condition istrue , the behavior specified after
the goto statement is started. Abreak statement terminates the execution of thefsm
construct.

Please note that the body of thefsm construct does not allow arbitrary statements. The
SpecC syntax limits the state transitions to well-defined triples. This ensures that thefsm
construct can be easily analyzed and refined by automated tools.

4.5.2 Concurrent execution

In SpecC, concurrent execution is either parallel or pipelined.

4.5.2.1 Parallel execution

Parallel execution of behaviors is specified with thepar construct, as shown in the follow-
ing example.

1 behavior B;
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2

3 behavior B par (void )
4 f
5 B b1 , b2 , b3 ;
6

7 void main (void )
8 f
9 par f b1 . main ( ) ;

10 b2 . main ( ) ;
11 b3 . main ( ) ;
12 g
13 g
14 g ;

Every statement in the compound statement block following thepar keyword forms a
new thread of control and is executed in parallel. The execution of thepar statement itself
completes when each thread of control has finished its execution. In other words, thepar
constructforks the control flow into a set of parallel threads which arejoined again when
thepar statement is completed.

The example shows the behavioral hierarchy of three child behaviorsb1 , b2 andb3
which are executed in parallel. The parent behaviorB par will terminate as soon as all
three children have completed their execution.

Note that for simulation on a sequentially executing host, thepar construct is not really
executed in parallel. Instead, the scheduler, which is part of the SpecC simulation library,
executes one thread at a time and decides when to suspend and when to resume a particular
thread depending on the simulation time and synchronization points.

4.5.2.2 Pipelined execution

The SpecC language provides explicit support for the specification of pipelines. Pipelined
execution is a special form of concurrent execution. Similar to thepar construct, pipelined
execution is specified with apipe construct, as shown in the following example.

1 behavior B( in i n t p1 , out i n t p2 ) ;
2

3 behavior B pipe ( in i n t a , out i n t b )
4 f
5 i n t x ;
6 piped in t y ;
7 B b1 ( a , x ) ,
8 b2 ( x , y ) ,
9 b3 ( y , b ) ;

10

11 void main (void )
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12 f
13 pipe f b1 . main ( ) ;
14 b2 . main ( ) ;
15 b3 . main ( ) ;
16 g
17 g
18 g ;

Each statement in the compound statement block after thepipe keyword forms a new
thread of control. The set of control threads is then executed in a pipelined fashion. The
pipe statement itself implies an infinite loop of execution and thus never finishes.

In the example, the child behaviorsb1 , b2 andb3 form a three-stage pipeline of be-
haviors. In the first iteration, onlyb1 is executed. Whenb1 completes, the second iteration
starts andb1 andb2 are executed in parallel. In the third and every following iteration, all
three child behaviors are executed in parallel.

Note that such an execution scheme could also be specified by iterated use of thepar
construct. However, in addition to the execution order, thepipe construct supports ex-
plicitly buffered communication between the pipeline stages which otherwise is difficult to
specify and typically is not recognizable for automated refinement tools.

To specify buffered communication, the special storage classpiped is used for vari-
ables connecting two pipeline stages. A variable with apiped storage class can be thought
of as a variable with two storages. A write access to such a variable always writes to the
first storage. A read access, on the other hand, reads from the second storage. The contents
of the first storage are shifted to the second storage whenever a new iteration starts in the
pipe construct.

In the example, a standard variablex connects the first pipeline stage (b1) with the
second (b2). This variable is not buffered, in other words, every access tox from stage 1
is immediately visible in stage 2. On the other hand, the variabley connecting the second
(b2) and the third stage (b3) is specified aspiped . A value computed by behaviorb2 ,
that is stored iny , will be available for processing byb3 in the next pipeline iteration when
b2 already produces new data.

Note that thepiped storage class can be specifiedn times defining a variable withn
buffers. This can be used to transfer data overn stages synchronously with the pipeline.

4.6 Structural Hierarchy

Structural hierarchy is represented in form of a hierarchical block diagram where the blocks
have ports and are interconnected via communication channels. In SpecC, these blocks are
calledbehaviors.
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4.6.1 Behaviors

A SpecC behavior is an object for the specification of active functionality. Typically, be-
haviors are used to encapsulate computation. In terms of structure, a behavior has ports
through which it can communicate with other behaviors.

Syntactically, a SpecC behavior is specified by use of abehavior declaration or def-
inition. A behavior definition is a class that consists of a set of ports, a set of local
variables and methods, and a mandatorymain method. If the behavior is a composite be-
havior, a set of child behavior instantiations is included as well. For example, the following
specifies a simple leaf behaviorB.

1 behavior B( in i n t p1 , out i n t p2 )
2 f
3 i n t a , b ;
4

5 i n t f ( i n t x )
6 f
7 re turn ( x � x ) ;
8 g
9

10 void main (void )
11 f
12 a = p1 ; / � read data from the inpu t por t� /
13 b = f ( a ) ; / � compute � /
14 p2 = b ; / � wr i te data to the ou tpu t por t� /
15 g
16 g ;

Except for themain method, which is public, all local methods and variables in the
behavior are private. In other words, a behavior resembles a black box whose contents are
not visible from the outside2.

Local variables and methods, such asa, b, and f in the example above, can be used
to conveniently program the functionality of the behavior. Similar to themain function
in a C program, themain method of a behavior is the root of the behaviors execution. It
is called whenever an instantiated behavior is executed and its completion determines the
completion of the behavior.

A SpecC program starts with the execution of themain method of the root behavior.
The root behavior is identified by its name which is defined asMain . Usually, the behavior
Main is a composite behavior resembling the test bench for the specified system. In this
test bench, the top behavior, that specifies the actual system, is then instantiated. Please note

2By use of interfaces implemented by a behavior, it is possible to make selected local methods of the
behavior public. Since this is rarely necessary, it is ignored in this context. Please refer to the SpecC Language
Reference Manual [DZG98] for further information.



92 CHAPTER 4. THE SPECC LANGUAGE

thatmain andMain are names which need to be recognized by automated tools. However,
these names are not keywords of the SpecC language.

A behaviordeclarationconsists of the behavior name and the declaration of its ports.
For a behaviordefinition, the behavior body is required. For example, a declaration for the
behavior defined above is as follows.

behavior B( in i n t p1 , out i n t p2 ) ;

A behavior is compatible with another behavior if the number and the types of their ports
match. Compatibility of behaviors is important for the reuse and replacement of compo-
nents (“plug-and-play”). Please note that a behavior declaration is sufficient to determine
compatibility. The behavior body is not required.

4.6.2 Netlists

Structural connectivity among components in a block diagram is typically represented by
connectors and wires. In SpecC, connectors are represented by ports and wires by variables.
In order to specify connectivity, the variables are then mapped onto the ports as part of the
behavior instantiation.

Ports are defined with the declaration of the behavior, very much like arguments to
functions are defined in a function declaration. A port can be of any SpecC type and in-
cludes a port direction as a type modifier. A port direction is eitherin , out or inout ,
and is handled as an access restriction to that port. Inside a class, anin port allows only
read-access, and anout port only allows write-access. Aninout port can be accessed in
either way. When connecting ports, the port types and port directions must be compatible.

Port mapping lists are used to specifies the connectivity of the ports, as shown in the
following example.

1 behavior B1( in event c lk , out i n t p1 , out b i t [ 15 : 0 ] p2 ) ;
2

3 behavior B2( in event c lk , in i n t p1 , in b i t [ 31 : 0 ] p2 ) ;
4

5 behavior B( in event c lk , in b i t [ 31 : 0 ] p1 )
6 f
7 i n t i ;
8 b i t [ 15 : 0 ] b ;
9

10 B1 b1 ( c lk , i , b ) ;
11 B2 b2 ( c lk , i , p1 [ 31 : 16 ] @ b ) ;
12

13 void main (void )
14 f
15 par f b1 . main ( ) ;
16 b2 . main ( ) ;
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17 g
18 g
19 g ;

In the example, two child behaviorsb1 andb2 are instantiated in the behaviorB. The
three ports ofb1 are connected to the clock input portclk of B, the wirei and the internal
busb, respectively. Similar,b2 is connected toclk andi as well.

SpecC also supports bus splitting in port mapping lists. Concatenated bit slices are used
to represent sliced busses. In the example, this is demonstrated with the 32 bit wide portp2
of b2 . It is wired to the upper half of the incoming busp1 of B and the internal busb.

4.7 Communication

In addition to netlists, which essentially allow communication through shared variables as
described in the last section, the SpecC language supports a much more powerful concept
for communication, namely channels and interfaces.

4.7.1 Channels

A SpecC channel is an object designed for the specification of complex communication.
Typically, a channel encapsulates a (possibly hierarchical) communication protocol. In
contrast to behaviors, channels are passive objects. In other words, channels serve as con-
tainer for common methods used for communication. These methods are made available to
be used by behaviors so that these can communicate.

Syntactically, a channel is specified by use of achannel declaration or definition,
very similar to thebehavior construct. A channel definition is a class, that consists of a
channel declaration and a channel body, which contains a set of local variables and methods.
In case of a hierarchical channel, child channel instantiations are part of the channel body
as well.

Like behaviors, channels can have ports. For channel ports, the same semantics apply
for channels as described earlier for behaviors.

However, much more important than ports are the interfaces of a channel, which are
listed after the ports in the channel declaration. The interfaces determine the set of pub-
lic methods which are provided by the channel. Interfaces are described in the following
section.

By default, the local variables and methods defined in a channel are private, in other
words, they cannot be accessed from outside the channel. However, the methods that are
declared as implemented interfaces, are public and may be used by behaviors to perform
communication via the channel.
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Similar to behaviors, the compatibility of channels is required when a channel is to be
replaced with another one. A channel is compatible with another channel, if the number
and the types of the channel ports, and the list of the implemented interfaces, match.

4.7.2 Interfaces

Interfaces represent the missing link between behaviors and channels. As shown in the
following example, an interface is a class which specifies the set of public methods imple-
mented in a channel.

1 i n t e r f a c e I
2 f
3 void send (i n t x ) ;
4 i n t r e c e i v e (void ) ;
5 g ;
6

7 channel C implements I
8 f
9 i n t data ;

10

11 void send (i n t x )
12 f
13 data = x ;
14 g
15 i n t r e c e i v e (void )
16 f
17 re turn ( da ta ) ;
18 g
19 g ;

The example specifies a channelC that provides a simple communication protocol via
an encapsulated integer variable. The interfaceI , which the channelimplements , con-
tains the declarations of the public methodssend andreceive .

Interfaces are used to connect behaviors with channels in such a way that both, the be-
haviors and the channels, are easily exchangeable with compatible replacements. Interfaces
essentially enable the“plug-and-play” feature of the SpecC language.

For example, consider two behaviors,b1 andb2 , which communicate via an instance
of the channelCdeclared above.

1 behavior B1( I p1 )
2 f
3 void main (void )
4 f i n t x ;
5 . . .
6 p1 . send ( x ) ;
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7 g
8 g
9

10 behavior B2( I p1 )
11 f
12 void main (void )
13 f i n t y ;
14 . . .
15 y = p1 . r e c e i v e ( ) ;
16 g
17 g
18

19 behavior B( void )
20 f
21 C c1 ;
22 B1 b1 ( c1 ) ;
23 B2 b2 ( c1 ) ;
24

25 void main (void )
26 f
27 . . .
28 g
29 g ;

In the example, both behaviorsB1 and B2 have ports of interface typeI . Because
channelC implements the interfaceI , the ports ofb1 andb2 can be mapped to the channel
c1 . This way,b1 andb2 can communicate via thesend andreceive methods.

Now, if another channelC2 is available with the same interfaceI , i. e.

channel C2 implements I ;

then the protocol specified with channelC can be switched to the protocol provided by
channelC2 simply by replacing line 21 with

C2 c1 ;

Note that neither the replaced channels nor the connected behaviors have to be modified
for this change. Please note also that the same easy replacement is possible for the behaviors
B1 andB2.

It should be mentioned that some communication protocols require the use of call-back
functions. In such a case, some methods specified in a channel need to call-back methods
provided by the behavior that initiated the communication. In order to support this, the
SpecC language allows interfaces for behaviors as well. In addition, a keywordthis is
provided for a behavior to be able to identify itself. Please refer to [DZG98] for further
documentation.
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4.8 Synchronization

In order to allow controlled cooperation among concurrent executing behaviors, a synchro-
nization mechanism is required. In SpecC, the built-in typeevent serves as the basic unit
of synchronization, as stated in Section 4.3.1.3. To specify synchronization, events are used
with the wait , notify and notifyone statements which all take a list of events as
arguments.

A wait statement suspends the current behavior from execution until one of the events
specified with thewait statement is triggered by another behavior. The execution of the
waiting behavior then resumes.

Thenotify statement triggers all specified events so that all the behaviors waiting on
one of these events can resume their execution. If no behavior is waiting on the triggered
events at the time of thenotify statement, the notification is ignored.

The notifyone statement acts similar as thenotify statement. However,
notifyone allows only one behavior from the set of currently waiting behaviors to re-
sume its execution.

For example, the following code specifies a channelC2 that can be used as a replace-
ment for the channelCpresented in the previous section.

1 channel C2 implements I
2 f
3 i n t data ;
4 bool v a l i d = f a l s e ;
5 event wakeup ;
6

7 void send (i n t x )
8 f
9 data = x ;

10 v a l i d = t rue ;
11 no t i f y wakeup ;
12 g
13 i n t r e c e i v e (void )
14 f
15 whi le ( ! v a l i d )
16 f wait ( wakeup ) ;
17 g
18 v a l i d = f a l s e ;
19 re turn ( da ta ) ;
20 g
21 g ;

Compared to the primitive channelC on page 94, the channelC2 uses the synchro-
nization statementswait andnotify to prevent the reading of uninitialized data. It also
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avoids that the same data is read multiple times. In other words, this channel ensures that
the consumer always receives valid data.

4.9 Exception Handling

The SpecC language provides support for both types of exceptions discussed in Sec-
tion 4.1.4.3, namely interrupt and abortion. The occurence of such exceptions is repre-
sented by events. Thenotify statement introduced in the previous section is used again
to trigger such events.

In order for exceptions to be handled during the execution of a behavior, the behavior
has to be made sensitive to a set of events. In SpecC, this is specified with thetry construct,
as shown in the following example.

1 behavior B0;
2 behavior B1;
3 behavior B2;
4

5 behavior B( in event IRQ , in event RST)
6 f
7 B0 b0 ;
8 B1 b1 ;
9 B2 b2 ;

10

11 void main (void )
12 f
13 t ry f b0 . main ( ) ; g
14 i n te r rup t ( IRQ ) f b1 . main ( ) ; g
15 t rap ( RST ) f b2 . main ( ) ; g
16 g
17 g ;

In the example, the behaviorB consists of three child behaviorsb0 , b1 andb2 . The
execution of behaviorB will try to executeb0 and, if no exception occurs, the completion
of b0 will also terminate the execution ofB. However, if one of the eventsIRQ or RST
occurs while the child behaviorb0 is executing, the execution will be interrupted or even
aborted.

4.9.1 Interrupt

An interrupt is specified with theinterrupt keyword as shown in line 14 in the example.
The events, which will trigger a specific interrupt, are specified as arguments, i. e.IRQ.

If the eventIRQ occurs during the execution ofb0 , the behaviorb0 will be stopped
immediately in its execution and the interrupt handlerb1 will be started to service the
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interrupt. Afterb1 has completed its execution, the control is transferred back to behavior
b0 which can resume its execution right from the point where it was stopped.

4.9.2 Abortion

Abortion is specified with thetrap keyword. This also is followed by a list of events,
i. e. RST, that will trigger the abortion, as shown in line 15 in the example.

If the eventRSTis notified while behaviorb0 is executing, it will be terminated imme-
diately and the control is transferred tob2 which will take over the execution. In contrast
to an interrupt,b0 will not regain control afterb2 is completed. Instead, the behaviorB
will terminate.

4.10 Timing

As discussed earlier, the notion of time is an important requirement for specification lan-
guages. Typical timing information includes the execution time or delay of components,
and timing constraints for the system performance or communication protocols.

The SpecC language supports both types of timing specification discussed in Sec-
tion 4.1.4.4, namely exact timing and timing ranges.

4.10.1 Exact timing

Exact timing, such as delay or execution time, is specified by use of thewaitfor state-
ment. The required time value is given in form of an argument and must be of the integral
time type introduced in Section 4.3.1.4.

The semantics of thewaitfor statement are as follows. Whenever awaitfor state-
ment is executed, the current behavior is suspended from further execution for the specified
simulation time. Any concurrent running behaviors will then be executed until they are
suspended as well, due towaitfor or wait . Once all active behaviors are suspended, the
simulation time will be increased such that the behaviors with the least amount of waiting
time can resume their execution.

Please note that the simulation time is only increased by use of thewaitfor statement.
All other statements in the SpecC language execute in zero time.

4.10.2 Timing ranges

In order to specify timing constraints, timing ranges are supported in SpecC. A timing range
is specified as a 4-tupleT = hL1;L2;Tmin;Tmaxi, whereL1 andL2 are specific points in time.
The time period betweenL1 andL2 is limited to a minimum ofTmin and a maximum ofTmax

time units.
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Syntactically, therange statement is provided for such timing ranges andL1 andL2

take the form of labels. Furthermore,Tmin andTmax can be left unspecified, indicating the
values�∞ and+∞, respectively. For example, the statement

range( l1 ; l2 ; 10 ; 20 ) ;

specifies at a time period of at least 10 but not more than 20 time units between the labels
l1 andl2 . On the other hand,

range( l3 ; l4 ; 0 ; ) ;

simply states that the statements specified at labell4 must not be executed before the
statements atl3 .

a

t1 t2 t4 t5 t6

d

t7

10/200/

10/20 10/20

5/100/0/

t3

in ABus

in RMode

in WMode

out DBus

Figure 4.5: Timing diagram example: SRAM read protocol.

Timing ranges are most useful for the specification oftiming diagrams. Consider, for
example, the timing diagram of the read protocol of a static RAM, as shown in Figure 4.5.
When reading a word from the SRAM, the address of the requested data is supplied with
the address busABus. Then, the read operation is selected by settingRModeto high and
WModeto low. After the specified time period, the requested value can finally be accessed
from the data busDBus. The timing constraints throughout this protocol are explicitly
specified in form of annotated arcs in the timing diagram. All these constraints must be
satisfied for a successful read access.

In SpecC, it is straightforward to capture such a timing diagram. The diagram shown in
Figure 4.5 can be specified as follows.

1 b i t [ 7 : 0 ] ReadByte (b i t [ 15 : 0 ] Address )
2 f
3 b i t [ 7 : 0 ] MyData ;
4



100 CHAPTER 4. THE SPECC LANGUAGE

5 do f t1 : f ABus = Address ;
6 wai t fo r ( 2 ) ;
7 g
8 t2 : f RMode = 1 ; WMode = 0 ;
9 wai t fo r ( 12 ) ;

10 g
11 t3 : f wai t fo r ( 5 ) ;
12 g
13 t4 : f MyData = DBus ;
14 wai t fo r ( 5 ) ;
15 g
16 t5 : f ABus = 0 ;
17 wai t fo r ( 2 ) ;
18 g
19 t6 : f RMode = 0 ; WMode = 0 ;
20 wai t fo r ( 10 ) ;
21 g
22 t7 : f
23 g
24 g
25 t iming
26 f range ( t1 ; t2 ; 0 ; ) ;
27 range ( t1 ; t3 ; 10 ; 20 ) ;
28 range ( t2 ; t3 ; 10 ; 20 ) ;
29 range ( t3 ; t4 ; 0 ; ) ;
30 range ( t4 ; t5 ; 0 ; ) ;
31 range ( t5 ; t7 ; 10 ; 20 ) ;
32 range ( t6 ; t7 ; 5 ; 10 ) ;
33 g
34 re turn ( MyData ) ;
35 g

Thedo-timing construct, as shown in this example, is used to encapsulate a timing
diagram representation. In thedo part, the value changes at specific points in time are
specified as labeled assignment statements. The range constraints are then listed in the
following timing block.

The execution semantics of ado-timing construct are basically the same as for any
sequence of compound statements. The labeled statements are simply executed in the order
specified.

However, the attached timing constraints are validated during the execution of the con-
struct by the simulation run-time system. A typical simulator will maintain a list of time
stamps when executing a timing diagram. For each label, its execution time will be noted.
Then, when the execution of thedo block is completed, these time stamps are used to check
whether the specifiedrange constraints hold. Any violation of the constraints should be
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reported to the user.
The current implementation of the SpecC simulator, for example, will, by default, gen-

erate a run-time error message for each violated range constraint and then abort the simula-
tion. However, this behavior can be overwritten by the user3.

The range check performed by the simulator, makes it necessary to usewaitfor state-
ments within the timing diagram, as shown in the example. Without suchwaitfor state-
ments, the specified timing constraints would not hold and, thus, the construct would fail
its execution. Please note that thewaitfor statements only specifyoneinstance out of a
typically infinite set of legal time periods.

4.11 Persistent Annotation

For the purpose of practicality in use with a set of separate tools, the SpecC language
offers support for persistent annotation. Persistent annotation allows to attach any type of
constants to any named symbol in a SpecC program. This annotation mechanism eliminates
in many cases the need for separate files exchanged between subsequent tools working on
the same design.

More specifically, persistent annotation can be used for convenient information inter-
change between the tools working with a shared SpecC design description. For example,
an estimation tool can easily annotate its results with each behavior in the design so that
these estimation results are available for use in an exploration or synthesis tool that is called
afterwards. Moreover, such annotations are also available to the user.

The semantics of persistent annotations are out of the scope of the SpecC language.
In particular, annotations do not change the execution semantics of a SpecC program. As
such, they can be seen of as a special type of comments in a SpecC description.

Syntactically, thenote declaration specifies persistent annotations, as shown in the
following example.

1 / � C s t y l e comment , not p e r s i s t e n t� /
2 / / C++ s t y l e comment , not p e r s i s t e n t
3

4 note Author = ” Ra iner Doemer ” ;
5 note Date = ” F r i Dec 10 09 : 52 : 07 PST 1999 ” ;
6

7 const i n t x = 42 ;
8 note x . B i t s = s i z e o f ( x ) � 8 ;
9

10 behavior B( in i n t a , out i n t b )

3In order to overwrite the default behavior for handling time constraint violations, a function called
scc range check needs to be defined by the user. If this function is present in the SpecC program, it

will be called instead of the default handler.
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11 f
12 note Vers ion = 1 . 2 ;
13

14 void main (void )
15 f
16 l1 : b = 2 � a ;
17 wai t fo r ( 10 ) ;
18 l2 : b = 3 � a ;
19

20 note NumOps = 3 ;
21 note l1 . OpID = 1 ;
22 note l2 . OpID = 3 ;
23 g
24 g ;
25 note B. Area = 12030 ;

The SpecC language allows comments in the source code in form of C++ syntax. More
specifically, comments are either enclosed by/* and*/ delimiters, or start with// and
last up to the end of the line, as shown with lines 1 and 2 in the example. Comments are
simply ignored by the compiler, thus, they are not persistent.

Thenote declaration attaches a persistent note to the specified symbol, label or user-
defined type. Such notes are named and their value is a constant or constant expression that
can be evaluated at compile time.

There are two ways to define an annotation. First, a note can be attached to the current
scope, such as global notes (lines 4 and 5 in the example) and notes at classes (line 12).
Second, the annotated object can be named explicitly. In the example, this style is used to
define the notes at variablex (line 8), the labelsl1 andl2 (lines 21, 22), and the behavior
B (line 25).

4.12 Library Support

Similar to the library and package concept provided in VHDL, the SpecC language supports
the incorporation of pre-compiled design libraries into the specification description. This
simplifies the handling of complex component libraries and also speeds up the compilation.

Syntactically, theimport declaration specifies the inclusion of a binary library into
the current design. This is also called binary import. In addition, the#include construct
inherited from the C language supports the inclusion of source code (non-binary) files. An
example of both constructs is shown next.

1 # inc lude < s t d i o . h>
2 # inc lude < s t d l i b . h>
3

4 import ” I n t e r f a c e s / I1 ” ;
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5 import ” I n t e r f a c e s / I2 ” ;
6 import ” Channels / PCIBus ” ;
7 import ” Components / MPEGII ” ;

An #include declaration is evaluated in a preprocessing step. The C preprocessor,
which can be used without modification for SpecC programs as well, simply replaces the
#include construct with the contents of the named file.

Similar, theimport declaration efficiently incorporates pre-compiled, binary SpecC
files. Any SpecC source description can be pre-compiled into a binary file with the SpecC
compiler. Such files are typically named with the suffix.sir , indicating that these files
contain the SpecC Internal Representation (SIR). SIR files can also be used to transfer
designs in an efficient way between separate tools. The SpecC Internal Representation is
described in more detail in Section 5.2.

4.13 Summary

Built on top of ANSI-C, the SpecC language is designed for the executable specification of
embedded systems. To the well-known set of requirements for software languages, specific
constructs needed for hardware design have been added.

SpecC is synthesizable. Every construct supported by the language has at least one
straightforward implementation in either software or hardware.

Furthermore, the SpecC language supports modularity in form of both, behavioral and
structural hierarchy. SpecC also satisfies the requirement of completeness. It provides
support for all requirements for system-level design, namely concurrency, hierarchy, com-
munication, synchronization, exception handling and timing, as discussed in Section 4.1.

It must be emphasized that the SpecC language providesorthogonal constructsfor these
orthogonal concepts. In other words, the identified, independent concepts are implemented
with independent constructs in a one-to-one fashion. This allows to model embedded sys-
tems clearly and unambiguously.

The orthogonality also allows minimality. The SpecC language covers the complete set
of system concepts with a minimal set of constructs. This makes the language easy to learn
and easy to understand.

Last, but not least, it should be emphasized that the SpecC language has gained ac-
ceptance in the industry. Recently, SpecC has been proposed as a standard system-level
language for the adoption in industry by some of Japan’s top-tier electronics and semicon-
ductor companies [CGC+99].
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4.14 Possible Extensions

The SpecC language has been proven to work for system-level design. Several examples
have already been successfully specified, simulated, and refined, as listed in Appendix B.
However, this experience with the real use of the SpecC language has also shown that minor
adjustments and some extensions are desirable to make system-level design even easier and
more convenient. These issues, which could be implemented in a future version of the
SpecC language, are addressed briefly in this section.

4.14.1 Fine tuning

Events, which are used for synchronization and exception handling, are currently only sup-
ported as plain, non-aggregate types. The reason for this is that events do not have a value
and therefore cannot be used in expressions. However, it is desirable to support arrays and
records of events. This could, for example, be introduced by allowing event expressions
which can be evaluated at compile time and solely consist of access operations to arrays
and records.

In particular for data stream processing applications, such as the vocoder described in
Appendix B.6, it is desirable to pass sub-arrays through ports of behaviors and channels.
Currently, this is only supported for bit vectors in form of bit slices. An equivalent scheme
for general arrays can only be specified by passing pointers to sub-arrays through the ports.
Such pointer-arithmetic could be easily avoided if the language provides a specific construct
for this case.

The pipe statement in its current form never finishes. In other words, it contains
an implicit endless loop and thus cannot be used in a nested form. An extension to this
construct could, for example, allow the flushing of the pipeline after a specified number of
iterations.

The persistent annotation of a SpecC program is currently limited to constant values.
This could easily be extended to allow general expressions.

4.14.2 Operator overloading

Operator overloading, as supported for example by VHDL and C++, is desirable for the
specification of operations such as vector additions and matrix multiplications, because it
makes the source code easier to read. In addition, it allows experiments with the arithmetic
precision used in computations. For example, saturated operations could be used instead of
the default, non-saturated arithmetic.

Since operator overloading is currently not supported by the SpecC language, explicit
function calls must be used for such cases. Operator overloading could easily be added to
the SpecC language in very much the same way as C++ added this feature to the C language.
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4.14.3 Object orientation

In a similar way, the SpecC language could also be extended to become object oriented.
Object oriented features, such as object inheritance, could be easily applied to the SpecC
behaviors, channels and interfaces. The implementation of inheritance for these classes in
a C++ style would be straightforward.

4.14.4 Templates

The concept of templates, such as provided in C++, also would be applicable to SpecC.
However, maybe a restricted form would be sufficient. For example, an equivalent for the
VHDL generate andgeneric constructs would serve most purposes.
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Chapter 5

The SpecC Design Environment

The SpecC approach presented in the previous chapters has been implemented in the SpecC
design environment which is described in the following sections.

First, an overview about the SpecC design environment and its tools and libraries is
given. Then, the major system components of the SpecC release 2.0.4 are described, which
have been implemented by the author of this work. These components include the central
design representation, called SpecC Internal Representation, the SpecC compiler, a profiler
and a tool set.

5.1 Overview

The SpecC design environment has been built according to the methodology presented in
Chapter 3. As shown in Figure 5.1, the SpecC tools reflect the design and validation flow
shown earlier in Figure 3.1.

The tool flow starts with the design capture by use of the SpecC editor. The SpecC
editor, calledVisualSpec[IG98], is a graphical editor for SpecC models. VisualSpec allows
to capture and modify a design by use of block diagrams, connectivity tables, hierarchy
displays and flow charts. Only leaf behaviors and channels are specified in textual form in
the SpecC language by use of a standard text editor.

VisualSpec also includes the graphical user interface (GUI) of the SpecC design envi-
ronment. The GUI allows to call and control the SpecC tools directly from the graphics.
Since design models can be captured, compiled, and executed very quickly, VisualSpec can
also be seen as a rapid prototyping environment [AIG99] based on the SpecC approach.

Throughout the SpecC design environment, the design models are represented by the
SpecC Internal Representation(SIR). The SIR is a complex data structure used internally
by all SpecC tools to maintain the design models. The SIR is also a binary file format,
equivalent to SpecC source code stored in a text file. Section 5.2 describes the SIR in more
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Figure 5.1: The SpecC design environment

detail.
TheSpecC compileris primarily used to compile SpecC design models into executable

programs. As shown in Figure 5.1, the SpecC compiler can be used at any stage in the
design flow to create an executable file for simulation. Furthermore, the SpecC compiler
is also used to convert design files from their textual representation into SIR files, and vice
versa. The SpecC Compiler is described in Section 5.3.

For simulation, the SpecC compiler links the executable file with thesimulation library.
The simulation library maintains the event queue and the simulation time during simulation.
It also takes care of concurrent threads and their synchronization according to the execution
semantics of the SpecC language. In other words, it implements the SpecC simulator.

Once an executable file has been created, the design can be simulated simply by running
the SpecC program on the host computer. In case of problems, a standarddebuggercan be
attached to the program. With the debugger, SpecC programs can be executed step by step,
break points can be set, and data values can be inspected easily by the designer.

TheSpecC profilercan be used to obtain run-time information about a design. In partic-
ular, during the execution of the simulation model, branching probabilities are obtained by
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the profiler by use of counters inserted into the design model. The branching probabilities
are then back-annotated to the design model so that they can be used by the estimators, for
example.

The synthesis flow is implemented by three main tools according to the SpecC method-
ology. First, thearchitecture explorerrefines the specification model of the design into the
architecture model, as discussed in Section 3.4. The architecture explorer itself consists of
several smaller tools, includingestimatorsfor software and hardware, anallocator that de-
termines the system architecture, apartitioner that computes and performs the architecture
mapping, and aschedulerthat sequentializes the behaviors assigned to processors.

The second major refinement tool is thecommunication synthesizerwhich takes the
SIR file produced by the architecture explorer and performs communication synthesis as
described in Section 3.5.

The generated communication model, in form of a SIR file, is then passed on to the
back end. In the back end, specific compilers for each of the selected processors are called
to implement the software portion of the system. Also, automatic synthesis tools are run
for each custom hardware component, generating the final implementation model of the
design.

5.1.1 SpecC release 2.0.4

The SpecC design environment consists of a large set of complex tools. Some of these tools,
in particular the major refinement tools, architecture explorer, communication synthesizer
and the back end, are, at the time of this writing, still under active development and have
not been released yet. On the other hand, the tools for the specification capture and the
validation flow have been released and are already in evaluation and use in industry and
academia.

While the graphical editor VisualSpec [IG98] and the integrated prototyping environ-
ment [AIG99] are commercially developed and distributed, the tools for the SpecC valida-
tion flow have been made freely available on the world-wide web1 (WWW).

The components of the SpecC system, which have been developed and implemented by
the author of this work, are included in the public SpecC release 2.0.4. Table 5.1 lists the
components of the release 2.0.4, along with the author and the size of the source files for
each of the components of the SpecC system2.

The main components developed by the author of this work, namely the SpecC Inter-
nal Representation, the SpecC compiler, the profiler and the tool set, are described in the
following sections.

1The SpecC web pages are online athttp://www.ics.uci.edu/ �specc/ . The most recent SpecC
system can be downloaded fromhttp://www.ics.uci.edu/ �specc/download.html .

2Recently, the version 2.0.5 of the SpecC system has been released. In addition to the components of release
2.0.4, the new version includes a set of tools for static system-level scheduling [CG99].
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Source component Author Lines of code Size [kB]
System setup R. Dömer 3251 88.6
SpecC Internal Representation R. Dömer 57522 1466.3
Bit vector library A. Gerstlauer 2992 74.9
Simulation library J. Zhu 14002 274.8
SpecC compiler R. Dömer 13390 346.8
SpecC profiler R. Dömer 2549 63.7
SpecC tool set R. Dömer 5401 143.4
Design examples SpecC team 6326 131.1
Total 105433 2589.6

Table 5.1: Source components of the SpecC release 2.0.4

5.2 SpecC Internal Representation

The SpecC Internal Representation (SIR) is the common design representation in the SpecC
design environment. All tools in the SpecC system use the SIR to read, write, store, main-
tain and modify the SpecC design models.

The SIR is three-fold. First, it is a binary file format for designs specified with the
SpecC language. Second, it is a complex data structure with a well-defined Application
Programming Interface (API). Third, it is provided as a shared library for use by any SpecC
tool developer.

The motivation for the development of the SIR is based on the fact that the design
models used in the SpecC design methodology are all represented by the SpecC language.
Each tool working with a design model needs procedures for input, access and output of the
model. Since these procedures are essentially the same for every tool, a shared library can
be used to implement the required functions.

The benefit of the SIR as a common representation is that new tools can be developed
very quickly since all functions dealing with the design representation are already prepared.
There is no need any more to develop and implement these functions, which otherwise
would require a significant amount of time. With the SIR, the SpecC tool developer can
focus solely on the algorithm of the tool, knowing that the design representation and its
access have already been taken care of.

In following sections, the SIR file format, the SIR data structure and the SIR API are
briefly described. Then, the benefit of quick tool development with the SIR is demonstrated
by the implementation of the SpecC profiler.
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5.2.1 SIR File format

SpecC design models are stored in binary files, called SIR files. The SIR file format is
an external representation of the internal SIR data structure. By use of SIR files, design
models can be easily passed from one SpecC tool to another, without the need for a special
interface between the tools. Also, every tool can read the output of every other tool so that,
technically, refinement tools can be applied to a design model in any order.

Deparser

Design.sc DesignExecutable

Compiler

Design.sirSIR File

Importer

SIR

Design.sir

Exporter

SIR File

Parser

SpecC Source Design.sc

Refinement

SpecC Code

Figure 5.2: Design representation with the SIR

Figure 5.2 shows the different formats and the conversions between these formats for
a design model in the SpecC system. In this star topology, the internal SIR is the central
representation.

Initially, a specification model of any design is given in form of SpecC source code,
typically stored in a file with suffix.sc . This textual representation is read by theparser,
generating the internal SIR data structure. From the internal data structure, a binary SIR file
can be created by use of theexporter. Typically, such a SIR file has the extension.sir .

The SIR file format is then used by all refinement tools. Each tool reads the SIR by use
of the importer, performs its refinement on the internal data structure, and finally generates
a new SIR file with the help of the exporter.

For inspection or textual modifications by the user, a binary SIR file can also be con-
verted into a readable text file. Thedeparsercreates SpecC program code from the internal
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representation, which, after any modification, can be translated back into the SIR by use of
the parser.

Please note that the functionality of the parser, deparser, importer and exporter is part
of the SIR implementation, whereas the boxesrefinementandcompilerare implemented as
separate tools. However, the compiler, whose program flow is described later in Section 5.3,
can be instructed to only perform the file conversions shown in Figure 5.2, instead of the
default function to generate an executable file from SpecC source code.

5.2.2 SIR library

From the point of view of a programmer, the SpecC Internal Representation is a shared
library that implements a complex data structure.

The SIR library is provided as a binary, shared library which can be linked to any tool
developed for the SpecC system. In addition to the binary library, a set of C++ header
files is provided. The header files contain the declarations of the functions and classes
implemented by the SIR library.

The data structure implemented by the SIR library consists of a hierarchy of C++
classes. The organization of these classes, forming a hierarchical graph of objects, is in-
cluded in Appendix C. However, for fully detailed information about the SIR data structure,
its classes and methods, please consult the reference documentation [D¨om98, Döm99]. In
these documents, all SIR classes are listed and described in detail with their data members
and API methods. In addition, the source code of example programs is listed which use the
SIR API to build, modify and store SpecC design models.

5.2.3 Application Programming Interface

The SpecC Internal Representation offers a comprehensive Application Programming In-
terface (API) to the SIR data structure. The SIR API is embedded in the four interface
layersto a SpecC design, as shown in Figure 5.3.

At the highest level, the so-calledapplication layer, a Graphical User Interface (GUI) is
used for the interaction with the user. In the SpecC design environment, this is implemented
with the SpecC editor.

Alternatively, the SpecC tools can be used at thetransformation layer. The transfor-
mation layer offers a textual interface, called Command Line Interface (CLI), to the SpecC
tools in form of shell commands. For the advanced user, such shell commands allow the
use of scripting languages to work on SpecC designs.

The API of the SpecC Internal Representation is shown with the white inner circles in
Figure 5.3. For access to the in-memory representation, the SIR API offers two interface
layers, namely the hierarchy layer and the kernel layer.
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Figure 5.3: SIR Application Programming Interface

5.2.3.1 Kernel layer

The SIR kernel, as the innermost design representation, represents the lowest level of ab-
straction. The design model is represented basically as a parse tree created from the SpecC
language description. Although symbol and type tables are maintained by the kernel, there
is no representation of connectivity or any hierarchical relations among the symbols.

The use of kernel API methods requires detailed knowledge about the internals of the
SIR data structure. No semantic or syntactic error checking is performed. It is in the respon-
sibility of the user to correctly perform memory allocation and deallocation when inserting
or removing objects. The user is completely in charge of maintaining the consistency of the
data structure, such as pointers, links, etc.

Because of these difficulties, the direct use of the SIR kernel API should be avoided.
Instead, the API of the hierarchy layer can be used which is built on top of the SIR kernel.

5.2.3.2 Hierarchy layer

For the SpecC tool developer, the hierarchy layer provides a safe API for the maintenance
and refinement of SpecC design models. As the name indicates, the hierarchy layer ex-
plicitly represents hierarchical relations between the objects. The behavioral and structural
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hierarchy of the SpecC design model is reflected in the data structure in a one-to-one fash-
ion.

The API of the hierarchy layer offers convenient methods for the whole data structure
that guarantee the consistency of the design representation even in the case of errors. In
other words, the hierarchy layer ensures that the design model is a syntactically and seman-
tically valid SpecC model at any time.

The hierarchy layer also simplifies transformations on the data structure significantly. In
addition, memory allocation and deallocation are performed automatically with the creation
and deletion of objects.

5.2.4 Experiment

In order to demonstrate the value of the SIR for the quick development of new tools in
the SpecC design environment, the following experiment has been conducted. The devel-
opment and implementation of a set of tools for the SpecC system has been timed. The
tools chosen for this experiment use the SIR library for design input, modification and out-
put. Therefore, a short implementation time for the tools is expected, since the time for the
implementation of the functions provided by the SIR can be saved.

5.2.4.1 Example application

As an example application, a set of simple profiling tools has been selected. The profiling
tools are well-suited for this experiment, as they represent simple refinement tools which
read a design model and create a modified version of the model. Also, the tasks of the
tools are simple enough, so that not much time needs to be spent on the development and
implementation of the algorithms.

In particular, four profiling tools have been implemented, whose tool flow is shown in
Figure 5.4.

First, the task of theinstrumentoris to insert counters into in the design model so that
the execution of the methods and functions in the design is profiled when the design is
simulated. In addition, the instrumentor inserts function calls which read the initial counter
values in the beginning and write the final counter values out into a file at the end of the
simulation. The functions for reading and writing of the profile values are provided by a
profiling library which will be linked to the executable file by the SpecC compiler.

The second profiling tool is theannotatorwhich will take the counter values obtained
after the simulation and back-annotate them to the design model. As a result, every function
and method in the design model will be annotated with the number of its executions.

In order to complete the set of profiling tools, two tools are needed which undo the
changes of the instrumentor and the annotator. It is the task of thede-instrumentorto take
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Figure 5.4: Program flow of the SpecC profiling tools

out all counters and function calls inserted by the instrumentor. Similar, thede-annotator
removes any counter annotations inserted by the annotator.

It should be noted that the four tools implemented in this experiment have been later
combined into the profiler that is part of the standard SpecC distribution. The SpecC profiler
is described in Section 5.4.1.

5.2.4.2 Results

The development and implementation times for the four tools, including the profiling li-
brary, are shown in Table 5.2.

Most of the development time was spent for the detailed specification of the four tasks.
In particular, this includes the manual generation of code fragments which show the exact
changes to be performed by the tools.

Since all four tools have a similar program flow, consisting of reading, modifying and
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Task Time Lines of code
Specification 3 h, 28 min 259
Profiling library 1 h, 32 min 75
Template 0 h, 59 min 354
Instrumentor 1 h, 54 min 124
De-Instrumentor 1 h, 15 min 99
Annotator 1 h, 6 min 99
De-Annotator 0 h, 19 min 42
Total 10 h, 33 min 1052

Table 5.2: Development and implementation of the profiling tools

writing, a program template was developed first. The template then was used as a starting
point for the four programs3.

Table 5.2 shows that all four tools have been developed, implemented and tested in a
very short time. In fact, the complete set of all four profiling tools has been developed
within one working day.

This result clearly shows the value of the SpecC Internal Representation. Without the
SIR, the implementation of the profiling tool set would have required much more time.

5.3 SpecC Compiler

The SpecC compiler, calledscc , is the main tool in the validation flow of the SpecC
methodology. The main purpose of the SpecC compiler is to generate an executable pro-
gram for simulation from a design model. However, the SpecC compiler also serves as a
converter between the different SpecC file formats, as mentioned earlier.

The program flow of the SpecC compiler is shown in Figure 5.5. By default, the SpecC
compiler reads SpecC source code and generates, after several intermediate steps, an ex-
ecutable file. This default flow starts at the top of the graph and goes straight down to
the bottom. The compiler can also be instructed to follow any other paths in the graph,
performing different tasks, i. e. file conversions or only partial compilation.

The generation of a simulation model from source code in the SpecC language is per-
formed in five steps. First, the source code is processed by thepreprocessorwhich performs
header file inclusion and other preprocessing directives in the code. Because the SpecC
language contains no special preprocessor commands other than those defined by the C
programming language, a standard C preprocessor is used for this task.

3In order to obtain the actual size of a program, the lines of code written for the program template need to
be added to the lines of code listed for the particular tool.
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Second, the preprocessed code is read by theparserwhich builds the SpecC Internal
Representation in the memory and, at the same time, performs syntax and semantic check-
ing.

In order to create executable code, a C++ program is generated in the next step by the
translator. The generated C++ program consists of two files, a header file with variable,
function and class declarations, and a main file, containing the implementation of the dec-
larations.

The generated program is then compiled by a standard C++ compiler into binary object
code. Finally, thelinker creates the executable program, combining the compiled object
code with the SpecC simulation library and any other system libraries.

It should be emphasized that the SpecC compiler takes special care of debugging sup-
port when creating the C++ program from a SpecC model. As a result, any standard C/C++
debugger can be used to debug SpecC programs. In other words, the SpecCdebuggeris
implemented by any standard debugger provided on the simulation host.

The debugging support of the SpecC compiler is achieved through two features. First,
the C++ program is generated in such a way, that it reflects the original SpecC program line
by line. Thus, each line of SpecC code has a corresponding line of generated C++ code.
In addition, SpecC constructs are implemented by C++ constructs following a one-to-one
mapping. For example, behaviors and channels are implemented by C++ classes, bit vectors
are represented by C++ templates, and statements likepar andpipe are implemented by
function calls to the simulation library.

Further,line directives are inserted into the generated C++ program, linking the pro-
gram code with the SpecC source. As a result, any tool processing the C++ program will
refer to the original SpecC code. For example, error and warning messages issued by the
C++ compiler will point to the line in the SpecC source where the problem originated from.

Finally, if the generated executable program is run by a source level debugger, the de-
bugger will display the original SpecC program in the source code window. As an example,
Figure 5.6 shows the debuggerddd running the SpecC pipeline example that is part of the
SpecC distribution.

5.4 SpecC Refinement Tools

The program flow of typical SpecC refinement tools is shown in Figure 5.7.
A refinement tool inputs a design model from a SIR file, performs its refinement on

the internal representation by use of the SIR API, and finally creates a new SIR file for the
refined design model. The refinement itself can be performed by modification of the input
SIR, as shown in Figure 5.7(a), or by creating a new output SIR from data in the input SIR,
as shown in Figure 5.7(b).

Please note that, in both cases, a new refinement tool can be based on a significant
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Figure 5.6: Standard debugger use for SpecC programs
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Figure 5.7: Program flow of typical SpecC refinement tools: (a) modification of the SIR,
(b) creation of a new SIR from the input SIR.

amount of implementation that is already existing, since the importer, the exporter and the
internal data structure with the API, are provided by the SIR library. The refinement tool
developer can pay his full attention to the algorithms of the refinement task.

An initial set of simple refinement tools has been developed by the author of this work.
These tools are briefly described in the next two sections.

5.4.1 SpecC profiler

The SpecC profiler has been developed based on the four profiling tools described earlier in
Section 5.2.4.1. The SpecC profiler, which is part of the standard SpecC distribution, com-
bines the four tools into one single program, but still follows the profiling flow described in
Figure 5.4.

Since the profiling tool set has been described already, a further description of the SpecC
profiler is redundant. For more details, however, please refer to the profiler manual which
is listed in Appendix A.2.
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5.4.2 SpecC tool set

The SpecC tool set consists of six utility programs which simplify the work with binary
SIR files. Manual pages for these tools can be found in Appendix A.3.

The SpecC tool set includes the following tools.

� sir delete allows to delete named objects from a SIR file.

� sir list lists the objects contained in a SIR file with their type and classification.

� sir note allows to attach and remove arbitrary annotations at objects in a SIR file.

� sir rename allows to rename any named objects in a SIR file.

� sir strip strips off line numbers and source file names from SIR files.

� sir tree displays the behavioral hierarchy in a SIR file as a tree of behaviors and
channels.
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Chapter 6

IP Protection
in the SpecC System

As discussed in the introduction, it is in the strong interest of IP providers to protect their
intellectual property from being used without permission or being reverse-engineered. In
particular, external IPs require technical measures for protection.

In order to protect hard IPs, the IP provider typically keeps the final implementation of
the components in-house. Only simulation models of the IPs with different levels of accu-
racy are made available to the system integrator. For soft IPs, on the other hand, complete
synthesizable models are needed by the system integrator. In both cases, these models (still)
contain implementation and algorithm details of the IP which the IP vendor does not want
to reveal to his customers. Therefore, the models are usually provided in binary format
without source code. For example, many VHDL or Verilog simulators allow to precompile
the description of an IP into object code, so that the source code is hidden, but the model is
still simulatable [KB98].

Such an approach is well-known for software reuse and software protection. Software
components usually consist of a set of public function and variable declarations whose
implementation is supplied in form of a precompiled library. When producing an executable
program, this library is integrated with the compiled code by the linker. All the necessary
information to use such a software package is contained in the declaration of the API and
the accompanying documentation. The actual implementation is hidden from the user in
the object code and therefore protected.

In the SpecC system, IP protection is based on this software approach [DG00]. IP com-
ponents are provided in form of a public interface declaration, specified in SpecC source
code, and a linker library, containing the secret implementation supplied in binary object
code.

However, special care has to be taken to make sure that an IP component cannot be
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reverse-engineered from the data made available. The following sections describe this prob-
lem and the solution taken in the SpecC system.

6.1 Public IP Declaration

As described in Section 2.5, IP components are modeled as behaviors or channels, depend-
ing on whether they contain computation or communication. The model of an IP assumes
that the internals of these behaviors and channels are unknown.

Syntactically, the SpecC language distinguishes thedeclarationand thedefinition of
behaviors and channels. A declaration only specifies the ports and interfaces, whereas a
definition also contains the actual implementation. Thus, IP components can be naturally
represented by a behavior or channel class, which is declared, but not defined.

6.1.1 Behavior IP

Computational IP components are specified as behavior declarations. A typical declaration
consists of the name of the behavior and the number and the type of its ports. For example:

behavior IP1 ( in i n t p1 ,
in b i t [ 255 : 0 ] p2 ,
out b i t [ 127 : 0 ] p3 ) ;

This specifies an IP componentIP1 with three ports,p1 , p2 andp3 . p1 andp2 are
input ports of integer and bit vector type, respectively, andp3 is a 128 bit wide output port.
Since no behavior body is defined, this declares the componentIP1 as a black box whose
internal structure is unknown. Please note, however, that this declaration is sufficient in
order to instantiate a component of typeIP1 in a design.

Since the internals of such IPs are unspecified, it is necessary for the IP provider to
supply additional information, for example estimation data, together with the IP declaration.
This can be done easily with annotations. For example:

note IP1 . Vers ion = 1 . 2 ;
note IP1 . Area = 118000 ;
note IP1 . ExecTime = 42 . 5 ;
note IP1 . Power = 0 . 32 ;

6.1.2 Channel IP

Channels can be used to specify communication IP, for example, proprietary communica-
tion protocols. A typical channel declaration consists of the name of the channel and the
list of the implemented interfaces which have to be defined first.
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For example, a channelIP2 , which implements two interfaces with send and receive
methods for bytes and words of data, can be defined as follows.

1 t ypedef b i t [ 7 : 0 ] by te ;
2 t ypedef b i t [ 63 : 0 ] word ;
3

4 i n t e r f a c e I1
5 f
6 void SendByte ( byte B) ;
7 byte Rece iveBy te (void ) ;
8 g
9

10 i n t e r f a c e I2
11 f
12 void SendWord ( word W) ;
13 word ReceiveWord (void ) ;
14 g
15

16 channel IP2 implements I1 , I2 ;

Again, this IP declaration does not reveal anything about the actual implementation of
the protocol, but still allows to instantiate and use channels ofIP2 type. Also, the channel
IP2 and its interfacesI1 andI2 could be annotated in the same way as the IP component
IP1 in Section 6.1.1.

It should be mentioned that, as defined in Chapter 4, the SpecC language allows ports
and interfaces for both, behaviors and channels. The assumption, that behaviors have ports
and channels have interfaces, is made in this chapter simply for easier understanding. Please
note that this makes no difference to the applicability of the IP protection mechanism dis-
cussed in this chapter.

6.2 Secret IP Implementation

As mentioned before, the implementation of an IP behavior or IP channel is supplied as a
precompiled library. In order to build such a library, the IP provider first specifies the IP
implementation (or an accurate simulation model) as a class definition according to the IP
declaration. Then, this SpecC source code will be compiled by the SpecC compiler in order
to create the library. For example, for the behaviorIP1 in Section 6.1.1, a shared library
libIP1.so will be created.

However, the generation of such a library is not trivial because of the way behaviors
and channels are implemented in the SpecC system.
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6.2.1 Implementation problem

From the source code, the SpecC compiler first generates intermediate C++ code. Then,
this C++ code can be compiled by a standard C++ compiler in order to produce the shared
library required for the IP.

In the SpecC compiler, behaviors and channels are implemented as C++ classes, and
behavior and channel instances are naturally represented by C++ objects. Among other rea-
sons, which are beyond the scope of this chapter, this implementation was chosen because
it keeps the generated code very similar to the original SpecC code and, thus, significantly
simplifies source-level debugging of SpecC programs, as explained in Section 5.3.

For example, the following code defines a behaviorB which consists of two child be-
haviorsb1 andb2 connected by a channelc1 and a variablev1 . Right next to the SpecC
code, a fragment of the generated C++ code for this behavior definition is shown.

behavior B( c l a s s B : pub l ic b e h a v i o r
in i n t p1 , f i n t &p1 ;
out i n t p2 ) i n t &p2 ;

f
i n t l1 ; i n t l1 ;
C c1 ; C c1 ;
B1 b1 ( p1 , l1 , c1 ) ; B1 b1 ;
B2 b2 ( p2 , l1 , c1 ) ; B2 b2 ;

void main (void ) pub l ic :
f void main (void ) ;

par f b1 . main ( ) ;
b2 . main ( ) ; g B( i n t &p1 , i n t &p2 ) ;

g v i r t u a l ˜ B( void ) ;
g ; g ;

In C++, in order to instantiate a class, the size of the class must be known so that
sufficient memory can be allocated for the new object before the constructor of the class
is called to initialize the memory. While the constructor is provided in the class itself, the
memory must be allocated by the instantiator. C++ semantics [ES90] enforce that a class
is defined (not just declared) before it can be instantiated. This ensures that the size of the
required memory is known when an object of a class is created.

In the case of an IP component, which is supplied in a library, the size of the class still
must be known by the user code. Therefore, in the C++ user code, a class declaration as in
SpecC, is not sufficient. Instead, a class definition is required. This is a problem for the IP
user because he does not know the internals of the IP class and thus cannot create a proper
class definition.
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6.2.2 Implementation solution

The problem can be solved if the size of the class is known. With this information, the
IP user can create apseudo classwhich only contains known contents and leaves enough
space for the secret internals. In particular, this pseudo IP class consists of the known ports,
the public interfaces and sufficient space reserved for the secret parts of the IP.

For example, a pseudo class for the behaviorB discussed above can be defined as fol-
lows.

behavior B( c l a s s B : pub l ic b e h a v i o r
in i n t p1 , f i n t &p1 ;
out i n t p2 ) i n t &p2 ;

f
i n t l1 ; char Reserved [X] ;
C c1 ;
B1 b1 ( p1 , l1 , c1 ) ;
B2 b2 ( p2 , l1 , c1 ) ;

void main (void ) pub l ic :
f void main (void ) ;

par f b1 . main ( ) ;
b2 . main ( ) ; g B( i n t &p1 , i n t &p2 ) ;

g v i r t u a l ˜ B( void ) ;
g ; g ;

In this pseudo class, the dummy arrayReserved[X] replaces the internal IP compo-
nentsl1 , c1 , b1 , andb2 . The sizeX of the reserved array must be equal to (or greater
than) the size of all the replaced components.

Please note that such a class replacement is highly compiler dependent because the C++
language leaves some freedom for the implementation of classes [Str97]. Therefore, when
this approach is implemented, it must be integrated with the compiler being used.

With this solution, the IP component can be used just as any other component, given
that the reserved sizeX is provided along with the component declaration and the IP library.

The value ofX can be computed by the IP provider from the IP implementation. The
reserved size basically is the sum of the sizes of the local variables, the instantiated channels
and child behaviors, plus any implementation dependent overhead.

More formally, the size of an IP classC is computed as

sizeof(C) = Xpublic+Xsecret

where

Xpublic = ∑
p2Ports(C)

sizeof(p) + ∑
i2Inter f aces(C)

sizeof(i)
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Xsecret = ∑
l2Locals(C)

sizeof(l) + ∑
c2Channels(C)

sizeof(c)

+ ∑
b2Behaviors(C)

sizeof(b) + ∆

Here, ∆ represents the implementation dependent size needed for base classes, data
alignment, etc.

Please note that, although the equation is recursively defined, it can be easily computed
by the SpecC compiler because language semantics require that the sizeof() operator can
always be evaluated at compile time.

6.3 Integration with the SpecC compiler

The approach for IP protection described in this chapter has been implemented and inte-
grated with the SpecC compilerscc , which was presented in Section 5.3.

In order to support IP, the SpecC compiler has been extended with anIP mode(enabled
by option-ip ) which changes the behavior of the exporter, the deparser, the translator and
the underlying C++ compiler and linker (please refer to Figure 5.5 on page 117).

In IP mode, the compiler recognizes special annotations (scc Public ) which the user
attaches to behaviors and channels to mark them as IPs with public ports and interfaces. All
objects not marked public will be treated as secret implementation by the compiler and will
be hidden in the output.

In particular, the exporter and the deparser will only generate code for the public objects.
All other objects will be omitted. From the implementation of an IP, the IP provider can use
this to automatically generate the files describing the public interfaces of the IP.

Furthermore, when these public files are generated, the behavior and channel dec-
larations of IP components will be automatically annotated with the reserved IP size
(scc ReservedSize ), as discussed in Section 6.2. This annotation will later be used
by the IP user as the valueX in the IP pseudo classes, which are generated by the compiler
when the IP component is instantiated.

The compilation flow is also affected by the IP mode. When generating C++ code, the
SpecC compiler ensures that only objects marked public will have external linkage. In other
words, all non-public objects will have internal linkage and are therefore not visible outside
the file scope.

Furthermore, in IP mode, the underlying C++ compiler and the linker are instructed to
create a shared library instead of an executable file. In the library, all symbols internal to
the IP are stripped off. This ensures that the symbol table in the library is minimal and does
not reveal any internal methods of the IP.

In summary, using the IP mode, the IP provider can automatically create the public IP
interface and the IP library while being sure that no information about the secret implemen-
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tation will be available to the IP user. On the other hand, the IP user can simply include
the annotated interface declarations in his design and use the IP components just as his own
behaviors and channels by linking his executable file against the provided IP libraries.

6.4 Experiments and Results

The IP support of the SpecC system has been successfully tested with a set of design ex-
amples. First, a simple example using different RT level components as IPs is presented.
Then, the SpecC IP protection scheme is applied to several industrial-size examples at the
system level.

6.4.1 RT level IP examples

As the first experiment, a generic adder, specified at the gate and the RT level, has been
modeled as an IP component. For three different bit widths, namely 8, 16 and 32 bits, adder
components have been created as a set of public IP declarations and shared libraries (see
also Section B.2).

Adder example Internal components Reserved size
RTL model, 8 bit 1 12
RTL model, 16 bit 1 12
RTL model, 32 bit 1 16
Gate model, 8 bit 65 2428
Gate model, 16 bit 131 5020
Gate model, 32 bit 261 10052

Table 6.1: RT level IP examples

For each generated adder, Table 6.1 shows the number of the hidden, internal compo-
nents and the minimum reserved sizeX. It is obvious that the RTL models are much less
complex than the models composed of logic gates.

Please note that, in order to not reveal the complexity of the IP implementation through
these numbers, the IP provider is free to choose any number greater than the minimum size
computed by the compiler. For example, the reserved size 12000 works well for all the
adders.

Using the IP-enabled SpecC compiler, a public interface and a shared library have been
automatically created to allow the adders being used as IP components. For example, the
public interface generated for the 32 bit adder is shown next.

1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
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2 / / SpecC source code gene ra ted by SpecC V2 . 0 . 4
3 / / Design : ADD32GTL
4 / / F i l e : ADD32. sc
5 / / Time : Thu Jun 17 15 : 46 : 30 1999
6 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
7

8 behavior ADD32( in b i t [ 0 : 0 ] c in ,
9 in b i t [ 31 : 0 ] a ,

10 in b i t [ 31 : 0 ] b ,
11 out b i t [ 31 : 0 ] s ,
12 out b i t [ 0 : 0 ] c ou t ) ;
13

14 note ADD32. Bi tWidth = 32 ;
15 note ADD32. s c c R e s e r v e d S i z e = 10052u ;
16

17 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

6.4.2 System level IP examples

Four system-level designs have also been modeled as IP components. The examples consist
of two controller components, namely an elevator controller and a traffic light controller
(see Section B.4), and two data compression IPs, namely a JPEG encoder (see Section B.5)
and a GSM vocoder (see Section B.6).

IP example Internal components Reserved size
Elevator controller 91 4248
Traffic light ctrlr. 24 892
JPEG encoder 4 2728
GSM vocoder 84 12020

Table 6.2: System level IP examples

Table 6.2 shows the characteristics of the IP models. Again, the number of internal
components hidden in the IP, and the reserved sizeX for each IP are listed.

Considering the complexity of these designs (for example, the GSM vocoder consists
of about 13.000 lines of SpecC source code [GZG+99]), these results show that the IP
approach implemented in the SpecC system works very well with large IP models at the
system level.

Although the system level components are internally much more complex, the public
IP interface is as simple as the adder interface shown earlier. For example, the interface
declaration of the GSM vocoder IP is shown next.
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1 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
2 / / SpecC source code gene ra ted by SpecC V2 . 0 . 4
3 / / Design : GSMVocoder
4 / / F i l e : GSM Vocoder publ ic . sc
5 / / Time : Tue Jun 22 10 : 42 : 36 PDT 1999
6 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
7

8 behavior GSM Vocoder (
9 in b i t [ 12 : 0 ] Sample ,

10 out unsigned b i t [ 243 : 0 ] Frame ,
11 in bool DTX Mode ,
12 out unsigned b i t [ 5 : 0 ] DTX Ctrl ,
13 in event NewSample ,
14 out event FrameReady ) ;
15

16 note GSM Vocoder . Comment = ”GSMEFR speech encoder ” ;
17 note GSM Vocoder . Vers ion = ”GSM06 . 60 ” ;
18 note GSM Vocoder . s c cR e s e r v e d S i z e = 12020u ;
19

20 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
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Chapter 7

Conclusion

The increasing complexity of SOC design requires higher design effort, more efficient tools
and new methodologies. Due to market pressures, increasing the design time is not an
option.

System-level design reduces the complexity of the SOC design process by raising the
level of abstraction. In addition, system-level design takes advantage of the reuse of pre-
designed, complex components, called IPs. In order to enable the reuse of IP components,
IP must become an integral part of the system design methodology. In particular, IP reuse
must be supported by the design language, the design models, the methodology, and the
tools used in the design process.

In this work, the SpecC approach to system-level design with explicit support of IP
reuse has been presented. The SpecC approach is based on an IP-centric design model,
an IP-centric design methodology, and the SpecC language which has been specifically
developed for the purpose of embedded systems design.

7.1 Contributions

The contributions of this work are summarized in the following sections.

7.1.1 IP-centric model

The SpecC model meets the goals and requirements of system-level design. It is suitable to
represent abstract properties of the intended system in early stages of the design process, as
well as specific and detailed design characteristics later in the implementation.

As described in Chapter 2, the SpecC design model consists of a hierarchical network
of behaviors and channels. In this model, computation and communication are clearly
separated in the way that the behaviors contain the computation and functionality, whereas

133
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the channels encapsulate the communication in the system. This separation is essential in
order to support IP reuse.

The support of IP is a major benefit of the SpecC model. IP components are integrated
in a SpecC design model the same way as any other components in the system. Moreover,
IP components can be easily inserted or replaced in the system model, at any time in the
design process. In other words, the SpecC model is IP-centric, as it allows “plug-and-play”
with IP components.

For design specification with SpecC, modeling guidelines have been set up in Chapter 2.
Following these guidelines will ensure that a design model is well-defined. A well-defined
SpecC model will work well with the SpecC tool set, since it is synthesizable, supports IP,
and in particular meets the requirements of the SpecC methodology.

Well-defined composite behaviors, supporting sequential, concurrent, pipelined, FSM-
style and exceptional execution, are organized hierarchically, forming structural and behav-
ioral hierarchy in the system model. At the lowest level in the hierarchy, the leaf behaviors,
specified as arbitrary algorithmic programs, and the IP behaviors, whose internal composi-
tion is hidden, represent the smallest indivisible units in the model.

Communication is modeled by use of explicitly connected shared variables, or by chan-
nels, which also support hierarchy. Channels encapsulate the communication protocols,
hiding the details of the communication, while providing an abstract, high-level interface
to the connected behaviors. This encapsulation mechanism is exploited specifically for the
wrapper concept used with IPs.

7.1.2 IP-centric methodology

Based on the modeling guidelines defined for SpecC design models, the SpecC design
methodology has been presented in Chapter 3. The SpecC methodology is IP-centric and
features a set of well-defined design models and well-defined refinement tasks, which trans-
form an abstract, executable specification of the design into a detailed implementation.

The SpecC methodology consists of a horizontal validation flow, allowing simulation,
estimation and analysis at any abstraction level. In addition, the vertical exploration and
synthesis flow refines the initial design specification in several steps into a final implemen-
tation architecture ready for manufacturing.

In particular, the synthesis flow is based on four well-defined models, namely the spec-
ification model, the architecture model, the communication model, and the implementation
model.

The specification model is the most abstract model in the design flow. It contains an
accurate description of the final implementation only in terms of the functionality. The
next model, the architecture model, adds the structure of the final system to the model, so
that it accurately reflects the target architecture. Then, the communication model mirrors
the communication performed in the final system in an bit-exact and cycle-exact manner.
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Finally, the implementation model refines the internal structure of the components in the
model, allowing clock-cycle accurate simulation of the implemented design.

The four models clearly specify the input and output of the tasks in the design flow.
In other words, the four models serve as a detailed specification for the tools in the SpecC
design environment. This applies in particular to architecture exploration and communica-
tion synthesis, which have been described with their intermediate refinement steps by use
of detailed examples.

Architecture exploration includes the traditional tasks of architecture allocation, hard-
ware/software partitioning and system-level scheduling. After the target architecture has
been selected, architecture exploration maps the specification model onto the allocated ar-
chitecture by assigning behaviors to processing elements, variables to memories and chan-
nels to the system busses.

Then, communication synthesis refines the architecture model into the communication
model, performing protocol selection, transducer insertion and protocol synthesis. Finally,
the back end utilizes behavioral synthesis and software compilation to create the implemen-
tation model, providing a clear hand-off for design manufacturing.

Since the reuse of IP is integrated with the design flow, the SpecC design methodology
is IP-centric. It supports the easy insertion and replacement of IP components, allowing
quick design space exploration.

The SpecC methodology promises a large productivity gain and a significant reduction
of design time and design costs, due to less and smaller iterations in the design process.
With the SpecC methodology, the designers can focus on the design space exploration,
making design decisions based on their experience. The tedious and error prone refinement
tasks with the design models are performed automatically by the tools.

7.1.3 SpecC language

In Chapter 4, the requirements and objectives for system-level design languages have been
discussed and identified. A language suitable for the design of embedded systems must be
executable and synthesizable. Further, it must completely support software and hardware-
specific concepts. More specifically, in addition to the well-known software concepts,
hardware-specific concepts are required, including behavioral and structural hierarchy, con-
currency, timing, synchronization, exception handling and state transitions. Finally, all
these concepts should be represented in an independent and straightforward manner.

A set of traditional languages has been examined and compared against these require-
ments and goals. Since none of these languages satisfies all the requirements, a new lan-
guage, called SpecC [DZG98], has been proposed. The SpecC language has been targeted
specifically to support the identified concepts needed in embedded systems design.

The SpecC language, which has been described in detail in Chapter 4, has been devel-
oped and implemented. Compared to the set of traditional languages, SpecC is the only
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language that supports all the required concepts. Also, when compared to recent system-
level languages, SpecC turns out to be a superior specification and modeling language1.

Built on top of the ANSI-C language, the de-facto standard for software development,
SpecC inherits the benefits of a popular and successful software programming language.
Moreover, since SpecC is a true superset of C, a large library of already existing algorithms
can immediately be used. Also, the similarity with C makes it easy to learn and easy to
understand for everyone familiar with the C language.

SpecC combines the features found in software and hardware design, as it is based on
a software language and adds all concepts needed for hardware models. In particular, the
SpecC language contains special constructs to represent the needed hardware concepts, in-
cluding communication, concurrency, hierarchy, synchronization, exception handling, state
transitions and timing.

The SpecC language provides a complete set of constructs which, at the same time, is
also minimal. SpecC maps the modeling concepts onto independent language constructs
in a one to one fashion. As a result, SpecC precisely covers the unique requirements for
embedded systems design in an orthogonal manner.

The SpecC language also encourages the reuse of IP. Directly following the IP-centric
SpecC model discussed in Chapter 2, the SpecC language features “plug-and-play” support
for IP components.

In summary, the contribution of this task is the development and implementation of
a new specification and modeling language, called SpecC, which precisely covers the re-
quirements for the design of embedded systems. The SpecC language satisfies all the re-
quirements and goals, as is executable and synthesizable, and supports all hardware- and
software-specific concepts needed for modeling embedded systems.

7.1.4 SpecC design environment

The SpecC methodology and the SpecC language have been implemented in the SpecC
design environment, which has been described in Chapter 5. The SpecC design environment
consists of a set of CAD tools for system validation, analysis, and synthesis, integrated in a
graphical user interface (GUI).

Since the SpecC design environment, the SpecC models, the SpecC language and the
SpecC methodology have been developed concurrently and consistently, they represent a
coherent system. The SpecC language matches the SpecC model, and the implemented
programs reflect the SpecC methodology. All the components forming the SpecC design
environment are designed and tuned for the specific requirements and goals of system-level
design.

1A comparison of the SpecC language with the Scenic approach, which has recently been renamed to
SystemC, can be found in [DG98]. Further, a comparison with VHDL+, an extension of VHDL, can be found
in [GZG98].
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The validation flow of the design environment has been implemented with the SpecC
release 2.0.4. This release has been made freely available on the world-wide web (WWW)
and is currently in evaluation and use in academia and industry. The release includes the
tools developed by the author of this work, in particular, the SpecC compiler, the SpecC
Internal Representation, a profiler and a tool set.

7.1.4.1 SpecC Internal Representation

The SpecC Internal Representation (SIR) is the central design representation used by all
SpecC tools for input, output, access and modification of SpecC design models.

The SIR is a complex data structure, embedded in a comprehensive, well-defined and
well-documented API. As such, the SIR provides an abstraction layer above the specific
details of the SpecC language.

The benefit of the SIR as a common design representation is that new tools can be
developed very quickly, which has been proven with the implementation of a set of profiling
tools. The SIR provides all required functions to access the design model. Without the SIR
library, the development and implementation of such functions would require a significant
amount of time. With the SIR, the SpecC tool developer can focus solely on the algorithms
of his task.

In conclusion, the SIR and its API provide a solid base for the quick development of
new tools for the SpecC design environment.

7.1.4.2 SpecC compiler

The SpecC compiler is the main tool in the validation flow of the SpecC methodology. Its
main purpose is the generation of an executable simulation model from a SpecC design
model, at any stage in the design flow. The SpecC compiler also serves as a converter
between the different file formats used in the SpecC design environment.

Together with the SpecC simulation library, the SpecC compiler essentially satisfies
the requirement of executability for any SpecC design model. Hence, it enables dynamic
validation and analysis of the design model, simply by execution on the host computer.

The SpecC compiler provides special support for debugging and profiling. As a result,
any standard C/C++ debugger can be used for debugging SpecC programs, furnishing the
SpecC simulation with single-stepping, break points, and data inspection capabilities.

Finally, the SpecC compiler has been extended to provide automatic IP protection, as
summarized in the next section.

7.1.5 IP protection

IP reuse and IP protection have been implemented in the SpecC design environment. In
particular, the SpecC compiler has been extended in order to support the recognition, the
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use and the generation of IP components.
For IP protection, the SpecC compiler allows the automatic creation of public IP in-

terfaces and secret IP libraries from the IP source code. Using the implemented IP mode,
the IP provider can automatically create the public interface and the IP library, being sure
that no information about his secret implementation will be available to the IP user. On the
other hand, the IP user can simply include the IP interface declaration in his design model
and use the IP component just as any other behavior or channel. For simulation, the IP user
simply links his executable file against the provided IP library.

With the SpecC IP protection, any IP is fully protected against reverse-engineering, and
the use of IPs is just a matter of “plug-and-play”.

7.1.6 Experience

Using the SpecC design environment, the IP-centric methodology has been successfully
applied to several designs of industrial size.

In Appendix B, a set of example designs is listed, which have been modeled accord-
ing to the SpecC modeling guidelines, and have been specified with the SpecC language.
After successful compilation, simulation and debugging, the SpecC methodology has been
manually applied to a subset of the examples, generating detailed implementation models.

As a result, the SpecC approach has been proven with real-world examples, including a
JPEG encoder [CPC+99] and a GSM vocoder [GZG+99].

7.1.7 Impact

As of today, the SpecC approach is evaluated and already in use in academia and indus-
try. The SpecC methodology and the SpecC language have gained wide acceptance, in
particular, in the industry.

Recently, the SpecC language has been proposed as a standard system-level language
for adoption in industry by some of Japan’s top-tier electronics and semiconductor compa-
nies [CGC+99].

In conclusion, the SpecC approach presented in this work has a significant impact on
the future of SOC design and the deep sub-micron era.

7.2 Future Work

In addition to support and maintenance of the current SpecC design environment, future
work will focus on the SpecC language and the implementation of the SpecC synthesis
flow.
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7.2.1 SpecC language

The experience with the real use of the SpecC language has shown that minor adjustments
and some extensions are desirable in order to make the language more convenient. These
issues, which have been outlined in Section 4.14, need to be addressed in a possible new
release of the SpecC language.

At the same time, future work will emphasize on the standardization of the SpecC
language.

7.2.2 Synthesis flow

For the synthesis flow, efficient algorithms need to be developed and implemented in order
to support the system designer with the refinement of the design models.

In particular, the tasks of architecture exploration and communication synthesis require
research on their algorithms, and the implementation of automated tools.



140 CHAPTER 7. CONCLUSION



Appendix A

SpecC Users Manual

For quick reference, the manual pages of the SpecC programs and tools, developed and
implemented for this work, are listed in the following sections.

A.1 SpecC Compilerscc

NAME

scc – SpecC Compiler

SYNOPSIS

scc–h

sccdesign[ command] [ options]

DESCRIPTION

sccis the compiler for the SpecC language. The main purpose ofsccis to compile
a SpecC source program into an executable program for simulation. Furthermore,
sccserves as a general tool to translate SpecC code from various input to various
output formats which include SpecC source text, SpecC binary files in SpecC
Internal Representation format, and other compiler intermediate files.

Using the first command syntax as shown in the synopsis above, a brief usage
information and the compiler version are printed to standard output and the pro-
gram exits. Using the second command syntax, the specifieddesignis compiled.

141
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By default,sccreads a SpecC source file, performs preprocessing and builds the
SpecC Internal Representation (SIR). Then, C++ code is generated, compiled and
linked into an executable file to be used for simulation. However, the subtasks
performed bysccare controlled by the givencommandso that, for example, only
partial compilation is performed with the specifieddesign.

On successful completion, the exit value 0 is returned. In case of errors during
processing, an error code with a brief diagnostic message is written to standard
error and the program execution is aborted with the exit value 10.

For preprocessing and C++ compilation,sccrelies on the availability of an exter-
nal C++ compiler which is used automatically in the background. By default, the
GNU compilergcc/g++is used.

ARGUMENTS

design specifies the name of the design; by default, this name is used as base
name for the input file and all output files;

COMMAND

Thecommandhas the format -suffix12 suffix2,wheresuffix1andsuffix2specify
the format of the main input and output file, respectively. This command also
implies the compilation steps being performed. By default, the command –sc2out
is used which specifies reading a SpecC source file (e.g. design.sc) and generating
an executable file (e.g. a.out) for simulation. All necessary intermediate files (e.g.
design.cc, design.o) are generated automatically.

Legal command suffixes are:

sc SpecC source file (default:design.sc)

si preprocessed SpecC source file (default:design.si)

sir binary SIR file in SpecC Internal Representation format (default:design.sir)

cc C++ simulation source file (default:design.cc)

h C++ simulation header file (default:design.h)

cch both, C++ simulation source file and C++ header file (default:design.ccand
design.h)
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o linker object file (default:design.o)

out executable file for simulation (default:design);however, with the –ip op-
tion, a shared library will be produced (default:libdesign.so)

OPTIONS

–v j –vv j -vvv increase the verbosity level so that all tasks performed are
logged to standard error (default: be silent); at level 1, infor-
mative messages for each task performed are displayed; at level
2, additionally input and output file names are listed; at level 3,
very detailed information about each executed task is printed;

–w j –wwj -www increase the warning level so that warning messages are enabled
(default: warnings are disabled); four levels are supported rang-
ing from only important warnings (level 1) to pedantic warnings
(level 4); for most cases, warning level 2 is recommended (–
ww);

–g enable debugging of the generated simulation code (default: no
debugging code); this option disables optimization;

–O enable optimization of the generated simulation code (default:
no optimization); this option disables debugging;

–ip enable intellectual property (IP) mode; when generating a SIR
binary or SpecC text file, only declarations of symbols marked
public will be included (the public interface of an IP is created);
when generating C++ code, non-public symbols will be output
so that they will be invisible outside the file scope; when com-
piling or linking, the compiler and linker are instructed to create
a shared library instead of an executable file (creation of an IP
simulation library);

–sl suppress source line information (preprocessor directives) when
generating SpecC or C++ source code (default: include source
line directives);

–sn suppress all annotations when generating SpecC source code
(default: include annotations);
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–i input file specify the name of the input file explicitly (default:de-
sign.suffix1);the name ’-’ can be used to specify reading from
standard input;

–o output file specify the name of the final output file explicitly (default:de-
sign.suffix2);the name ’-’ can be used to specify writing to stan-
dard output;

–D do not define any standard macros; by default, the macro
SPECC is defined automatically (it is set to 1); furthermore,

implementation dependent macros may be defined; this option
suppresses the definition of all these macros;

–Dmacrodef define the preprocessor macromacrodefto be passed to the pre-
processor;

–U do not undefine any macros; by default, few macros are unde-
fined automatically (in order to allow C/C++ standard header
files to be used); this option is implementation dependent;

–Uundef undefine the preprocessor macroundefwhich will be passed to
the preprocessor as being undefined; the macroundefwill be
undefined after the definition of all command-line macros; this
allows to selectively suppress macros from being defined in the
preprocessing stage;

–I clear the standard include path; by default, the standard in-
clude path consists of the directory $SPECC/inc; this option
suppresses the default include path;

–Idir appenddir to the include path (extend the list of directories to
be searched for including source files); include directories are
searched in the order of their specification; unless suppressed by
option –I, the standard include path is automatically appended
to this list; by default, only the standard include directories are
searched;

–L clear the standard library path; by default, the standard library
path consists of the directory $SPECC/lib; this option sup-
presses the default library path;

–Ldir appenddir to the library path (extend the list of directories to be
searched for linker libraries); the library path is searched in the
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specified order; unless suppressed by option –L, the standard
library path is automatically appended to this list; by default,
only the standard library path is searched;

–l when linking, do not use any standard libraries; by default, the
standard libraries libbit, libsim, libqt, and libprof are used for
linking the executable file; this option suppresses linking against
theses standard libraries;

–llib passlib as a library to the linker so that the executable is linked
againstlib; libraries are linked in the specified order; unless sup-
pressed by option –l, the standard libraries are automatically ap-
pended to this list; by default, only standard libraries are used;

–P reset the import path; clear the list of directories to be searched
for importing binary files; by default, only the current directory
is searched; this option suppresses this standard import path;

–Pdir appenddir to the import path (extend the list of directories to
be searched for importing binary files); import directories are
searched in the order of their specification; unless suppressed by
option –P, the standard search path is automatically appended to
this list; by default, only the standard import path is searched;

–xpp preprocessorcall redefine the command to be used for calling the C prepro-
cessor (default: ”g++ -E -x c %p %i -o %o”); in the specified
string, every occurence of %p will be replaced with a preproces-
sor option; additional options will be appended; also, %i and %o
will be replaced automatically with the actual input and output
filename, respectively;

–xcc compilercall redefine the command to be used for calling the C/C++ com-
piler (default: ”g++ -c %c %i -o %o”); in the specified string,
every occurence of %c will be replaced with a compiler option;
additional options will be appended; also, %i and %o will be re-
placed automatically with the actual input and output filename,
respectively;

–xld linker call redefine the command to be used for calling the linker (default:
”g++ %i -o %o %l”); in the specified string, every occurence of
%l will be replaced with a linker option; additional options will
be appended; also, %i and %o will be replaced automatically
with the actual input and output filename, respectively;
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–xp preprocessoroption pass an option directly to the C/C++ preprocessor; for
every %p in the preprocessor call (see above), an option has to
be specified (default: none);

–xc compileroption pass an option directly to the C/C++ compiler; for every %c
in the compiler call (see above), an option has to be specified
(default: none);

–xl linker option pass an option directly to the linker; for every %l in the linker
call (see above), an option has to be specified (default: none);

ENVIRONMENT

The environment variable SPECC is used to determine the home directory of the
SpecC system where SpecC standard include files and SpecC system libraries are
located.

ANNOTATIONS

The following SpecC annotations are recognized by the compiler:

scc ReservedSize for external behaviors and channels (IP components), this in-
dicates the size reserved in the C++ class for internal use; the
annotation type is unsigned int; if found at class definitions,
this annotation is checked automatically for reasonable val-
ues; for IP declarations, the annotation can be created auto-
matically with the –ip option;

scc Public for global symbols, this annotation indicates whether the
symbol is public and will be visible in a shared library; the
annotation type is bool; this annotation only is recognized
with the –ip option;

VERSION

The SpecC compilersccis version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>
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COPYRIGHT

Copyright (c) 1997, 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

gcc(1), g++(1), sprof(l), sir tools(l)

BUGS, LIMITATIONS

Semantic type checking of certain expressions is not fully implemented.
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A.2 SpecC Profilersprof

NAME

sprof – SpecC Profiler

SYNOPSIS

sprof –h

sprof command[ options] designin designout

DESCRIPTION

sprof is the profiler of the SpecC system. Profiling of SpecC programs consists of
three phases. First, a design is instrumented by the profiler with a set of counters.
These counters are incremented by counting statements which the profiler inserts
at the beginning of each function and class method. Also, the main method of
the behavior Main is instrumented with a function call to the profiling run-time
library, so that profiling is enabled when the design is simulated.

Second, an executable profiling model of the design is created with the SpecC
compiler. Each time the profiling model is executed, the number of executions for
each function and each method are counted. The profiling counters are stored in
a file, called profile of the design. This file is read whenever the execution of a
profiling model starts and is written when the execution ends.

The third profiling phase consists of back-annotation of the counter values from
the profile to the design and de-instrumentation of the design. This is also per-
formed by the SpecC profiler.

Using the first command syntax shown in the synopsis above, a brief usage in-
formation including the profiler version is printed to standard output. Using the
second command syntax, the profiling task specified withcommandis performed.
For all tasks,sprof reads the SpecC design file specified withdesignin, performs
the specified task and then writes the modified design into a new file specified with
designout. Both design files are binary files containing the SpecC Internal Rep-
resentation (SIR) of the design. The SpecC compilersccmay be used to convert
the binary SIR files into readable source code (and vice versa).

On successful completion,sprof returns the exit value 0. In case of errors, an error
code with a brief diagnostic message is written to standard error and the program
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execution is aborted with the exit value 10.

COMMAND

The profiler is controlled by the givencommandwhich is one of+i , –i , +b , –b
.

+i instrument the design with counters and counting statements for profiling;

–i de-instrument the design; remove all inserted profiling counters and count-
ing statements;

+b back-annotate the counter values from the profile to the instrumented design
in form of annotations;

–b remove the back-annotated profile from the design (remove all profiling an-
notations);

OPTIONS

–a when back-annotating (command+b), add the counter values from the pro-
file to the current annotated values (default: current profiling annotation
must not exist);

–h print a short usage and version information and then quit;

–v enable verbosity mode; all tasks performed are logged to standard error;

–i input file specify the input SIR file explicitly; the name ’-’ can be used to specify
reading from standard input (default:designin with suffix .sir);

–o output filespecify the output SIR file explicitly; the name ’-’ can be used to
specify writing to standard output (default:designout with suffix .sir);

–p profile specify the file name for the profile explicitly (default: speccprofile);

ARGUMENTS

designin specifies the name of the input design; by default, this name is used
as base name for the input file;

designout specifies the name of the output design; by default, this name is used
as base name for the output file;
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ANNOTATIONS

The following SpecC annotations are recognized by the profiler:

sprof Instrumented a global annotation of type bool, indicating that the design
has been instrumented by the profiler;

sprof Profiled a global annotation of type bool, indicating that the design
already has been profiled;

sprof ExecCountIndexfor every function or method, this annotation indicates the
index of its counter in the global counter array; the annota-
tion type is unsigned int; this annotation is used only in an
instrumented design;

sprof ExecCount for every function or method, this annotation specifies the
number of executions during profiling; the annotation type
is unsigned int; this annotation in created as the result of
profiling;

VERSION

The SpecC profilersprof is version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir tools(l)
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BUGS, LIMITATIONS

Advanced profiling features such as support for call graphs, etc. are not supported. How-
ever, standard C profiling tools can be used instead.
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A.3 SpecC Tool Set

For the SpecC system, several tools have been developed and implemented, which directly
work with binary SIR files. With these tools, it is not necessary to convert given SIR files
to text files in order to look up information about their contents or to apply simple changes.

A.3.1 sir delete

NAME

sir delete – part of the SpecC SIR tool set

SYNOPSIS

sir delete[ options] design[ object name...]

DESCRIPTION

sir deleteallows to delete objects in a SIR file. A SIR file is a binary file contain-
ing the SpecC Internal Representation of a design.sir deletereads the SIR file
specified withdesignand deletes all objects specified with theobject namelist.
When done,sir deletewrites back the modifieddesigninto the same file, unless
the –i or –o options are used.

On successful completion, the exit value 0 is returned. In case of errors, an error
code with a diagnostic message is written to standard error and the program ex-
ecution is aborted with the exit value 10. In this case, no output is produced, in
other words, the specifieddesignis left unchanged.

ARGUMENTS

design specifies the design to work with; if no –i or –o options are specified,
the suffix ’.sir’ will be appended to this name in order to obtain the SIR
file to read and write, respectively;

object name specifies the symbol to be deleted; for global symbols,object nameis
simply the symbol name; for class members and methods,object name
is the class name followed by a ’.’ and the member or method name;
for local symbols in functions and methods, the same syntax is used,
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the symbol name follows after a ’.’ appended to the function or method
specifier;

OPTIONS

–h prints a short usage and version information and then quits;

–i input file specifies the name of the input file explicitly; the name ’-’ can be used
to specify reading from standard input;

–o output filespecifies the name of the output file explicitly; the name ’-’ can be
used to specify writing to standard output;

–v enables verbosity mode; all actions performed are logged to standard error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir list(l), sir note(l), sir rename(l), sir strip (l), sir tree(l)

BUGS, LIMITATIONS

sir delete can only delete global symbols and local symbols at class level or func-
tion/method level. Symbols defined locally within compound statements or user-defined
types are not accessable due to the limited syntax used forobject name.
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A.3.2 sir list

NAME

sir list – part of the SpecC SIR tool set

SYNOPSIS

sir list [ options] sir file [[ options] sir file... ]

DESCRIPTION

sir list lists the contents of one or more SIR files. A SIR file is a binary file con-
taining the SpecC Internal Representation of a design. For each specifiedsir file,
sir list reads the SIR file and prints a list of the global and local symbols contained
in the file to standard output, along with additional information depending on the
optionsgiven. The symbols are listed in alphabetical order.

On successful completion, the exit value 0 is returned. In case of errors, an er-
ror code with a diagnostic message is written to standard error and the program
execution is aborted with the exit value 10.

ARGUMENTS

sir file specifies the SIR file whose contents will be listed; ifsir file does not
exist, the suffix ’.sir’ will be appended; the name ’-’ can be used to
specify reading from standard input;

OPTIONS

–a enables printing of all symbol lists (equivalent to +BCDFINPSV);

–c lists behaviors, channels and interfaces only; this ist the default (equivalent
to +BCI –DFNPSV);

–h prints a short usage and version information and then quits;

–l specifies a long listing; for each symbol, a set of flags (as defined below) is
listed;
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–r recursively lists the contents of behaviors, channels and interfaces (instan-
tiated behaviors and channels, local variables and methods);

–t prints the type information with each symbol;

–v specifies verbosity mode; for each sub-list, a section header is printed;

–x includes external definitions in the lists; external definitions are declarations
of functions, classes without body and variables of storage class extern;

+B j –B specifies whether to include or exclude the list of behaviors;

+C j –C specifies whether to include or exclude the list of channels;

+D j –D specifies whether to include or exclude the design name;

+F j –F specifies whether to include or exclude the list of functions;

+I j –I specifies whether to include or exclude the list of interfaces;

+N j –N specifies whether to include or exclude the list of annotations for each
listed symbol;

+P j –P specifies whether to include or exclude the list of imported files;

+S j –S specifies whether to include or exclude the list of source files;

+V j –V specifies whether to include or exclude the list of variables;

FLAGS

With the –l option, a set of flags is printed with each symbol. From the flags, the
symbol class, the storage class and the symbol classification can be determined;
the flags are defined as follows:

symbol type is one of [BCDFINPSVbcfv], indicating behavior (B), channel
(C), design (D), global function (F), interface (I), annotation (N),
import file (P), source file (S), global variable (V), behavior in-
stance (b), channel instance (c), class method (f), or class variable
(v);

storage class is intern or extern (one of [ix]), indicating internal definition (i),
or external declaration (x);
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classification is one of [acefhilnoprstwx], indicating for behaviors: concurrent
(c), FSM (f), leaf (l), pipeline (p), sequential (s), exception (t),
external (x), or other (o); for channels: leaf (l), hierarchical (h),
wrapper (w), external (x), or other (o); for interfaces: internal (i)
or external (x); otherwise storage class: auto (a), extern (e), none
(n), register (r), static (s), typedef (t), or piped (p followed by the
number of pipe stages);

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir note(l), sir rename(l), sir strip (l), sir tree(l)

BUGS, LIMITATIONS

sir list can only list global symbols and symbols at class level (with option –r). Symbols
and annotations defined locally within compound statements or user-defined types are not
included.
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A.3.3 sir note

NAME

sir note – part of the SpecC SIR tool set

SYNOPSIS

sir note [ options] design[ object name] [ annotation...]

DESCRIPTION

sir note allows to annotate objects in a SIR file. A SIR file is a binary file con-
taining the SpecC Internal Representation of a design.sir note reads the SIR file
specified withdesignand, when done, writes back the modifieddesigninto the
same file, unless the -i or -o options are used.

sir note annotates the object specified withobject nameor, if no object nameis
specified, annotates thedesignitself with global annotations. For eachannotation
that is specified,sir noteattaches, modifies or removes the annotation, depending
on whether such an annotation already exists and a new value is specified.

On successful completion, the exit value 0 is returned. In case of errors, an error
code with a diagnostic message is written to standard error and the program ex-
ecution is aborted with the exit value 10. In this case, no output is produced, in
other words, the specifieddesignis left unchanged.

ARGUMENTS

design specifies the design to work with; if no –i or –o options are specified,
the suffix ’.sir’ will be appended to this name in order to obtain the SIR
file to read and write, respectively.

object name specifies the symbol to be annotated; for global symbols,object name
is simply the symbol name; for class members and methods,ob-
ject nameis the class name followed by a ’.’ and the member or method
name; for local symbols in functions and methods, the same syntax is
used, the symbol name follows after a ’.’ appended to the function or
method specifier;
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annotation specifies the new annotation to be attached to the specified object; syn-
tactically, annotation is composed of the name of the note followed
by an assignment character (’=’) and optionally the new value; for the
value, the standard SpecC syntax for constants applies; if no new value
is given, the specified annotation will be removed;

OPTIONS

–h prints a short usage and version information and then quits;

–i input file specifies the name of the input file explicitly; the name ’-’ can be used
to specify reading from standard input;

–o output filespecifies the name of the output file explicitly; the name ’-’ can be
used to specify writing to standard output;

–v enables verbosity mode; all actions performed are logged to standard error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir rename(l), sir strip (l), sir tree(l)

BUGS, LIMITATIONS

sir note can only annotate global symbols and local symbols at class level or func-
tion/method level. Symbols defined locally within compound statements or user-defined
types are not accessable due to the limited syntax used forobject name.
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A.3.4 sir rename

NAME

sir rename – part of the SpecC SIR tool set

SYNOPSIS

sir rename [ options ] designin designout [ object name newname ] [ ob-
ject name newname...]

DESCRIPTION

sir renameallows to rename objects in a SIR file; a SIR file is a binary file con-
taining the SpecC Internal Representation of a design.sir rename reads the SIR
file specified withdesignin and generates a modified design in a new SIR file
specified withdesignout. For each pairobject nameandnewname,sir rename
renames the specified object to the new name.

On successful completion, the exit value 0 is returned. In case of errors, an er-
ror code with a diagnostic message is written to standard error and the program
execution is aborted with the exit value 10. In this case, no output is produced.

ARGUMENTS

designin specifies the input design; if no -i option is specified, the suffix ’.sir’
will be appended in order to obtain the SIR file to read;

designout specifies the output design; if no -o option is specified, the suffix
’.sir’ will be appended in order to obtain the SIR file to write;

object name specifies the symbol to be renamed; for global symbols,object name
is simply the symbol name; for class members and methods,ob-
ject nameis the class name followed by a ’.’ and the member or
method name; for local symbols in functions and methods, the same
syntax is used, the symbol name follows after a ’.’ appended to the
function or method specifier.

new name specifies the new name of the object;new namemust be a legal
SpecC identifier; also, further semantic restrictions apply;
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OPTIONS

–h prints a short usage and version information and then quits;

–i input file specifies the name of the input file explicitly; the name ’-’ can be used
to specify reading from standard input;

–o output filespecifies the name of the output file explicitly; the name ’-’ can be
used to specify writing to standard output;

–v enables verbosity mode; all actions performed are logged to standard error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir note(l), sir strip (l), sir tree(l)

BUGS, LIMITATIONS

sir rename can only rename global symbols and local symbols at class level or func-
tion/method level. Symbols defined locally within compound statements or user-defined
types are not accessable due to the limited syntax used forobject name.
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A.3.5 sir strip

NAME

sir strip – part of the SpecC SIR tool set

SYNOPSIS

sir strip [ options] sir file...

DESCRIPTION

With sir strip, source location and import file information can be stripped from a
SIR file. A SIR file is a binary file containing the SpecC Internal Representation
of a design. sir strip reads the specified SIR file, removes the source file and
import file entries from the design data structure and writes the SIR file back,
thus, reducing the file size.

Please note that the stripped information cannot be restored without access to the
original source files. Therefore, stripping is recommended for binary files which
are to be distributed without source code.

On successful completion, the exit value 0 is returned. In case of errors, an error
code with a diagnostic message is written to standard error and the program ex-
ecution is aborted with the exit value 10. In this case, no output is produced, in
other words, the specifiedsir file is left unchanged.

ARGUMENTS

sir file specifies the SIR file to be stripped; if the specified file does not exist,
the suffix ’.sir’ will be appended to the file name; the name ’-’ can
be used to specify reading from standard input and writing to standard
output, thus working as a filter;

OPTIONS

–h prints a short usage and version information and then quits;

–i disables stripping of import file entries; only source location information is
removed;
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–s disables stripping of source file entries; only import file information is re-
moved;

–v enables verbosity mode; all actions performed are logged to standard error;

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir note(l), sir rename(l), sir tree(l)

BUGS, LIMITATIONS

None.
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A.3.6 sir tree

NAME

sir tree – part of the SpecC SIR tool set

SYNOPSIS

sir tree [ options] sir file [ classname...]

DESCRIPTION

sir tree graphically lists the instantiation hierarchy of behaviors and channels con-
tained in a SIR file. A SIR file is a binary file containing the SpecC Internal Rep-
resentation of a design.sir tree reads the specified SIR file and prints the tree of
behavior and channel instances to standard output, along with additional informa-
tion depending on the options given.

If there are no class names specified,sir tree automatically determines the root
behaviors and channels and prints a tree for each of them. Otherwise,sir tree
prints a tree for each specified class name in the given order.

ARGUMENTS

sir file specifies the SIR file whose contents will be displayed; ifsir file does
not exist, the suffix ’.sir’ will be appended; the name ’-’ can be used to
specify reading from standard input;

classname specifies the name of a behavior or a channel whose instantiation tree
will be printed;

OPTIONS

–b graphically displays the branches of the tree; otherwise, by default, simple
tabulators will be used for tree indentation;

–f prints a flattened tree, in other words, no indentation will be used;

–h prints a short usage and version information and then quits;



166 APPENDIX A. SPECC USERS MANUAL

–l specifies a long listing; for each behavior or channel, a set of flags (as de-
fined below) is listed;

–t prints the type information with each behavior and channel;

–B excludes behaviors from being displayed;

–C excludes channels from being displayed;

FLAGS

With the –l option, a set of flags is printed with each behavior and channel. From
the flags, the class type, the storage class and the class classification can be deter-
mined; the flags are defined as follows:

class type is one of [BC], indicating behavior (B) or channel (C).

storage class is intern or extern (one of [ix]), indicating internal class with known
body (i), or external class with unknown body (x).

classification is one of [cfhlopstwx], indicating for behaviors: concurrent (c), FSM
(f), leaf (l), pipeline (p), sequential (s), exception (t), external (x),
or other (o); for channels: leaf (l), hierarchical (h), wrapper (w),
external (x), or other (o).

VERSION

The SpecC SIR tool set is version 2.0.4.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

Copyright (c) 1998, 1999 CECS, University of California, Irvine.

SEE ALSO

scc(l), sir delete(l), sir list(l), sir note(l), sir rename(l), sir strip (l)
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BUGS, LIMITATIONS

None.
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Appendix B

SpecC Design Examples

Numerous design examples have been developed and successfully been used with the SpecC
system, including a discrete cosine transformation (DCT) [AG98], an ATM packet filter
[KZG97], a JPEG encoder [CPC+99], and a GSM vocoder [GZG+99]. A set of selected
examples is presented in the following sections.

B.1 Tutorial Examples

The set oftutorial examples, as listed in Table B.1, is part of the SpecC standard distri-
bution1. These small examples demonstrate specific features of SpecC and can serve as a
tutorial for the SpecC language. Since all ten examples are complete and fully functional,
they can be compiled with the SpecC compiler and simulated “out-of-the-box”.

� Adder.sc describes a simple 8 bit adder built from logic gates.

� Behaviors.sc lists the types of SpecC behaviors as described in Section 2.3.

� BitVectors.sc demonstrates the use of SpecC bit vectors as defined in Sec-
tion 4.3.1.2.

� Callback.sc contains a call-back communication between a sender and a receiver
as mentioned in Section 4.6.1.

� DataTypes.sc lists the basic data types supported by SpecC as specified in Sec-
tion 4.3.1.

� FSM.sc describes a clock-driven finite state machine as discussed in Section 4.5.1.2.

1In the SpecC distribution, these examples can be found in theexamples/simple/ directory.

169



170 APPENDIX B. SPECC DESIGN EXAMPLES

Example Behaviors Channels Lines of code
Adder.sc 7 0 165
Behaviors.sc 8 0 113
BitVectors.sc 6 0 143
Callback.sc 3 1 231
DataTypes.sc 1 0 113
FSM.sc 9 0 168
HelloWorld.sc 1 0 23
Notes.sc 2 1 127
Pipeline.sc 6 0 132
Timing.sc 3 1 245

Table B.1: SpecC tutorial examples

� HelloWorld.sc contains the famous “Hello World!” example in SpecC.

� Notes.sc demonstrates the use of annotations as described in Section 4.11.

� Pipeline.sc contains a three-stage pipeline design as presented in Sec-
tion 4.5.2.2.

� Timing.sc demonstrates the specification of timing diagrams as discussed in Sec-
tion 4.10.2.

More detailed information on these examples is contained in the distribution of the SpecC
system.

B.2 Library Example

In order to demonstrate library management and IP support with SpecC, the so-calledli-
brary example was developed. This example is also part of the SpecC standard distribu-
tion2. Using adders as example components, the example shows, how components from a
library of gates can be composed and made available as IP components.

Please note that this example demonstrates library and IP issues at low abstraction lev-
els, the gate and RT level. This is done only for the purpose of using well-known com-
ponents, namely adders composed of gates, so that the design itself does not need any
explanation. For the library and IP issues, the same principles and characteristics apply to
all levels of abstraction.

2In the SpecC distribution, this example can be found in theexamples/library/ directory.
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The library example resembles the following scenario: An IP vendor develops a set of
IP adder components based on his own (or somebody elses) gate library. In order to sell
these components, he creates the public interfaces and ports of the components using the
IP mode of the SpecC compiler. The IP provider also generates two simulation libraries,
one RT-level library for fast simulation, and one gate-level library, which accurately models
the components behavior. Furthermore, the IP provider develops a test bench for the imple-
mented components, as well as for the IPs, in order to validate the correct functionality.

Library example Behaviors Lines of code
Gate library 6 95
Adder library 11 365
Test bench 2 118
Total 19 578

Table B.2: Library example

The library example consists of a total of 19 different behaviors, as shown in Table B.2.

Components Gate level RT level
Adder, 8 bit 65 1
Adder, 16 bit 131 1
Adder, 32 bit 261 1

Table B.3: Composition of IP library components

The example IP library consists of a total of six adder models, as shown in Table B.3.
The three RT level models consist of a single behavior instance each, whereas the three gate
level models are composed of a large set of gates.

The composition of the gate level adders can be illustrated by use of the hierarchy
tree. The (shortened) hierarchy tree3 of the 8 bit adder model is shown below. For more
information, please consult the source code of the example.

3The hierarchy tree was created with the SIR tool set:sir tree -blt Adder/ADD08 GTL.sir
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B i s behavior ADD08
B i s |------ FA fa0
B i s | |------ HA ha1
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i s | |------ HA ha2
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i l | \------ OR2 or1
B i s |------ FA fa1
B i s | |------ HA ha1
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i s | |------ HA ha2
B i l | | |------ AND2 and
B i l | | \------ XOR2 xor
B i l | \------ OR2 or1
B i s |------ FA fa2

... ... ...
B i s \------ FA fa7
B i s |------ HA ha1
B i l | |------ AND2 and
B i l | \------ XOR2 xor
B i s |------ HA ha2
B i l | |------ AND2 and
B i l | \------ XOR2 xor
B i l \------ OR2 or1

B.3 Communication Examples

Two different communication schemes are demonstrated by the examples shown in Ta-
ble B.4. The first example consists of a sender and a receiver component which commu-
nicate via a noisy bit channel. In order to account for transmission errors, Forward Error
Correction (FEC) is applied.

Communication Behaviors Channels Lines of code
Send & Receive, FEC 12 3 711
Client & Server, FIFO 5 2 271

Table B.4: Communication examples

The second example models a client-server communication where the server executes
requests from the client in FIFO order. Both examples are contained in the SpecC standard
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distribution4. For more details, please refer to [GZG98].

B.4 Controller Examples

Two controller models were developed as examples for control-dominated systems, as
shown in Table B.5. The first example resembles a central elevator controller for three
elevators in a building with ten floors. The second example specifies a controller for a
traffic light at a road junction. Again, both examples are contained in the SpecC standard
distribution5.

Controller Behaviors Channels Lines of code
Traffic light 28 0 527
Elevator 16 3 2035

Table B.5: Controller examples

B.5 JPEG Encoder

As an example for multi-media applications, a JPEG picture encoder was modeled with
the SpecC language [CPC+99]. Figure B.1 shows the JPEG encoder embedded in its test
bench.

Main

outputjpeginput

pixel data
head

Figure B.1: JPEG encoder with test bench

The encoder componentjpeg reads the header and pixel information of a photo by use
of the channelshead andpixel , respectively. It then encodes the picture and sends the

4In the SpecC distribution, these examples can be found in theexamples/fec/ andexamples/fifo/
directories, respectively.

5In the SpecC distribution, these examples can be found in theexamples/elevator/ and
examples/tlc/ directories, respectively.
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generated bit stream out via the channeldata .
The SpecC model of the JPEG encoder with the test bench consists of a total of 7

different behaviors and 10 channels, as shown in Table B.6.

JPEG encoder Behaviors Channels Lines of code
JPEG 4 7 1123
Test bench 3 3 341
Total 7 10 1464

Table B.6: JPEG encoder example

Internally, the JPEG encoder is composed of four concurrent behaviors which perform
data handling, DCT, data quantization, and Huffman encoding. These four tasks communi-
cate via internal channels. This structural composition of the system can be illustrated with
the hierarchy tree6, which is shown next.

B i o behavior Main
B i l |------ Input input
B i c |------ Jpeg jpeg
B i l | |------ DCT dct
B i l | |------ HandleData handledata
B i l | |------ HuffmanEncode huffmanencode
B i l | |------ Quantization quantization
C i l | |------ cSyncBlock d_q_ch
C i l | |------ cSyncInt ddone
C i l | |------ cSyncBlock h_d_ch
C i l | |------ cSyncInt hddone
C i l | |------ cSyncInt hdone
C i l | |------ cSyncBlock q_h_ch
C i l | \------ cSyncInt qdone
B i l |------ Output output
C i l |------ cSyncByte data
C i l |------ cSyncInt header
C i l \------ cSyncByte pixel

B.6 GSM Vocoder

As an industrial-strength application, a GSM enhanced full rate speech encoder, also called
GSM vocoder, was modeled and successfully simulated with the SpecC system [GZG+99].

The GSM vocoder is used in wireless, digital telecommunication for highly efficient
speech compression. With the GSM encoder, speech data is sampled at a rate of 8 kHz and

6The hierarchy tree was created with the SIR tool set:sir tree -blt tb.sir
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packed into frames of 160 samples with 13 bit precision. Each frame is then encoded into
244 bits resulting in a compression rate greater than 8.

GSM vocoder Behaviors Lines of code
Coder 67 12382
Test bench 4 606
Total 71 12988

Table B.7: GSM vocoder example

As shown in Table B.7, the specification model of the vocoder consists of a total of 71
different behaviors, specified in about 13000 lines of SpecC source code.

The complex structural composition of the GSM vocoder is shown as a hierarchy tree7

as follows.

B i o Main
B i l |------ arg_handler_exec
B i o |------ coder_exec
B i o | |------ coder_12k2_exec
B i o | | |------ codebooks_exec
B i o | | | |------ adap_codebook_exec
B i l | | | | |------ convolve_exec
B i l | | | | |------ enc_lag6_exec
B i o | | | | |------
find_targetvec_exec
B i l | | | | | |------
CN_excitation_gain
B i l | | | | | |------ residu_1
B i l | | | | | |------ residu_2
B i l | | | | | |------ syn_filt_1
B i l | | | | | \------ syn_filt_2
B i l | | | | |------ g_pitch_exec
B i o | | | | |------ imp_resp_exec
B i l | | | | | |------ syn_filt_1
B i l | | | | | \------ syn_filt_2
B i c | | | | |------ par_weight_exec
B i l | | | | | |------ weight_1
B i l | | | | | \------ weight_2
B i l | | | | |------ pitch_fr6_exec
B i l | | | | |------ pred_lt_6_exec
B i l | | | | \------ q_gain_pitch_exec
B i o | | | |------ inno_codebook_exec
B i l | | | | |------ build_cn_code_exec

7The hierarchy tree was created with help of the SIR tool set:sir tree -bl testbench.sir
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B i o | | | | \------ codebook_exec
B i s | | | | |------ code_10i40
B i l | | | | | |------
build_code
B i l | | | | | |------
cor_h
B i l | | | | | |------
cor_h_x
B i l | | | | | |------
q_p
B i l | | | | | |------
search10i40
B i l | | | | | \------
set_sign
B i l | | | | |------ filter_c
B i l | | | | |------ filter_h
B i l | | | | |------ g_code
B i l | | | | |------ upd_res
B i l | | | | \------ upd_target
B i o | | | \------ update_exec
B i o | | | |------ ex_syn_upd_sh_exec
B i l | | | | |------
excitation_exec
B i l | | | | |------
syn_filt_exec
B i l | | | | \------
upd_mem_exec
B i l | | | \------ q_gain_code_exec
B i o | | |------ lp_analysis_exec
B i s | | | |------ find_1
B i l | | | | |------ autocorrelation
B i l | | | | |------ lag_windowing
B i l | | | | \------ levinson_durbin
B i s | | | |------ find_2
B i l | | | | |------ autocorrelation
B i l | | | | |------ lag_windowing
B i l | | | | \------ levinson_durbin
B i l | | | |------ int_lpc2_exec
B i l | | | |------ lsp_1
B i l | | | |------ lsp_2
B i l | | | |------ no_speech_upd_exec
B i f | | | |------ q_plsf_and_intlpc_exec
B i l | | | | |------ int_lpc_exec
B i l | | | | |------ q_plsf_5_exec
B i l | | | | \------ update_lsps_exec
B i f | | | \------ vad_lp_exec
B i l | | | |------ TX_dtx_exec
B i l | | | |------
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VAD_computation_exec
B i l | | | |------
nodtx_setflags_exec
B i l | | | \------ nop_exec
B i o | | |------ open_loop_exec
B i o | | | |------ ol_lag_estimate
B i l | | | | |------ minmax_1
B i l | | | | |------ minmax_2
B i l | | | | |------ periodicity_update
B i l | | | | |------ pitch_openloop_1
B i l | | | | \------ pitch_openloop_2
B i l | | | |------ residual
B i l | | | |------ syn_filter
B i l | | | |------ weight_ai_1
B i l | | | \------ weight_ai_2
B i l | | \------ shift_signals_exec
B i o | |------ post_process_exec
B i l | | |------ cn_encoder_exec
B i l | | |------ prm2bits_12k2_exec
B i l | | \------ sid_codeword_encoder_exec
B i o | \------ pre_process_exec
B i l | |------ encoder_homingframe_test_exec
B i l | |------ filter_and_scale_exec
B i l | \------ ser2par_exec
B i l |------ monitor_exec
B i l \------ stimulus_exec
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Appendix C

SpecC Internal Representation

The SpecC Internal Representation (SIR) is a file format and a data structure. The organi-
zation of the SIR data structure is described in the following sections.

For more detailed information, such as the contents of each particular SIR class, please
refer to [Döm99].

C.1 SIR graph

The internal representation of a SpecC design is a complex data structure, which can be
viewed as a graph. The nodes of the graph are represented by C++ class objects, whereas
the edges are represented by C++ pointers.

The nodes in the SIR graph are of different type. For example, a node representing a
behavior declaration is of typeSIR Behavior , whereas nodes representing statements
and expressions are of typeSIR Statement andSIR Expression , respectively. For
each type, a C++ class defines the data members and API methods available for the node.
These SIR class declarations are listed in detail in [D¨om99].

Furthermore, the nodes in any SIR graph can be classified into two groups, calledlevels.
The nodes at level 1 contain all basic data contained in a SIR file, whereas the level 2 nodes
represent a higher-level view of the SIR data. In other words, the SIR classes at level 1
contain all the information the SpecC language can express, whereas the level 2 classes offer
an additional, more abstract view of that information. For example, the behavioral hierarchy
in a SpecC program, which is not directly visible at level 1, is represented explicitly at
level 2 (by the classesSIR Behavior , SIR BhvrInst , etc.). Level 2 classes are built
automatically on top of the level 1 classes. As such, they rely on the data stored at level 1.

Figure C.1 lists the classes of SIR level 1, whereas the level 2 classes are listed in
Figure C.2.
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SIR_Design
SIR_FileList

SIR_Types

SIR_Symbols

SIR_Notes

SIR_FileInfo

SIR_Import

SIR_Type
SIR_TypePtrs

SIR_TypePtr

SIR_UserTypes

SIR_Symbol

SIR_Note
SIR_Constant

SIR_Initializer

SIR_Parameters

SIR_Symbols...

SIR_Labels

SIR_Statement
SIR_SymbolPtrs

SIR_Notes
...

SIR_Constant

SIR_Initializer
...

SIR_Parameter

...

SIR_Label
SIR_Notes

...

SIR_SymbolPtr

SIR_UserType
SIR_Members

SIR_Member
SIR_Symbols

...
SIR_Notes

...

SIR_Constant

SIR_Expression

SIR_Statement
...

SIR_Symbols
...

SIR_Statements
SIR_Statement

...
SIR_SymbolPtrs

...
SIR_Exceptions

SIR_Constraints

SIR_Exception

SIR_Transitions
SIR_Transition

SIR_Constraint

SIR_Expression
...

SIR_SymbolPtrs

SIR_Statement
...

...

SIR_Constant

SIR_Statement

SIR_PortMaps
SIR_PortMap

SIR_BitSlices
SIR_BitSlice

SIR_ImportList

SIR_Initials

...

SIR_Expressions
SIR_Expression

...
SIR_Expression

SIR_Constant

Figure C.1: Generic SIR design tree of level 1 classes



C.1. SIR GRAPH 181

SIR_Design
SIR_Behaviors

SIR_Behavior

SIR_ChnlInsts

SIR_BhvrInsts

SIR_ChnlInst

SIR_BhvrInst

SIR_Channels
SIR_Channel

SIR_PortVars

SIR_Ports

SIR_ImplIfs

SIR_Port

SIR_PortVar

SIR_ImplIf

...

...

SIR_Variables

SIR_Functions

SIR_ChnlInsts

SIR_BhvrInsts

SIR_ChnlInst

SIR_BhvrInst

SIR_PortVars

SIR_Ports

SIR_ImplIfs

SIR_Port

SIR_PortVar

SIR_ImplIf

...

...

SIR_Variables

SIR_Functions

...
SIR_Functions

SIR_Interfaces
SIR_Interface

SIR_Variables
SIR_Variable

SIR_Functions
SIR_Function

SIR_Arguments
SIR_Argument

SIR_ArgVars
SIR_ArgVar

...
SIR_Variables

SIR_Channel

Figure C.2: Generic SIR design tree of level 2 classes
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The edges in the SIR graph, representing relations among the nodes, can also be clas-
sified into two groups, which will be calledpointersand links. Although all edges are
implemented as standard C++ pointers, it is important to distinguish these two in the SIR
data structure.

A pointer represents a containment relation of two objects. For example, a compound
statement contains a list of statements. Therefore, there exists a pointer from the compound
statement object to the header of the statement list. There is a pointer from the header of
the list to the elements of the list as well.

A link represents a loose connection between two objects, which does not imply any
containment. For example, expressions and symbols have a link to a node representing
their type.

C.2 Design Trees

The classification of SIR nodes into two levels and the separation between pointers and
links allows to view the SpecC data structure as a generic tree. The SIR graph becomes a
tree, if the edges classified as links are ignored and only pointer edges are counted, building
the arcs between the nodes. Such a graph is called adesign tree.

Using the level classification for the nodes, the two generic SIR design trees are shown
in Figure C.1 (level 1) and Figure C.2 (level 2). The roots of both trees are represented by
an object of classSIR Design , which is the only class belonging to both levels.

For level 1, the root object contains a list of source files (SIR FileList ), a list of
imported binary files (SIR ImportList ), the global type table (SIR Types ), the global
symbol table (SIR Symbols ), and an optional list of global annotations (SIR Notes ).

For level 2, a design consists of a list of behaviors (SIR Behaviors ), a list of chan-
nels (SIR Channels ), a list of interfaces (SIR Interfaces ), a list of global variables
(SIR Variables ), and a list of global functions (SIR Functions ).

In both cases, the lists then can contain list elements, which again can contain objects,
and so on.

The design trees are used mainly for two purposes. First, whenever some sort of traver-
sal is performed over the SIR data structure, the traversal is done on the design trees. All
iterators provided by the classes operate on the design tree only. They follow all pointers,
but never follow a link. For example, when reading or writing a SIR file, it is the level 1
design tree1 that is traversed in depth-first-search (DFS) order. This ensures that each object
exists exactly once in the SIR file.

Second, many methods offered by the classes operate not only on the object itself, but
also on the subtree below. For example, allDelete() methods behave this way. When, for

1SIR files only contain data from level 1 classes. Since all level 2 classes can be constructed automatically
from the level 1 classes, there is no need to store them in a SIR file.
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example, a behavior is deleted, all its local variables and functions, including their contents,
are deleted as well. In particular, when the root node of a design is deleted, all the memory
occupied by the SIR data structure for this design is freed.

C.3 Base Classes

In order to keep the amount of source code for the SIR data structure implementation mini-
mal, base classes are used whenever the same functionality is provided by different standard
classes.

Almost all classes in the design trees are derived from the template classesSIR List
or SIR ListElem . SIR List represents a double-linked list containing objects of class
SIR ListElem .

For level 1, all classes are derived from classSIR Unit which provides basic services
for binary input and output. Furthermore, almost all level 1 classes are based on class
SIR Node, which allows to store source code location information, such as the file name
and the line number, with each object.

For level 2, almost all classes are derived from classSIR Definition which pro-
vides basic support for creation, deletion and renaming of objects. Furthermore, behaviors
and channels are based on classSIR Class . Finally, behavior and channel instances are
derived from classSIR Instance .

C.4 Error Handling

An important issue in program design is error handling. Errors during program execution
must be detected and handled in a well-defined way. It is not acceptable to ignore error
conditions, nor to simply abort the program when an error is detected.

This is true in particular for libraries that are to be linked with a larger program. Errors
occurring in any library function must be detected and reported to the main program, which
solely can decide whether to report the error to the user, and whether to handle and go on
with the error, or to abort the program execution. Also, it is important that, even in error
conditions, all data structures are being kept in a clean and well-defined state.

In general, error conditions can be classified into several categories. For example, there
arewarnings, recoverable errors, andfatal errors.

In terms of error handling, errors can be detected and handled locally in a program
module, can be reported to the caller, or can be taken care of globally. As an example for
the latter, an out-of-memory condition is best handled globally, so that standard program
modules can just assume to always have enough memory available.

In the SpecC Internal Representation, error handling is based on the conventions and
functions defined in the header fileGL Global.h . The SIR automatically takes care of
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out-of-memory conditions. Every allocation and deallocation of dynamic memory is han-
dled here. If no memory is available, the program is aborted with an error message, since
out-of-memory is a fatal error condition.

For recoverable errors, the SIR reserves a set of error codes which identify each
particular error. More specifically, the SIR uses the error codes in the range from
SIR ERRORBASEup to SIR ERRORBASE+ SIR ERRORRANGE. With this scheme,
each error condition in a SpecC program can be uniquely identified and handled in the right
way. As a special case, the no-error conditionNOERRORis defined as 0.

With the SIR, errors are reported in two different ways. First, a library function may
return an error code directly as its return value. In this case, the return value is either
NOERROR, or one error code from the set of numbers reserved for the SIR.

For library functions returning pointers, the second method is used. In case of an error,
the function returnsNULL, indicating an error condition. The actual error code can then be
obtained from the global variableSIR Error which is exported by the SIR.

In order for a main program to report errors to the user in a suitable manner, error codes
must be combined with a descriptive error message. In most cases, such a message can
only be generated by the library which detects the error condition. Because of this, the SIR
provides a functionSIR ErrorText which takes an error code as argument and returns
a character string describing the error.
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