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Abstract

System Level Design (SLD) is widely seen as a solution
for bridging the gap between chip complexity and design
productivity of Systems on Chip (SoC). SLD relieves the de-
signer from detailed manual implementation by raising the
level of abstraction in design models.

There are many different modeling approaches to SLD.
With the abundance of design languages and supporting
tools, a designer can create a multitude of models of the
same system that are difficult to compare and evaluate
against each other. Also, it is not unusual for the same
system model to comply to specification guidelines in one
simulation tool, and exceed them in another.

This paper presents an approach to circumvent this
problem by describing a design model using a Syntax
Independent Representation (SIR). Such representation
of the model complies to modeling guidelines shared by var-
ious SLD languages but is not restricted by their syntac-
tic compositions. Further, the same structure can represent
models on different levels of abstraction.

Our multidimensional and multipurpose SIR structure
can be projected onto planes of modeling languages includ-
ing SpecC and SystemC, as demonstrated by experimental
results shown in this work.

Keywords: system level design, modeling, simulation,
evaluation, model representation, data structure, syntax
and semantics.

1. Introduction

As implementation technology evolves, the idea of in-
tegrating system components into a single chip is becom-
ing more attractive. System-on-chip (SoC) designs usually
consume less power, have a lower cost and higher reliability
than multi-chip systems. However, SoC are becoming too
complex to design and program manually. Moreover, time-

to-market in SoC design is continually shrinking, increasing
the pressure on design productivity. One generally accepted
solution to close the productivity gap is to make design de-
cisions at a higher, system level of abstraction. Such system
level models (and their components) should be reusable as
parts of other system models and simulatable in order to
verify that the model indeed complies with its specification
before going into production.

Traditional programming languages are not sufficient for
SLD modeling, because they lack support for modeling
constructs describing the architecture and the functionality
of the modeled system. System Level Design Languages
(SLDL), on the other hand, support hierarchical decompo-
sition of the model, hardware-software (HW/SW) commu-
nication, concurrency and synchronization of system com-
ponents. However, there are many different approaches to
SLD, and each is further supported with a specific design
language and simulation engine for evaluation and verifica-
tion. These simulation engines and other SLDL supported
tools have their own internal data structure only used for a
strictly defined purpose: simulation, verification, or synthe-
sis.

SystemC [1], [2], SpecC [3], [4], [5] and System Verilog
[6], [7] are all examples of SLDL, each supported with their
own tool set. With these different SLD languages, it is pos-
sible to create a multitude of models of the same system that
are difficult to compare and evaluate against each other. To
one extreme, they can even be unrecognizable as equivalent
models.

Also, a designer can model a system with a SLD lan-
guage with little regards to the modeling guidelines of SLD.
It is possible that such a model simulates and even produces
the desired simulation output using a simulation engine spe-
cific to that SLD language. Such badly structured model
seamingly complies to its specification, but would not do so
in any other modeling language.

We have created a Syntaxr Independent
Representation (SIR) data structure in the attempt
to overcome these and similar problems introduced by
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Figure 1. SLD modeling levels of abstraction

syntactic limitations of SLD languages.

The SIR structure presented here is flexible enough to
describe models on different levels of abstraction. Higher
abstracted models simply omit the modeling constructs
which are not visible in the model at that level, and include
them in the more detailed description level. This feature of
SIR is demonstrated in SIR-supported design tools [9].

Further, the SIR structure adheres to modeling guide-
lines shared by different SLD languages. A poorly writ-
ten model in one language can then easily be detected by
creating its SIR structure and analyzing it for modeling
compliance. Design analysis identifies and informs the de-
signer of any violations of modeling guidelines existing in
the model. This feature of the SIR is demonstrated in our
SIR-supported design analysis tool (see section 4.1).

Finally, the SIR structure is syntax free and therefore in-
dependent of SLDL specifics. Once created, the SIR repre-
sentation of the design can be exported in various formats
which are supported by different modeling/simulation tools.
This feature of SIR is demostrated in our SIR-supported
convertion tool (see section 4.2).

The remainder of this paper is organized as follows. In
Section 2, we give an overview of SLD languages and how
they can be used to model a system at different levels of
abstraction. Section 3 describes the SIR data structure and
outlines its properties and usage. In Section 4, we use MP3
Decoder and Vocoder design examples to demonstrate the
effectiveness of the SIR structure. Finally, we conclude the
paper with a summary.

2. SLD Languages and Methodology

SystemC' and SpecC are C-based representatives of
SLDL with strong support in the field of system-level de-
sign. SystemC [1], [2] and SpecC [3], [4], [5] are based
on ANSI C/C++ language and as such share all C-related
features. However, they each have their own syntactic struc-
ture for describing computation and communication enti-
ties, concurrency, hierarchy, synchronization and timing.
SpecC describes a model with behaviors interconnected
with channel and interface constructs, while SystemC mod-
els a system with module objects implementing its structure
and processes implementing its functionality. The connec-
tion and communication between the processing elements is
implemented with channels and interfaces, similar to those
in SpecC. Also, SpecC and SystemC are both supported by
their own simulation engine with which generated models
are validated for correctness.

SystemVerilog [6], [7] is a major extension of the
Verilog [8] language and was ratified as the hardware de-
scription and verification language (HDVL) standard. It
dramatically improves the productivity in the design of
large gate count, [P-based, bus-intensive chips over Verilog.
SystemVerilog is able to invoke C/C++ functions, thus
supporting efficient co-simulation with system-level blocks.

Any SLDL should be able to model a system on var-
ious levels of abstraction. The most abstracted model is
the speci fication level model, which describes the sys-
tem functionality and is free of any structural/architectural
details. Next, the architectural level model provides both
the structural and functional description of the design. It
consists of multiple processors, custom hardware blocks,



intellectual property (IP) components and memories, inter-
connected with busses. The transaction level model im-
plements communication between system components us-
ing bus interfaces and protocols for data transfer and pro-
cess synchronization. Finally, the implementation level
model is synthesized in the back-end, with each component
implemented separately, either with its RTL description, or
reusing pre-coded library components.

Figure 1 illustrates which levels of abstraction are sup-
ported when modeling with aforementioned SLD languages
(SpecC, SystemC and SystemV erilog, respectively).

As seen in Figure 1, SpecC' supports modeling at
all levels of abstraction. SystemC' lacks the constructs
with which a design can be described without regards
to its structure, so it does not support modeling at
speci fication level. SystemVerilog supports modeling
and verification of transaction level models.

This paper describes the SIR structure used to represent
models compliant to modeling rules of SLD but without
regards to syntactic rules imposed by different SLD lan-
guages. At this time, the value of the SIR is demonstrated
with an analysis and conversion tool which can success-
fully translate architectural SpecC models into equivalent
SystemC models, using our SIR structure. Future work in-
cludes a tool that outputs a SystemVerlog model from an
SIR design as well as a GUI with which an SIR structure
can be created graphically.

3. Syntax Independent Representation

The SIR structure is a complex data structure which can
be viewed as a graph. The nodes of the graph are repre-
sented by C++ class objects, whereas the edges are repre-
sented by C++ pointers. Figure 2 shows an abstracted view
of the hierarchical class order in the SIR structure.

SIR_Node
SIR Definition

[ [ [ \
‘ SIR Class H SIR Interface H SIR Variable H SIR Function ‘

[ SIR_Behavior | | SIR_Channel |

Figure 2. SIR class hierarchy

The nodes in the SIR graph are of different types
inherited from one generic class SIR_Node. Class
SIR_Definition inherits class SIR_Node and further
classifies node types into four categories: SIR_Class,
SIR _Interface SIR-Variable, and SIR_Function.
Classes SIR_Behavior and SIR_Channel inherit class
SIR_Class. Each node type is implemented with a cor-

responding C++ class which defines the data members and
API methods available for the node.

3.1. SIR features

The nodes in any SIR graph can be classified into two
groups, called levels. The nodes at level 1 contain all basic
data contained in a SIR file, whereas the level 2 nodes repre-
sent a more abstract view of the SIR data. For example, the
structural hierarchy of the design is represented directly at
level 2, while at level 1, the same hierarchical composition
is clouded by details implementing design functionality.

The edges of a SIR graph, representing relations among
the nodes, can also be classified into two groups, called
pointers and links. A pointer represents a containment rela-
tion of two objects. For example, a compound statement
contains a list of statements and therefore there exists a
pointer from the compound statement object to the header of
the statement list (and also from the header of the list to the
elements of the list). A link represents a (loose) connection
between two objects, that does not imply any containment.
For example, expressions and symbols have a link to a node
representing their type.

Graphical overviews of the top level SIR data structure
object SIR_Design at levels 1 and 2 are given in Figure 3
and Figure 4, respectively.

The general information of the design is contained in
the level 1 representation, with objects SIR_Filelnfo,
STR_Notes and supported STR Types. The core of the
SIR_Design object at level 1 is a hierarchical list of
STR_Symbols and SIR_UserTypes. SIR_Symbols and
SIR_UserTypes are lists of generic objects of different
types used to implement the structure, computation and
communication of the design. The list STR_UserTypes
contains user-defined type declarations (i.e. struct and
union types and aliases), named and unnamed enumera-
tor definitions, while SIR_Symbols include classes im-
plementing model behavior as well as other variables and
methods.

Figure 4 shows the design structure at level 2.
The design is represented with a list of behaviors
(SIR_Behaviors), a list of channels (SIR_Channels),
a list of interfaces (STR_Interfaces), a list of global
variables (STR_V ariables), and a list of global functions
(STR_Functions). Members of these lists are intercon-
nected with pointer edges to create a unique representation
of a system level model.

Considering the classification of SIR nodes into two lev-
els and the SIR edges into pointers and links, a design rep-
resented by its SIR structure can be viewed as a generic
graph. The SIR graph becomes a tree, if the edges classi-
fied as links are ignored and only pointer edges build the
arcs between the nodes. We call such a graph a design tree.
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Figure 3. SIR components: SIR_Design object
at level 1

3.2. SIR design tree

The SIR structure of a design model at level 2 (Figure 4)
is called the design tree and is composed of nodes, repre-
senting the computation and communication objects of the
model, and edges which connect the nodes into a functional
hierarchical system.

The usage of design trees is three-fold. First, refinement
steps performed over the SIR data structure usually consist
of multiple traversals over the design tree. Traversals fol-
low only the pointers connecting the nodes. With each it-
eration the model is being described with more details. For
example, in the architectural refinement step, all computa-
tion gets destributed and mapped to different processing ele-
ments (PE), and communication refinement combines end-
to-end channels connecting PEs into a central bus imple-
menting a bus protocol. More on SIR-supported refinement
of models can be found in [9].

Second, traversing a design tree can easily identify any
violations of the modeling rules common to SLD languages.
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Figure 4. SIR components: SIR_Design object
at level 2, i.e. the design tree

Such analysis either informs the user of the compliance of
the model, or produces a message listing possible irregular-
ities of the model.

Third, and most importantly, the tree representation frees
the model from any notion of language syntax. Once cre-
ated, an SIR structure can be exported as either a SpecC
model or an equivalent SystemC model. Each model can
then be simulated with SpecC and SystemC simulation
engines, or further refined with their respective modeling
tools. Exporting a syntax-free SIR to SystemC and SpecC
modeling plane is shown in Figure 5.

As Figure 5 shows, each SLD approach to modeling is
represented by a 2-dimensional plane: the SpecC plane is
on the bottom, and the SystemC on the right side of the fig-
ure. Each modeling plane is restricted with the syntactic
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Figure 5. SIR structure in relations to SpecC
and SystemC modeling planes

structure the of supported SDL language, modeling guides
and design flow. However, our SIR structure, in turn, is not
limited by the syntax of any language and can therefore be
projected to any of the two modeling planes. This feature of
SIR is symbolically shown with a 3-dimensional represen-
tation of the SIR structure. In other words, the syntax-free
(i.e. “multi-dimensional”) SIR structure can be projected”
onto the modeling planes of SystemC and SpecC, which can
be thought of as different "views” on the SIR representation.

4. Experimental Results

The SIR independence from syntax is demonstrated with
the following analysis and conversion tool.

Our tool creates an SIR design tree from the SpecC
model, traverses the tree’s object lists, interprets the seman-
tics of each component, analyzes them, and finally maps
them into corresponding SystemC constructs.

The control flow of the SpecC-to-SystemC conversion
tool, shown in Figure 6, consists of the following four steps:

1. Read SpecC model description and create correspond-
ing SIR design tree

2. Analyze design. If translation is not possible, abort
with appropriate error message

Monitor(sc_module_name name);

S
sc_behavior 5
[y

'
'
'
'
'
.

.
'
.

3. Traverse SIR design tree and its object lists to create
SystemC header (filename.h) file

4. Traverse SIR design tree and its object lists to create
SystemC source (filename.cpp) file

=
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Figure 6. SpecC to SystemC converter dia-
gram flow

Following are two industry-sized examples of real SOC
designs, a Vocoder and a MP3decoder that we have used
as input to the automatic conversion tool. In each example,
a SpecC architectural model was constructed and analyzed
by the converter. If the conversion was possible, the tool
generated the equivalent SystemC architectural description.
The generated model was then compiled and linked with the
SystemC library, and executed for equivalence validation.

4.1. MP3 decoder

We first describe an example of a MP3 decoder to show
the restrictions to the model of the SIR structure in order
to conform to the standard modeling rules shared by both
SpecC and SystemC tools. Our design analysis tool cor-
rectly identifies the irregularities in the MP3Decoder model
used as its input.

The MP3 decoder [11], [12] is a device for decompres-
sion of a MP3 stream into audio data. The MP3 stream used
as input is organized in frames and encoded using the MP3



compression algorithm. Each frame contains main audio
data encoded as a Huffman stream and certain side infor-
mation necessary for decompression, such as compression
parameters and scale factors.

The testbench for the MP3 decoder consists of Stimulus,
Design Under Test (DUT) and Monitor components exe-
cuting in parallel and synchronized with each other by two
synchronization channels, C1 and C2, as shown in Figure 7.
The DUT component is further separated into Parser, sfilter,
IStereo and TopHybrid functions, where frames are created
from the input MP3 stream. MP3 decoding and further data
processing is implemented in IStereo and TopHybrid.

( i T ~
TestBench
—fmes,_filoname}
~[pem_fienam]
o]
—fpampling_freq
—{[storeomode |
Stimulus MP3decoder Monitor
- Y
/ MP3decoder 0

Parser sfilter iStereo

=

Figure 7. SIR representation of the MP3 De-
coder model

The testbench is used as an input of the converter tool.
After the Design Analysis, the converter aborts and reports
the message informing the designer of the incompatibilities
of the design with the clean modeling structure of either
SpecC or SystemC.

Found irregularities of the tool are shown in Figure 8.
They include the usage of global variables shared by top-
level components Stimulus, DUT and Monitor, as well as an
access to an out of bounds element of an array (i.e. frame).
Figure 7 shows the MP3Decoder testbench with the men-
tioned global variables mp3_filename, pcm_filename,
bitrate, samplingsreq and stereomode. Access to out of
bounds elements of the frame, in turn, is performed during

ERROR: 'Design' cannot contain port 'mp3file_name' for communication
(use interface/signal instead)

ERROR: 'Design' cannot contain port 'pcmfile_name' for communication
(use interface/signal instead)

ERROR: 'Design' cannot contain port 'sampling_frequency' for

communication
(use interface/signal instead)

ERROR: 'Design' cannot contain port 'bitrate' for communication
(use interface/signal instead)

ERROR: 'Design' cannot contain port 'stereomode for communication
(use interface/signal instead)

ERROR: Array access 'window/-1]' out of bounds!

ERROR: Array access 'window/-2]' out of bounds!

ERROR: Array access 'window/-3]' out of bounds!

Figure 8. Output of the Converter tool for the
MP3Decoder model

data processing and decoding.
4.2. Vocoder

Our Vocoder example shows that the SIR structure of a
design can correctly output both SpecC and SystemC archi-
tectural models, providing that the model does not contain
any modeling irregularities.

The voice encoder/decoder (vocoder) application used in
the Vocoder design [13], is part of the European GSM stan-
dard for cellular telephone networks. Figure 9 shows the ar-
chitectural model of the Vocoder. The testbench consists of
Stimulus, Monitor and Vocoder running in parallel, as well
as a simple C/C++ function (Argument Handler) that reads
parameters from the console. The Vocoder structure is par-
titioned into the DSP processor core and an ASIC hardware
component for the codebook search. The functionality of
the DSP processor is to prepare the next speech block while
the hardware component operates on the previous block.
Communication channels between DSP and Hardware are
used to synchronize their execution.

A SystemC model has been successfully generated by
our converter from the input SpecC model in only 0.112
seconds. Table 1 compares the features of the SpecC and
SystemC models of the Vocoder example. The execution
of the generated SystemC model simulates only slightly
slower (7.05%) than the one of the SpecC model.

Model properties SpecC | SystemC
Size/lines of code (source) 8974 8395
Size/lines of code (header) | 5956 2879
Simulation time (sec) 0.959 0.896

Table 1. Comparison of SpecC and SystemC
models
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model

5. Conclusion

This paper presented the Syntax Independent Represen-
tation of system models, a complex data structure that ad-
heres to the modeling guidelines of SLD but is not depen-
dent on the syntax of a particular SLD language. The de-
scribed SIR structure is flexible enough to describe models
on different levels of abstraction.

The proposed SIR structure is applicable to a multitude
of design tools. For example, the SIR structure can be used
as an input to various design analysis tools, such as SLD
language parsers and profilers. In our example, the SIR
structure of a MP3 Decoder was used as an input to our
Design Analysis tool and then analyzed for modeling com-
pliance.

Further, the SIR structure can be used as a central data
structure for modification and refinement tools, since it is
flexible enough to represent models at different abstraction
levels, starting from the most abtracted specification level,
down to the detailed implementation level.

Finally, the SIR representation of a model can be easily
exported to different SDL langage formats, such as Sys-

temC and SpecC, as was shown with the conversion of
the SpecC model of the Vocoder to its equivalent SystemC
model.

In future work, we plan to implement a conversion tool
that outputs a SystemVerilog model from a SIR design as
well as a GUI with which our SIR structure can be created
and maintained graphically.
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