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Abstract—The Grid of Processing Cells (GPC) has been
proposed as a scalable many-core architecture, modeled using
SystemC TLM-2.0 methodology. This work introduces a graph-
ical CAD software called Map Grid-based Layouts (MapGL) to
facilitate the design process of GPC-based applications, automat-
ically generate their SystemC models, and perform analyses on
memory usage and speed. Using MapGL, we map a GoogLeNet
Convolutional Neural Network (CNN) to a suitable GPC and
improve it with a new modular Memory Access Resources and
Interfaces (MARI) library for better communication between
processing cells and lower resource usage.

Index Terms—System modeling, SystemC-TLM2.0, CAD

I. INTRODUCTION

Over the last two decades, computer systems focus shifted
from raising the clock frequency toward increasing the number
of processors [1]. This trend led to higher design complexity
and shared memory contention caused by the “memory wall”
problem [2]. The growing complexity drives the need for mod-
eling systems at higher abstraction levels using SystemC to
evaluate and optimize them early in the design process. Here,
we introduce a graphical CAD tool called Map Grid-based
Layouts (MapGL) to facilitate the design of embedded many-
processor systems, automatically generate SystemC models,
and optimize resource usage and speed.
A. Grid of Processing Cells (GPC) Platform

Traditional single-, multi-, and many-core computer archi-
tectures suffer from the well-known memory bottleneck to
a single shared main memory which can delay many-core
processors for thousands of cycles due to bus contention
despite sophisticated multi-level cache hierarchies [3]. As an
alternative scalable computer organization, tiled network-on-
chip architectures have been proposed with separate local
memories, such as the Grid of Processing Cells (GPC) [4]
where processor-memory pairs are arranged on-chip in a two-
dimensional array with only local interconnect.

The checkerboard variant of a GPC is shown in Fig. 1.
Processor cores Cyx and local memories Myx are arranged
in an alternating pattern so that every processor can access
to its four neighboring memories. Instead of a shared bus,
the combination of a multiplex and de-multiplex interconnect
arbitrates the memory accesses in each cell. Specified as
a high-level model in SystemC TLM-2.0 with socket-based
interconnect, the checkerboard GPC can serve as a starting
point for design space exploration of scalable computing
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Fig. 1: Checkerboard Grid of Processing Cells (GPC) [4].

platforms without a shared memory bottleneck.
One of the main challenges for grid-based architectures is

programmability. Applications cannot be developed by tradi-
tional methods with the assumption of one shared memory.
Instead, software must be explicitly partitioned among the
cells. Instructions must be mapped to processing cores, and
data must be allocated in local memories. Manual partitioning
is possible, but tedious and error-prone.
B. Problem Definition

This work aims to achieve three goals:
1) Demonstrate the scalability and usability of GPC with two

applications of different size-complexity.
2) Improve the mapping process of GPC applications through

an interactive GUI.
3) Simplify performance evaluation and inter-cell communi-

cation of GPC-based models
II. RELATED WORK

A large body of research addresses the partition and map-
ping problem to many-core network-on-chip (NoC) platforms
[5], [6]. Yang et al. [5] proposed a multi-application mapping
method on the many-core NoC that finds a region on the NoC
for each application and then performs a task mapping that
maps all tasks of the application into each region. Murali et
al. [6] proposed a methodology to map different use-cases onto
the NoC architecture, satisfying the performance constraints of
each use-case. While these works focus on many-core archi-
tecture mapping, our work is a holistic application mapping
approach on the grid of processing cells.

Bruch et al. proposed a graphical user interface computer-
aided design (CAD) tool which allows the user to evaluate



the performance of NoCs systems using traffic generators in
SystemC simulations [7]. While the proposed BrownPepper
simulator [7] allows to design and profile RTL and transaction-
level models on a 2D-mesh SoC architecture, it does not allow
the user to interact, visualize and map an application.

Platform Architect is a commercial software from Synopsys
based on SystemC TLM that enables designers to analyze
SoC architectures using a graphical user interface [8]. Still,
designers are limited to existing features of the proprietary
environment, and creating compatible IP models is challeng-
ing. MapGL offers free and open-source solutions with more
fine-grained controllability over the entire design process and
customization for exploring grid-based architectures.

III. MAP GRID-BASED LAYOUTS: MAPGL

We present MapGL, an highly configurable CAD software
which lets the user design a custom GPC, automatically
generate the SystemC model, and analyze it. [9] The user
can focus on the application design without distraction due to
GPC and programming technicalities. A MapGL design model
is highly configurable and portable, saved as a single JSON
file. Currently, MapGL works only with the GPC but it can
easily support other grid-based many-processors architecture.
The cores consist of Modules, basic processing elements
running C++ code, which can be replaced with SystemC-based
processors or accelerators.

Fig. 2 shows the MapGL design flow from the application
mapping to the generation of the SystemC model, while Fig. 3
shows MapGL’s main window with a Canny Edge Detector
[10] example opened.

A. Application Mapping

On the main window, MapGL shows the user-configurable
GPC structure in the Memories View, where the red squares
represent the cores, and the blue ones the memories. An
alternative Channels View can be selected, allowing the user to
focus on cores communication. Inside the MapGL editor, every
design is defined using Modules and Channels. A module
describes the behavior of a core using C/C++ code, while
a channel allows two or more cores to communicate. The
application modules are listed hierarchically on the left side of
the window and can be mapped interactively by drag-and-drop
to the cores. External I/O interfaces of the GPC are displayed
for configuration on the edges of the GPC grid in the channel
view. All components and the GPC itself are configured using
adjustable parameters on the right side of the window.

B. SystemC TLM-2.0 Project Generator

Once the application mapping has been completed, MapGL
validates the platform and automatically generates the Sys-
temC code for the designed GPC application. Users can
configure the specific simulation environment for software
dependencies via a preferences dialog. The structure of the
generated SystemC project is shown at the bottom of Fig. 2.
An initial testbench and a Makefile are also generated to
compile and run the simulation immediately.

Fig. 2: MapGL design flow and generated files structure.

(a) Memories View

(b) Channels View

Fig. 3: MapGL mapping of a Canny application.



C. Example of a Canny Edge Detector on a 4-by-2 GPC grid

As an example of MapGL usage, we map a Canny Edge
Detector [10] application to a 4-by-2 Checkerboard GPC, as
shown in Fig. 3. Listing 1 shows an extract of the canny
modules package where its modules (e.g. blur_x) are de-
scribed in terms of parameters (e.g. rows) and parameters’
attributes (e.g. val). Each module’s actual behavior must be
defined in a C++ function template as shown in Listing 2 for
the blur_x. The references to the FIFO out and FIFO in
interfaces (Sec. IV) are required to communicate with the
surrounding cores using the pop() and push() methods.

1 {
2 "dependencies" : {
3 "SystemC" : {
4 "inc_dirs" : ["./inc", "../../3rdparty/mari/inc"],
5 "lib_files" : [
6 ["./lib", ["libcanny.a"]],
7 ["../../3rdparty/mari/lib", ["libmari.a"]]
8 ],
9 "modules_dec" : ["canny.hpp"]

10 }
11 },
12 "modules" : {
13 "blur_x" : {
14 "size" : { "val" : 384112, "readonly" : true },
15 "in_image" : { "val" : null, "type" : "str" },
16 "in_kernel" : { "val" : null, "type" : "str" },
17 "out_tempim" : { "val" : null, "type" : "str" },
18 "rows" : { "val" : 240, "template" : true },
19 "cols" : { "val" : 320, "template" : true }
20 },
21 ...
22 }
23 }

Listing 1: Extract of the Canny modules package (JSON).

1 template<int rows, int cols>
2 void blur_x(FIFO_out& in_image, FIFO_out& in_kernel,

FIFO_in& out_tempim) {
3 KERNEL kernel;
4 IMAGE<cols*rows> image;
5 FIMAGE<cols*rows> tempim;
6 // getting inputs
7 in_kernel.pop(&kernel, sizeof(KERNEL));
8 in_image.pop(&image, sizeof(IMAGE<cols*rows>));
9 // algorithm execution

10 ...
11 // generating output
12 out_tempim.push(&tempim, sizeof(FIMAGE<cols*rows>));
13 }

Listing 2: Extract of the blur x module implementation.
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Fig. 4: Example of MARI channels between three cores.

FLAGS ID START TIME STAMP END TIME STAMP DATA LEN

1 Byte 3 Bytes 6 Bytes 6 Bytes 4 Bytes

W/R
PUSH/

POP
ACT INIT

01234567

CH_ID MEM_Y MEM_X

4-09-523-10

14 Bit 5 Bit5 Bit

Fig. 5: mari.log memory access encoding.

IV. MARI: MEMORY ACCESS RESOURCES AND
INTERFACES LIBRARY

The GPC structure forces each core to communicate by
reading and writing data into shared memories. However, a
standard communication protocol makes data exchange and
memory contention manageable. Our MARI library simplifies
interactions and optimizes memory usage by providing a set of
software-based FIFO channels that the user can use to transfer
data directly between cores.

A. Interfaces
The library is divided into Memory Interfaces and Channel

Interfaces. The memory interface connects a core to one mem-
ory through TLM-2.0 sockets and provides basic read()
and write() methods to access the memory array. The
channel interface represents a second layer of abstraction, e.g.
a FIFO interface,1 which provide interface-specific methods,
like push() and pop(), to the connected memory. The
MARI library distinguishes between input (FIFO_in) and
output interfaces (FIFO_out). Fig. 4 shows a simple example
of three cores and a shared memory.

A FIFO interface manages its data queue as a ring buffer
using two memory-stored counters for sent (S) and received
(R) bytes. MARI automatically handles the needed inter-core
synchronization through interrupts when the queue is empty
and full (blocking communication).

B. Logging for Profiling
During a simulation, MARI can generate a record of all

the memory accesses and store it in a file called mari.log,
which can be used to analyze the traffic and profile the
platform. The log file is encoded in binary format to reduce
its size, as shown in Fig. 5. Each entry logs the operation
performed, the channel and memories used, and the simulation
time it started and ended.

V. MAPGL PROFILING

Assisted by MARI, MapGL allows designers to analyze
the memory usage and timing of the application. Memories
usage analysis is static, whereas timing analysis is dynamic
and requires running a simulation.

A. Memories Usage Analysis
Memory usage is analyzed for each GPC cell based on

the space required by the core program and communication
channels.The analysis results are available as a numeric report
and also graphically as a heat map of the grid cells, as shown
in Sec. VI.

1Other data structures, e.g. STACK, can be added in the future.



Fig. 6: Core different delays contributions.

B. Timing Analysis
Before simulating to estimate the application’s performance,

the user can configure memory read and write delays, inter-
connect propagation delays, and cores computation delays. By
exploiting MARI profiling capabilities (mari.log), MapGL
tracks the timing of the application in detail during a sim-
ulation and generates a report about the application speed.
For each core, the report distinguishes between five delay
contributions:
• The latency is the interval from the start of the simulation

to the first pop operation.
• The execution delay is the span between the first pop and

the last push.
• The idle delay represents the sum of all the moments in

which the core’s channels wait to push or pop data.
• The channels delay is the sum of the intervals in which the

core’s channels read or write data to the memories.
• The real execution delay represents the actual computation

delay of the core, and it is equivalent to the execution delay
without idle and channels delay.
Fig. 6 shows how the five delay contributions interchange.

The analysis results are also available as a heat map of the
grid cells, as shown in Sec. VI.

VI. EXPERIMENTS AND RESULTS

This section will analyze the design process and the ex-
perimental results of three SystemC TLM-2.0 models of the
GoogLeNet CNN mapped and profiled using MapGL.The
first model, called preliminary, represents the first attempt to
map the application. The other two models use an improved
mapping; one tends to increase the application’s speed, called
high-speed, and the other optimizes the memory usage, called
low-memory.
A. Case study: GoogLeNet CNN

The GoogLeNet is a state-of-the-art CNN for image classi-
fication, winner of the ImageNet Large-Scale Visual Recogni-
tion Challenge (ILSVRC) 2014 with only 6.67% top-5 error
[12]. The network comprises 22 layers when counting only
layers with parameters or 142 if not. Fig. 7 shows the entire
structure of the GoogLeNet CNN. A SystemC model of the
GoogLeNet CNN that uses the Caffe model [13], and OpenCV
[14] has been designed [15], [16]. This work will use that
model as a reference for the new ones mapped on the GPC
architecture.

For the GoogLeNet timing, we analyze the computational
complexity of layers in terms of the number of multiplications

(Nmul) and the number of additions (Nadd). The size of the
input volume to each layer is Wi × Hi × Ci where Wi, Hi

and Ci represent the width, height, and a number of channels,
respectively. The most computationally expensive layer in
GoogLeNet, the convolution layer, has the following hyper-
parameters: K number of filters, kernel size of F , stride S, and
padding P . The total number of weights in a convolution layer
is F ·F ·Ci·K, and the total number of biases is K. To compute
all output elements for all K filters, total number of required
multiplications is Nmul ≈ Wi·Hi·Ci·F 2·K

S2 and total number
of additions is Nadd ≈ Wi·Hi·Ci·F 2·K

S2 . The computational
complexity of other constituent layers of GoogLeNet, such
as pooling, rectifier, etc., is analyzed similarly in terms of the
total number of multiplications and additions [15].

Given a 32-bit single-precision floating-point multiply-
accumulate (FP32-MAC) unit available, we assume the total
computational latency of a layer to be the product of the num-
ber of MAC operations and the inverse of the peak floating-
point operations per second (FLOPS): NMAC · s

flop . The peak
FLOPS value is the maximum number of single-precision
floating-point MAC operations each core can perform per
second. Hence, computational latency in time units can be
evaluated by knowing the core maximum number of FLOPS.

B. GoogLeNet CNN on GPC
The mapping strategy was to exploit the scalability of the

GPC architecture by manually assigning one CNN layer per
core using as few additional cores as possible. As shown in
Fig. 7, the CNN structure can be divided into three parts:
the initial nine layers connected in series, the nine inception
blocks, and the final four layers in a row. Since most of the
network consists of repeating inception blocks, focusing on
finding a good mapping for it simplified the overall design
problem. Fig. 7 shows how each inception block’s first and
last layer connects four parallel paths: one formed by two
layers, one by three layers, and two by four layers. Positioning
the last layer next to the first layer of the following inception
block avoided the use of additional cores in between inception
blocks and increased its modularity.

The inception block mapping of the preliminary model,
shown in Fig. 8 (a), does not uses any channel abstraction
layer, causing each memory to contain only one channel.
Additional Fork and Merge modules were added to serialize
and deserialize data in case of multiple initiators or targets,
increasing the number of required cores up to 20. The im-
proved mapping, shown in Fig. 8 (b), uses the MARI library
to create in the same memory parallel channels of different
sizes, which brings back the number of cores to 15.

Fig. 9 shows the two MapGL mappings for preliminary
model and the improved model. The first layers of CNN are
shown in yellow, the last ones are in green, and the inception
blocks are in red. Four external memories are placed in the
north, east, west, and south of the model (not shown in the
figure). The north external memory stores the input images,
two memories on the sides shorten the path between cores,
and the south memory stores the output data.



Fig. 7: GoogLeNet CNN structure, redrawn from [11].
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Fig. 8: GoogLeNet CNN on GPC inception block design.

The preliminary mapping uses a 15× 13 grid for a total of
195 available cores and 26 unused. Meanwhile, the improved
mapping uses a 15×10 grid with 150 available cores and only
one unused. Overall, the improved mapping has 7 cores more
than the theoretical 142.

For the preliminary model and improved high-speed model,
the size of each FIFO is equal to the size of the payload (if
lower than the GPC max memory size) so that the push or pop
takes just one or few iterations, reducing the number of stalls.
For the improved low-memory model, each FIFO is reduced
to an arbitrarily small value of 64 bytes.

For MapGL timing analysis, we rely on the memory read
and write delays in [17]. The off-chip memories are assumed
to be DRAMs, and the on-chip memories SRAMs. The propa-
gation delay of the multiplexer is arbitrarily chosen to be one-
tenth of the on-chip memory read delay, as shown in Tab. I.
The Ara vector processor [18] was used as reference for its
16.9 DP-GFLOPS needed to evaluate the computational delay
in time units of each core starting from the complexity (Sec. V)
as Nadd + Nmul

16.9 GFLOPS (e.g. first convolution delay ≈ 14ms).
C. Comparison

The memory usage heat maps of the preliminary, improved
high-speed, and improved low-memory models are shown in
Fig. 10, while the heat maps for execution, communication,
and idle delays are shown in Fig. 11, Fig. 12, and Fig. 13.

Looking at Fig. 10, it is clear that the first layers of the
GoogLeNet CNN require more memory to store the first

Delay Type Delay [ns]
Off-chip memory read (DRAM) 50
Off-chip memory write (DRAM) 50
On-chip memory read (SRAM) 2.5
On-chip memory write (SRAM) 2.5

Multiplexer propagation 0.25

TABLE I: Timing analysis communication delays.

transformations of the input image. However, the smaller
FIFOs used in the improved low-memory model make the
memory usage more uniform.

There is a correlation between the memory usage in Fig. 10
and the communication delays in Fig. 12 even if the heatmaps’
normalization makes this result less evident. Specifically, in-
creasing the size of the FIFOs reduces the channel’s delay
because it decreases the number of accesses to the shared
memory required to read the entire data.

Tab. II shows the simulation results of the three models.
The improved mapping reduces by almost one-fourth the grid
size compared to the preliminary. This result caused the two
following models to become faster and require fewer memo-
ries. Overall, the high-speed model performs better than the
preliminary model, while the low-memory model represents a
valuable alternative to reduce memory consumption.

D. Throughput
The application’s throughput was evaluated after feeding

500 images to the three models. The resulting throughput
in each case was around 23 fps. As shown in Fig. 12, the
communication delays of the first layers are much higher
than the rest of the structure, which leads to a bottleneck
that reduces drastically the throughput of the application.
One possible solution could be partitioning these layers into
multiple cores to perform the operations in parallel, reducing
the overall execution delay. A clever design with fine-grain
pipelining could increase the calculated throughput.

VII. CONCLUSION

This paper presented the MapGL editor to map and eval-
uate the performances of three GPC-based GoogLeNet CNN
models, exploiting the grid scalability of the GPC architecture
up to 195 cores. All the models were interactively mapped,
automatically generated in SystemC, and profiled using the
MapGL built-in analysis tools. The MARI library reduced
the grid size by one-fourth and improved the timing analysis
accuracy, making hidden bottlenecks easier to identify. The
results showed the superiority of the high-speed model over
the preliminary model, indicating the low-memory model as a



Grid size Channels memory usage [kB] Total memory usage [MB] Channels delay [ms] Total delay [ms]
preliminary 15× 13 57948 192 92 213
high-speed 15× 10 52153 175 82 201

low-memory 15× 10 13 123 100 217

TABLE II: Summary of the results of the three models.

conv1/7x7_s
2

inception_3a
/pool

inception_3a
/pool_proj

inception_3a
/

relu_pool_pr
oj

inception_3b
/pool

inception_3b
/pool_proj

inception_3b
/

relu_pool_pr
oj

inception_4a
/pool

inception_4a
/pool_proj

inception_4a
/

relu_pool_pr
oj

conv1/
relu_7x7

pool2/3x3_s2

inception_3a
/

relu_5x5_red
uce

inception_3a
/output

forw1to4

inception_3b
/

relu_5x5_red
uce

inception_3b
/output

pool3/3x3_s2

inception_4a
/

relu_5x5_red
uce

inception_4a
/output

pool1/3x3_s2 conv2/norm2
inception_3a
/5x5_reduce

inception_3a
/5x5

inception_3a
/relu_5x5

inception_3b
/5x5_reduce

inception_3b
/5x5

inception_3b
/relu_5x5

inception_4a
/5x5_reduce

inception_4a
/5x5

inception_4a
/relu_5x5

conv2/
relu_3x3

fork2
inception_3a

/1x1
inception_3a

/relu_1x1
merge2 fork2

inception_3b
/1x1

inception_3b
/relu_1x1

merge2 fork2
inception_4a

/1x1
inception_4a

/relu_1x1
merge2

pool1/norm1
inception_3a
/3x3_reduce

inception_3a
/

relu_3x3_red
uce

inception_3a
/3x3

inception_3a
/relu_3x3

inception_3b
/3x3_reduce

inception_3b
/

relu_3x3_red
uce

inception_3b
/3x3

inception_3b
/relu_3x3

inception_4a
/3x3_reduce

inception_4a
/

relu_3x3_red
uce

inception_4a
/3x3

inception_4a
/relu_3x3

conv2/3x3
inception_4d

/relu_3x3
inception_4d

/3x3

inception_4d
/

relu_3x3_red
uce

inception_4d
/3x3_reduce

inception_4c
/relu_3x3

inception_4c
/3x3

inception_4c
/

relu_3x3_red
uce

inception_4c
/3x3_reduce

inception_4b
/relu_3x3

inception_4b
/3x3

inception_4b
/

relu_3x3_red
uce

inception_4b
/3x3_reduce

conv2/3x3_re
duce

merge2
inception_4d

/relu_1x1
inception_4d

/1x1
fork2 merge2

inception_4c
/relu_1x1

inception_4c
/1x1

fork2 merge2
inception_4b

/relu_1x1
inception_4b

/1x1
fork2

conv2/
relu_3x3_red

uce

inception_4d
/relu_5x5

inception_4d
/5x5

inception_4d
/5x5_reduce

inception_4c
/relu_5x5

inception_4c
/5x5

inception_4c
/5x5_reduce

inception_4b
/relu_5x5

inception_4b
/5x5

inception_4b
/5x5_reduce

forw1

forw1
inception_4d

/output

inception_4d
/

relu_5x5_red
uce

forw1to4
inception_4c

/output

inception_4c
/

relu_5x5_red
uce

forw1to4
inception_4b

/output

inception_4b
/

relu_5x5_red
uce

forw1to4

inception_4d
/

relu_pool_pr
oj

inception_4d
/pool_proj

inception_4d
/pool

inception_4c
/

relu_pool_pr
oj

inception_4c
/pool_proj

inception_4c
/pool

inception_4b
/

relu_pool_pr
oj

inception_4b
/pool_proj

inception_4b
/pool

inception_4e
/pool

inception_4e
/pool_proj

inception_4e
/

relu_pool_pr
oj

inception_5a
/pool

inception_5a
/pool_proj

inception_5a
/

relu_pool_pr
oj

inception_5b
/pool

inception_5b
/pool_proj

inception_5b
/

relu_pool_pr
oj

pool5/7x7_s1

forw1to4

inception_4e
/

relu_5x5_red
uce

inception_4e
/output

pool4/3x3_s2

inception_5a
/

relu_5x5_red
uce

inception_5a
/output

forw1to4

inception_5b
/

relu_5x5_red
uce

inception_5b
/output

pool5/
drop_7x7_s1

forw1
inception_4e
/5x5_reduce

inception_4e
/5x5

inception_4e
/relu_5x5

inception_5a
/5x5_reduce

inception_5a
/5x5

inception_5a
/relu_5x5

inception_5b
/5x5_reduce

inception_5b
/5x5

inception_5b
/relu_5x5

loss3/
classi�er

fork2
inception_4e

/1x1
inception_4e

/relu_1x1
merge2 fork2

inception_5a
/1x1

inception_5a
/relu_1x1

merge2 fork2
inception_5b

/1x1
inception_5b

/relu_1x1
merge2

inception_4e
/3x3_reduce

inception_4e
/

relu_3x3_red
uce

inception_4e
/3x3

inception_4e
/relu_3x3

inception_5a
/3x3_reduce

inception_5a
/

relu_3x3_red
uce

inception_5a
/3x3

inception_5a
/relu_3x3

inception_5b
/3x3_reduce

inception_5b
/

relu_3x3_red
uce

inception_5b
/3x3

inception_5b
/relu_3x3

prob

Inception BlockFirst Serial Layers Last Serial Layers

(a) Preliminary mapping

conv1/7x7_s
2

inception_3a
/5x5_reduce

inception_3a
/5x5

inception_3a
/relu_5x5

inception_3b
/5x5_reduce

inception_3b
/5x5

inception_3b
/relu_5x5

inception_4a
/5x5_reduce

inception_4a
/5x5

inception_4a
/relu_5x5

conv1/
relu_7x7

inception_3a
/

relu_5x5_red
uce

inception_3a
/relu_1x1

inception_3a
/output

inception_3b
/

relu_5x5_red
uce

inception_3b
/relu_1x1

inception_3b
/output

inception_4a
/

relu_5x5_red
uce

inception_4a
/relu_1x1

inception_4a
/output

pool1/3x3_s2 pool2/3x3_s2
inception_3a
/1x1

inception_3a
/

relu_pool_pr
oj

forw1to4
inception_3b
/1x1

inception_3b
/

relu_pool_pr
oj

pool3/3x3_s2
inception_4a
/1x1

inception_4a
/

relu_pool_pr
oj

conv2/norm2
inception_3a
/pool

inception_3a
/pool_proj

inception_3a
/relu_3x3

inception_3b
/pool

inception_3b
/pool_proj

inception_3b
/relu_3x3

inception_4a
/pool

inception_4a
/pool_proj

inception_4a
/relu_3x3

pool1/norm1
inception_3a
/3x3_reduce

inception_3a
/

relu_3x3_red
uce

inception_3a
/3x3

inception_3b
/3x3_reduce

inception_3b
/

relu_3x3_red
uce

inception_3b
/3x3

inception_4a
/3x3_reduce

inception_4a
/

relu_3x3_red
uce

inception_4a
/3x3

conv2/
relu_3x3

inception_4d
/3x3

inception_4d
/

relu_3x3_red
uce

inception_4d
/3x3_reduce

inception_4c
/3x3

inception_4c
/

relu_3x3_red
uce

inception_4c
/3x3_reduce

inception_4b
/3x3

inception_4b
/

relu_3x3_red
uce

inception_4b
/3x3_reduce

conv2/3x3_re
duce

inception_4d
/relu_3x3

inception_4d
/pool_proj

inception_4d
/pool

inception_4c
/relu_3x3

inception_4c
/pool_proj

inception_4c
/pool

inception_4b
/relu_3x3

inception_4b
/pool_proj

inception_4b
/pool

conv2/3x3

inception_4d
/

relu_pool_pr
oj

inception_4d
/1x1

forw1to4

inception_4c
/

relu_pool_pr
oj

inception_4c
/1x1

forw1to4

inception_4b
/

relu_pool_pr
oj

inception_4b
/1x1

forw1to4

forw2
inception_4d
/output

inception_4d
/relu_1x1

inception_4d
/

relu_5x5_red
uce

inception_4c
/output

inception_4c
/relu_1x1

inception_4c
/

relu_5x5_red
uce

inception_4b
/output

inception_4b
/relu_1x1

inception_4b
/

relu_5x5_red
uce

conv2/
relu_3x3_red

uce

inception_4d
/relu_5x5

inception_4d
/5x5

inception_4d
/5x5_reduce

inception_4c
/relu_5x5

inception_4c
/5x5

inception_4c
/5x5_reduce

inception_4b
/relu_5x5

inception_4b
/5x5

inception_4b
/5x5_reduce

inception_4e
/5x5_reduce

inception_4e
/5x5

inception_4e
/relu_5x5

inception_5a
/5x5_reduce

inception_5a
/5x5

inception_5a
/relu_5x5

inception_5b
/5x5_reduce

inception_5b
/5x5

inception_5b
/relu_5x5

pool5/7x7_s1

inception_4e
/

relu_5x5_red
uce

inception_4e
/relu_1x1

inception_4e
/output

inception_5a
/

relu_5x5_red
uce

inception_5a
/relu_1x1

inception_5a
/output

inception_5b
/

relu_5x5_red
uce

inception_5b
/relu_1x1

inception_5b
/output

pool5/
drop_7x7_s1

forw1to4
inception_4e
/1x1

inception_4e
/

relu_pool_pr
oj

pool4/3x3_s2
inception_5a
/1x1

inception_5a
/

relu_pool_pr
oj

forw1to4
inception_5b
/1x1

inception_5b
/

relu_pool_pr
oj

loss3/
classifier

inception_4e
/pool

inception_4e
/pool_proj

inception_4e
/relu_3x3

inception_5a
/pool

inception_5a
/pool_proj

inception_5a
/relu_3x3

inception_5b
/pool

inception_5b
/pool_proj

inception_5b
/relu_3x3

inception_4e
/3x3_reduce

inception_4e
/

relu_3x3_red
uce

inception_4e
/3x3

inception_5a
/3x3_reduce

inception_5a
/

relu_3x3_red
uce

inception_5a
/3x3

inception_5b
/3x3_reduce

inception_5b
/

relu_3x3_red
uce

inception_5b
/3x3

prob

Inception BlockFirst Serial Layers Last Serial Layers

(b) Improved mapping

Fig. 9: GoogLeNet CNN on GPC structure.

(a) Preliminary (b) High-speed (c) Low-memory

Fig. 10: Memories usage analysis heat maps.

(a) Preliminary (b) High-speed (c) Low-memory

Fig. 11: Timing analysis heat maps, execution delays.

valuable trade-off to reduce memory usage.
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