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Abstract—The SystemC library is widely used to model and simulate system-level designs at an early stage for 
functional and performance analysis. Simics® is a tool for development and simulation of virtual platforms and is used 
to enable software development to be done earlier in the product development process. With the introduction of the 
Simics SystemC Library in Simics 5, it supports IP block, device and subsystem models developed in SystemC. In this 
paper, we demonstrate the integration of a novel engine for parallel SystemC simulation, called RISC (Recoding 
Infrastructure for SystemC), into Simics. We show promising experimental results using RISC, with speedups up to 
212x. 
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I.  INTRODUCTION 

The Wind River Simics® virtual platform framework [1] is used to develop full system simulators for the early 
development and test of software as a primary use-case. It is applied to a variety of virtual platform tasks such as 
pre-silicon software development, hardware validation and BIOS regression testing. Simics supports system models 
written in C, C++, Python, DML, and SystemC, and allows users to instantiate multiple sub-system models written 
in different languages into a single simulation. In this paper we focus on SystemC [2] models in Simics and 
introduce a new way to enable parallel execution of SystemC threads in Simics simulations. 

 Simics features the Simics SystemC Library [3], which enables users to co-simulate SystemC models inside 
Simics. The Simics SystemC Library not only handles the scheduling and synchronization of SystemC models with 
other Simics devices in a Simics co-simulation, but also provides users the software facilities to enable 
communication between SystemC models and Simics devices. 

A. SystemC Multithreading 

SystemC threads in Simics are managed by a standard SystemC kernel. One of the constraints of standard 
SystemC thread scheduling is that there can only be one thread active at a time [13], and thus potential parallelism 
within the model cannot be exploited during simulation. For speedup, standard SystemC offers temporal decoupling 
[4], which allows the developer to define a time interval in which synchronization points are postponed. The intent 
of temporal decoupling is to decrease the amount of context switching between threads for increased speedup. 
However, the gained speedup comes at the cost of potential simulation inaccuracy. 

B. Automatic Out-of-Order Parallel SystemC Multithreading 

With the proliferation of multicore hosts, enabling parallel multithreading is an attractive way to reduce 
simulation time. We introduce the Recoding Infrastructure for SystemC (RISC) [5] as an advanced technology to 
automatically exploit parallelism at the SystemC thread level. RISC has been developed as a research project at the 
University of California, Irvine, sponsored by Intel [6]. We describe its integration into Simics simulations without 
any manual manipulation of the source code or loss of simulation accuracy. RISC features both a dedicated 
SystemC compiler that uses static analysis to identify potential data conflicts between SystemC threads and an out-
of-order parallel simulator that uses the data conflict analysis to make quick scheduling decisions for parallel 
multithreading. In many cases RISC has been successful and has achieved up to 212x speedup [7]. 
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Figure 1 shows the difference in simulation speeds between standard SystemC and RISC on a “best case” for 
purposes of illustration. Threads th1, th2, th3, and th4 are independent of one another, and thus can safely run 
simultaneously. However, a SystemC simulation managed by standard SystemC kernel only has one thread active 
at a time, and thus those threads are not run in parallel. On the contrary RISC’s conflict analysis can determine that 
threads th1, th2, th3, and th4 are independent, and runs those threads in parallel. As a result, RISC simulation is 
much faster than the standard SystemC approach. Furthermore, RISC preserves the standard SystemC semantics to 
the maximum extent and runs simulations without loss of accuracy [8].  

The non-determinism inherent in the standard SystemC simulator is also present in RISC, but it is important to 
note that the RISC scheduler does not introduce any additional non-determinism due to multi-threading. Hence the 
impact on Simics simulation (which is highly deterministic) is the same as with the integration of any regular 
SystemC models. 

 

Figure 1: Juxtaposition between standard SystemC and RISC thread activity over time. 

 This paper discusses the integration of RISC into Simics and shows two successful example Simics simulations 
using RISC for scheduling SystemC threads. 

C. Related Work 

Other attempts to parallelize SystemC simulations have been conducted. [9] proposes a method for manual 
translation of the sequential model into a parallel model. However, this technique requires the user to understand 
and avoid conflicting variable accesses between threads. [10] and [11] offer tool flows for parallel simulation of 
only RTL SystemC models. In contrast, the RISC solution is not restricted to RTL models. 

II. RECODING INFRASTRUCTURE FOR SYSTEMC 

RISC automatically parallelizes a SystemC model via static conflict analysis at compile time. In this section, 
we first introduce the approach of how RISC enables multi-core exploitation and then discuss RISC integration 
into Simics. 

A. RISC technique for parallel SystemC simulation 

The RISC flow for compilation of a SystemC model is shown in Figure 2. Once the source code for an input 
model has been identified, RISC’s first step in compilation of the model is to use the ROSE compiler [12] to build 
an Abstract Syntax Tree (AST). By leveraging the ROSE compiler, RISC has the support to generate the AST, 
analyze the AST, and transform the input SystemC model into an out-of-order parallel SystemC model. The AST 
is analyzed to generate an internal representation of the input model. The internal representation recognizes 
SystemC primitives such as port connectivity and module hierarchy. RISC then analyzes the internal representation 
of the model to build a segment graph data structure [13].  The segment graph data structure is used to determine 
the potential conflicts between the simulation threads and then the source code is transformed into a safe out-of-
order parallel SystemC model. The instrumented code is finally compiled and linked to the RISC simulation library 
for out-of-order parallel simulation. 
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Figure 2: RISC Compiler and Simulator Flow [14] 

Segment Graphs (SG) are directed graphs that represent the possible flow of execution of SystemC threads. A 
node in a segment graph represents a segment of execution in a SystemC thread. Each wait statement in the 

SystemC code indicates the beginning of a segment in the segment graph. For instance, see Figure 3, which 
exemplifies a piece of SystemC code and its corresponding segment graph. Conditional statements in the code 
indicate branches and every possible sequence of wait statements in a thread is included in the segment graph. 

This is exemplified in Figure 3 as after the first wait statement, the graph has two pathways with one pathway 

having an extra wait statement. 

 

Figure 3: Example SystemC Code and corresponding Segment Graph [13] 

Each of the segment’s memory accesses are analyzed to determine if segments are potentially in conflict with 
one another. RISC assigns a segment ID for each segment and then determines possible conflicts. The conflict 
information is stored as a table that is passed to the simulator and the simulator then uses the table to determine if 
code segments are in conflict with one another so that it can make fast scheduling decisions during simulation. For 
instance consider the segment graph and its corresponding conflict table drawn in Figure 4. Segment 2 contains 
two reads to variables a and b, one write to variable x, and one read/write to variable z. Segment 3 has two reads to 
variables a and b and two writes to variable x and y. Since Segment 2 and Segment 3 write to the same variable x, 
RISC determines that these two segments are in conflict with one another. The table in Figure 4 indicates the 
conflicts between segments by the red color. The green entries in the table indicate that those segments are never 
in conflict with one another and thus can be executed simultaneously. 

Figure 4: Segment Graph Based Conflict Analysis [8] 

RISC automatically parallelizes the execution of SystemC threads for simulation speedup. However, some 
SystemC models contain more exploitable parallelism than others. For instance, SystemC models that contain 
threads that frequently wake up and go to sleep may be parallelizable, but the time reduction in the simulation from 
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parallelism may be limited by large context switching overhead. Models that benefit greatly from thread-level 
parallelism contain many threads with significant computational load and minimal dependency on one another. 
Currently, the RISC approach is best fit for high abstraction level modeling such as transaction-level modeling 
(TLM). Modeling at lower levels of abstraction such as register-transfer level (RTL) modeling remain to be 
investigated. A list of SystemC constructs that are currently supported by RISC can be found in [14]. 

RISC enables users to reduce simulation time through the use of parallel multithreaded algorithms. A user who 
has deep understanding of the functional algorithms used in a model may redesign the model to leverage parallel 
multithreading. Furthermore, more fine grained parallelism may be exploited through utilizing data level 
parallelism constructs. Specifically, vectorization involves multiple hardware units executing the same operation 
simultaneously on different data.  Users may insert #pragma simd into sections of the source code that can 

safely utilize the vectorization optimization. Through leveraging both thread and data level parallelism RISC has 
been able to achieve 212x speedup [7]. 

B. RISC Integration into Simics 

The Simics SystemC Library handles all SystemC aspects in a Simics simulation. When a Simics user desires 
to integrate a plain SystemC model into a Simics simulation, the user must first create an Adapter class that is 

used as a wrapper for the SystemC model. The adapter class simply instantiates the SystemC model into the Simics 
simulation and sets up the facilities for communication between Simics devices and the SystemC model.  

Each SystemC device in a Simics simulation is linked to its own SystemC kernel. In a Simics simulation with 
an instantiated SystemC device, Simics will periodically interface with the Simics SystemC Library to synchronize 
the SystemC model’s simulation time with the global simulation time maintained by Simics. The Simics SystemC 
Library makes calls to the SystemC kernel to run the local SystemC simulations of each SystemC device.  

Typically, a standard sequential SystemC kernel is linked to a SystemC device. However, we aim to link the 
RISC kernel in order to enable out-of-order parallel SystemC thread scheduling. Simics provides compilation 
scripts for SystemC devices that contain configurable flags so that a model developer can simply set a compilation 
flag in order to link the RISC kernel instead of a standard SystemC kernel. Figure 5 exemplifies the switch between 
the standard SystemC kernel (blue) and the RISC kernel (red). The Simics SystemC Library calls sc_start, 

which then schedules threads in the SystemC kernel. In order to enable out-of-order parallel SystemC thread 
scheduling, the user simply links the RISC kernel with the devices such that the Simics SystemC Library will 
interface with the RISC kernel instead of the standard SystemC kernel. 

 

Figure 5: Two different Simics simulations of the same model with the left-side using a standard SystemC 
kernel and the right-side featuring RISC kernel for out-of-order parallel multithreading of SystemC threads 

Gaskets are media that use SystemC TLM-2.0 for communication between the SystemC model and other Simics 
devices. The RISC research team is currently developing the facilities to support TLM-2.0 constructs in SystemC 
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models. The team has had success in this endeavor and official support for TLM-2.0 in RISC is planned to be 
established by the end of 2019.  

Nevertheless, RISC integration into Simics is possible because of extensible and flexible nature of gaskets. 
Users of Simics can instantiate gaskets using SystemC TLM-2.0 constructs defined in the Simics SystemC Library. 
However, in the interest of avoiding TLM-2.0, we’ve implemented a few custom gaskets that do not contain TLM-
2.0 constructs. To implement these special non-TLM-2.0 gaskets, we took the implementation of a gasket in the 
Simics SystemC Library as a starting point and replaced the TLM-2.0 sockets with traditional ports and channels. 
Because we have not modified the actual functionality of the gasket, the simulation of a model that uses the special 
implementation of the gaskets will exhibit the same behavior as a simulation of the model that uses the TLM-2.0 
gaskets provided in the Simics SystemC Library. 

The approach for a Simics device to send a TLM payload to a SystemC device, and vice versa, is slightly 
different. Figure 6 shows how a Simics device sends a TLM payload to a SystemC device. As illustrated, the Simics 
device requests to send a payload to a certain address where a SystemC device is located in the Simics device 
mapping. The Simics Device interfaces with Simics which then redirects the access to the gasket connected to the 
SystemC model that is located at the specified address. Figure 7 exemplifies how a SystemC device sends a TLM 
payload to a Simics Device. The SystemC model simply interfaces with the gasket through a port or 
b_transport call, and the rest of the operation is handled by Simics. 

Current limitations of RISC include support only of TLM-1.0 while TLM-2.0 and RTL modeling are in 
development. Furthermore, Simics gaskets and compilation flow must be customized to allow the RISC SystemC 
kernel to manage SystemC threads in a Simics simulation. 

 

Figure 6: Simics-to-SystemC communication 

 

Figure 7: SystemC-to-Simics communication 

III. EXPERIMENTS AND RESULTS 

In this section we show two applications that exemplify RISC integration into Simics. Both example 
simulations feature a SystemC device communicating with a Simics device. 
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A. Mandelbrot Renderer 

The Mandelbrot Renderer is an example application that resembles the computations performed in a graphics 
rendering pipeline. The goal of the application is to generate 20 Mandelbrot frames with varying zoom factor.  

Figure 8 shows the runtime statistics of the RISC Mandelbrot Renderer model. Through the use of thread and 
data level parallelism, the peak speedup with RISC is 212x [7]. 

 

Figure 8: RISC Simulation Performance of Mandelbrot Renderer on a 60 core Intel® Xeon Phi™ host [7]. 

We have instantiated the Mandelbrot Renderer model into a Simics simulation. Figure 9 illustrates the Simics 
device mapping in the Mandelbrot Renderer Simulation. In this simulation, a Simics Vacuum virtual platform 
communicates data back and forth from the SystemC device through Simics RAM. The Vacuum writes coordinates 
to the RAM device and the SystemC model reads the coordinates via Simics-to-SystemC communication and then 
generates a Mandelbrot frame corresponding to the input coordinates. Once the SystemC device is finished 
rendering the Mandelbrot frame, the device will use SystemC-to-Simics communication to indicate to the Vacuum 
that it is ready to process another coordinate pair.  

The significance of this Simics simulation is that it features both SystemC-to-Simics and Simics-to-SystemC 
communication via gaskets. Since these gaskets are the only media in Simics for communication between SystemC 
devices and Simics devices, this example shows that all Simics-to-SystemC and SystemC-to-Simics 
communication is feasible with RISC. 

Figure 10 exemplifies the simulation statistics of the Simics simulation running on an 8 core Intel® Xeon® 

Processor E5-2670 (2.60GHz) in comparison to the peak speedup of the simulation executing on a 60 core Intel® 

Xeon Phi™ from parallel multithreading. Due to the limitations of the host running the Simics simulation, data 

level parallelism could not be exploited. We can observe that both the simulation in Simics and without Simics 
exhibit similar efficiency of approximately 80%. Thus the speedup of 6.40x in the Simics simulation is consistent 
with the statistics of the simulation without Simics since the Simics simulation was executed on an 8 core host. 

 

Figure 9: Simics Device set up for Mandelbrot Renderer example 
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 Standard 
SystemC 

Runtime 

Standard 
SystemC 

CPU 
Utilization 

RISC 

Runtime 

RISC 

CPU 
Utilization 

RISC 

Speedup 

# of 
cores 

Efficiency 

Simics 59.93s 99% 9.37s 641% 6.40x 8 80.0% 

Without 
Simics 

394.2s 99% 7.9s 4902% 49.90x 60 83.2% 

Figure 10: Simulation statistics of Mandelbrot Renderer simulation in Simics and plain SystemC 

B. Panorama Graphics Filter 

The Panorama Graphics Filter simulation features a SystemC model that performs an image transformation on 
input photos. Specifically, the SystemC model inputs images and attempts to identify the moving objects in the 
input stream and then generates output images without the moving objects [15]. 

Figure 11 illustrates the device mapping for the simulation of the Panorama Graphics Filter. In this example, a 
Linux-based virtual platform called QSP communicates with the SystemC device via a PCI bus. This example 
demonstrates RISC’s compatibility with a practical and realistic Simics simulation.  

The speedup is not as drastic as the previous example due to dependency of the SystemC model. However, the 
simulation in Simics and outside Simics exhibit similar efficiency which indicates that Simics integration with 
RISC is not the bottleneck for speedup. 

 

Figure 11: Simics Device set up for Panorama Graphics Filter example 

 Standard 
SystemC 

Runtime 

Standard 
SystemC 

CPU 
Utilization 

RISC 

Runtime 

RISC 

CPU 
Utilization 

RISC 

Speedup 

# of 
cores 

Efficiency 

Simics 50.11s 77% 27.20s 141% 1.84x 8 23.0% 

Without 
Simics 

73.42s 91% 49.47s 137% 1.48x 8 18.4% 

Figure 12: Simics simulation statistics of Panorama SystemC Model with Linux-based VP on an 8 core Intel® 
Xeon® CPU E5-2670 (2.60GHz) 

IV. CONCLUSION 

Parallel multithreading is a readily available avenue for optimization today due to the prevalence of multicore 
hosts. In this paper, we introduced RISC, a dedicated SystemC compiler and simulator that automatically and 
safely parallelizes SystemC threads. We have presented RISC integration into a Simics virtual platform and 
showed two successful cases of a Simics simulation leveraging RISC for its SystemC thread management. Each 
of the case studies exhibits significant speedup. The two example Simics simulations using RISC demonstrate 
that the combination of RISC and Simics is feasible and valuable. Additionally, the examples show that RISC 
can be used in a practical and realistic Simics simulation environment.  
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A. Future Work 

The RISC development team is currently working on RISC support for SystemC TLM-2.0 constructs and is 
expected to officially support SystemC-TLM2.0 by the end of 2019. We’re planning to further facilitate RISC 
integration into Simics through the development of a Simics SystemC simulation containing SystemC TLM-2.0 
constructs that is managed by the RISC kernel. Furthermore, RISC supports debugging facilities such as tracing. 
We plan to investigate how to support the Simics debugging features with RISC integration. 
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