
Case Study on Combining Open-Source Tool Flows
for Grids of Processing Cells

Lars Luchterhandt∗, Vivek Govindasamy†, Yutong Wang†, Rainer Dömer†, Wolfgang Mueller∗, Christoph Scheytt∗
∗Heinz Nixdorf Institute, Paderborn University, Paderborn, Germany

†Center for Embedded and Cyber-physical Systems, University of California, Irvine, CA, USA

Abstract—Massively parallel computer architectures based on
identical microprocessor tiles are well known for their high
scalability and performance. In this work, we introduce an open-
source tool flow for scalable on-chip grids of RISC-V processor
cells that seamlessly combines high-level SystemC modeling with
the generation and simulation of hardware models at RTL down
to FPGA implementation featuring the Chipyard framework. Our
experimental evaluation quantifies the speed-accuracy trade-offs
at different abstraction levels and compares them with their
physical implementation on an FPGA.

I. INTRODUCTION

Complex applications demand higher performance and drive
the design of truly scalable parallel architectures. Similar to
the classical transputer architecture [1], a Grid of Processing
Cells (GPC) [2] avoids the classic shared memory bottleneck
by using separate local memories.

C01 M01C00

M10 C10

M00

C21

M31 C31

M21C20

M30 C30

M20

C0y

M1y C1y

M0yC02

M12 C12

M02

C2y

M3y C3y

M2yC22

M32 C32

M22

I/O

I/OI/O

I/O

Cx1 Mx1Cx0 Mx0 Cxy MxyCx2 Mx2

Memory Core

M11 C11

Fig. 1. Checkerboard Grid of Processing Cells (GPC) [2].

The GPC platform, as illustrated in Fig. 1, is a fully scalable
grid where processor cores are paired with local on-chip mem-
ories. Each GPC cell consists of a processor Core and a local
Memory, as well as local interconnects consisting of address
decoders and memory arbiters, shown here with SystemC TLM-
2.0 socket connectivity. Individual processor cores can only
reach memory addresses in their cell and the immediate local
neighborhood.

In this work, we use open-source software to generate and
simulate GPC models with increasing levels of accuracy, syn-
thesize them, and analyze their performance with clock-cycle
accuracy. We generate 32-bit RISC-V Rocket processors [3] us-
ing custom Python scripts and the Chipyard framework [4] with
the hardware construction language Chisel [5]. Our models are
fully scalable in grid size, buffer depth, and memory size, and
cell processors can be individually configured. As summarized
in Table I, we cover 5 abstraction levels, namely (1) functional
multi-threaded C++, (2) Transaction Level Modeling (TLM),
(3) Instruction Set Simulation (ISS), (4) Register Transfer Level

(RTL), and (5) Field Programmable Gate Array (FPGA). Our
experimental evaluation quantifies the speed/accuracy trade-offs
in build and runtime.

A. Related Work

In 1972, Flynn introduced a taxonomy for parallel com-
puter architectures along different instruction and data streams:
single/multiple instructions and single/multiple data [6]. In
contrast to traditional single processor systems with single
instruction single data (SISD) streams, modern architectures
operate multiple instruction and/or multiple data streams in
parallel, termed SIMD, MISD, or MIMD. The concepts of
configurable processor grids for massively parallel processing
stem from the principles of transputers, introduced in the 80s
to overcome the Von-Neuman bottleneck [7]. A transputer is
a single 32-bit RISC microprocessor with local memory and
four serial message-passing IOs, establishing communication
links to adjacent processors [8]. They were applied as building
blocks of massively parallel supercomputers with up to sev-
eral hundreds of nodes [1]. As such, transputers rely on the
principles of a nothing-shared architecture with the advantage
of high scalability and configurable identical cells that can be
aligned to individual applications.

In prior studies, we have modeled GPCs as a nothing-shared
architecture with SystemC TLM-2.0 [9], [10] and further syn-
thesized a GPC with RISC-V processing cells down to FPGA
and ASIC implementations using the Chipyard framework [3].
In this paper, we combine our previous approaches and present
a seamless integration of the classical open-source SystemC
design flow with RTL generation and FPGA synthesis from
the open-source Chipyard framework. We present a case study
demonstrating the flow from functional level C++ down to
an FPGA implementation illustrated by mapping a proof-of-
concept benchmark as software application onto a GPC.

II. TOOL FLOW

Our system design flow is a seamless integration of open-
source EDA software with SystemC TLM-2.0 modeling,
instruction-set simulation (ISS), and the Chipyard framework
for RTL generation and FPGA synthesis. The tool flow over
five abstraction levels is shown in Fig. 2.

A. Functional Specification and Modeling with SystemC

The tool flow starts with a pure functional model specified in
multi-threaded C++ where tasks communicate via queues and
perform the application, allowing the validation of functionality



TABLE I
TOP-DOWN DESIGN FLOW WITH GENERATED MODELS AT FIVE DIFFERENT ABSTRACTION LEVELS

Model Abstraction Level Accuracy
Software Hardware

Language Tool Language Tool

Functional Untimed Functions Multi-threaded C++ g++ - -

TLM-2.0 Loosely-timed Transactions C++ g++ SystemC g++

ISS Approximately-timed Instructions C++, Assembly g++-rv32 SystemC g++

RTL Clock-cycle accurate Clock cycles C++, Assembly g++-rv32 SystemVerilog Verilator

FPGA Real-time Physical time C++, Assembly g++-rv32 SystemVerilog Vivado

TokenX.cpp

Config 6x8.py

TokenX.cpp

Config 6x8.py

TokenX.cpp

Config 6x8.scala

C++ Compiler

TokenX-GPC-Gen.py

Cross Compiler

GPC-ISS-Gen.py

Cross Compiler

GPC-RTL-Gen.scala

TokenX.exe

TokenX 6x8.cpp

TokenX *.elf

GPC 6x8.cpp

TokenX *.elf

GPC 6x8.fir

C++ Compiler

C++ Compiler

FIRRTL Compiler

TokenX 6x8.exe

GPC 6x8 ISS.exe

GPC 6x8.sv Verilator

Vivado

GPC 6x8 sim.exe

GPC 6x8.bit

Functional

TLM-2.0

ISS

RTL

FPGA

Fig. 2. Tool Flow with TokenX application on a 6×8 GPC

(Fig. 2 top). We map the tasks to a suitably sized GPC and
generate a loosely timed model in SystemC TLM-2.0 with
explicit communication via neighbor memories (Fig. 2 row 2).

For increased timing accuracy, we then generate an ISS
(Instruction Set Simulation) model in SystemC where the
application software is cross-compiled for a 32-bit RISC-V
target. Using an interpreted open-source ISS [11], the RISC-V
cores fetch instructions and data from their local memory and
then execute the decoded instructions with the corresponding
delay (Fig. 2 row 3).

B. Hardware Construction, Simulation, and Synthesis

To derive a cycle-accurate model with precise timing, we
implemented a GPC RTL generator by extending the Rocket
chip generator [12] of the open-source Chipyard framework
[4]. At this step, we replaced the abstract instruction decoding
and execution cycle with the constructed hardware of the
individually configured processor and memory.

1) Hardware Construction: The GPC generator written in
the hardware construction language Chisel [5] generates the
desired grids and emits FIRRTL [13] based on the desired
parameters for the individual GPC, e.g., grid size, memory
size, or FPU support. The FIRRTL circuit compiler compiles
the intermediate representation and generates a SystemVerilog
model for one of the different Chipyard design flows, namely
RTL simulation, accelerated FireSim simulation, FPGA proto-
typing, or the Hammer VLSI flow, where the remainder of this
paper focuses on RTL simulation (Fig. 2 row 4) and FPGA
prototyping (Fig. 2 bottom).

2) RTL Simulation: For RTL simulation of the generated
GPC models, we use the open-source SystemVerilog simulator

Verilator [14]. The Verilator compiles the SystemVerilog model
into a multithreaded C++ model from which the simulator can
be compiled. The application software for the GPC hardware
model is cross-compiled for the RISC-V target and loaded into
the scratchpad memories at the beginning of the simulation.
RTL simulation time can be significantly decreased when we
build and run many RTL simulators of different designs in
parallel on a High-Performance Computing (HPC) cluster. We
thus extended our flow to automate job submission for the open-
source HPC workload manager Slurm [15].

3) FPGA Synthesis: To arrive at a hardware implementation
with higher performance, we synthesize the RTL design for
the AMD VCU108 FPGA using AMD Vivado. By extending
the flow to support Slurm job submission, with our additional
extensions for HPC workload management automation, many
designs can be synthesized in parallel on an HPC cluster. After
synthesis, the bitstream with the GPC hardware is loaded to the
FPGA. Thereafter, the cross-compiled application software is
loaded into the scratchpad memories via JTAG and executes on
the FPGA at the given frequency. Hence, the FPGA prototype
combines both, the performance from higher abstraction levels
and the low-level accuracy at RTL.

III. EVALUATION

Our evaluations first introduce quantitative measures which
are summarized in Table II before we outline our qualitative
results on inter-cell communication.

A. Experimental Setup

For experiments on the functional, TLM-2.0, and ISS model,
we use C++ and SystemC version 2.3.3 on a Linux workstation
with an Intel Xeon E-2388G CPU (16 cores at 3.2GHz). The



Fig. 3. #LUTs required for GPCs synthesized for VCU108 FPGA at 50MHz

ISS model is based on the SystemC-based RISC-V VP from
[11]. All experiments at RTL and on FPGA are fully automated
with Chipyard 1.9.1 and our extensions in Python. We use
Verilator for RTL simulation on an HPC cluster, where nodes
are equipped with 256GiB RAM and two AMD Milan 7763
CPUs (64 cores at 2.45GHz). Larger designs require large
nodes with 2TiB RAM and AMD Milan 7713 CPUs. The
FPGA experiments are conducted on an AMD VCU108 board
featuring 537K 6-input look-up tables (LUTs) with AMD
Vivado for synthesis.

B. GPC Configurations

Our experiments cover GPC configurations from 2×2 to
16×16 cells with 32-bit RISC-V processors and 32KiB of
memory. Fig. 3 compares the utilization of different config-
urations and shows the limitation of popular FPGA boards
(VCU108, VC707, Arty7 100T/35T) on the right-hand side.

C. Software Application Benchmark

For empirical evaluation of different GPC configurations, we
implemented a scalable software application named TokenX.
TokenX is a simple proof-of-concept benchmark for communi-
cation with low computational load. The software starts with
an initial number of tokens in each cell and continuously
exchanges tokens with neighbor cells in a pseudo-random
fashion. It is organized in a number of iterations of computing
and exchanging messages.

D. Experimental Results

To evaluate the speed-accuracy trade-off of different sim-
ulation platforms at different abstraction levels, we executed
TokenX on grid sizes 6×6 and 8×8. Table II summarizes
our results and quantifies the cost for conducting benchmarks
on each abstraction level in build time and runtime. The
simulation results include the executed number of transactions
and instructions. At RTL and on FPGA, we also list the number
of elapsed clock cycles based on values of the mcycle CSR
before and after the execution of the software.

In general, the table shows an increase in build and runtime
for each refinement down to RTL. Note here that the simulation
results at RTL are linear projections based on 1K iterations.

It also shows that the FPGA model achieves a similar order
of runtime as our initial functional implementation. Although
TLM-2.0 has some overhead for the explicit modeling of
memory transactions, the runtimes are within the same order
of magnitude as the functional model. At ISS, we switched
from host-compiled to RISC-V target-compiled software with
instruction-accurate simulation. This causes an increase in
runtime by two orders of magnitude.

As expected, cycle-accurate RTL simulation is the most
expensive simulation in the entire design flow with respect
to build time and runtime. Compared to ISS, we observe
an increase in runtime by two to three orders of magnitude.
This meets our expectations as we simulate fully constructed
hardware models at this level.

We synthesized the RTL models for an FPGA with a
frequency of 50MHz and 100MHz. Running at 100MHz
reduces the runtime by 50% at the cost of a doubled build
time. The FPGA prototyping confirms the measured number
of instructions on higher abstraction levels with less than 1%
difference.

E. Grid vs. System Bus Communication

To highlight the nothing-shared advantage of the GPC,
we compare its grid-based communication performance to a
system-bus-based communication alternative. We generate and
compare two different hardware configurations at RTL and on
FPGA:
(1) instructions and data of a cell are fetched from the cell’s
local memory with local inter-cell access to the memories of
its four surrounding neighbors (local memory) as introduced in
Section I.
(2) instructions and data of a cell are fetched via a shared
system bus (global memory).

For cycle-accurate performance evaluation of the two vari-
ants, we start with RTL simulation of TokenX for grid sizes
from 2×2 to 16×16 as summarized in Fig. 4. The figure
compares the two hardware configurations with local vs. global
instruction and data access. While configuration 2 with full sys-
tem bus access is clearly affected by contention, we can observe
lower constant values for the GPC architecture (configuration
1). On the shared bus variant, the overhead in runtime caused
by contention increases linearly with the number of cells in the
design.

Fig. 5 shows corresponding results for TokenX on FPGA.
The grid size is limited to 8×8 by the utilization of our
FPGA. Compared with the RTL simulation, we see the results
are accurate apart from small deviations caused by minor
differences in the design (hardware UART) and ELF files (no
syscalls on FPGA). Once there are cells with four neighbors
in the grid starting from size 3×3, the GPC remains running
with a constant number of cycles whereas the global memory
variant runs into linear bus contention. With an increasing
number of cells, more bus traffic is caused, which further
increases contention. Across all grid sizes, the GPC achieves
the lowest runtime compared to the global memory variant.
This demonstrates the efficiency of the nothing-shared GPC
architecture.



TABLE II
EXPERIMENTAL RESULTS ON 6×6 AND 8×8 GPC TARGETS RUNNING TOKENX WITH 1M ITERATIONS

Platform Model
6×6 GPC 8×8 GPC

Build Time Runtime Simulation Build Time Runtime Simulation

Workstationa

Functional 0.33s 12.41s - 0.33s 21.71s -

TLM-2.0 3.43s 83.30s 240M transactions 4.19s 171.59s 448M transactions

ISS 4.11s 1:31h 275M instructions 5.99s 3:09h 275M instructions

HPCb RTL 15:00m 129 days* 272M instructions*

782M clock cycles* 39:21m 222 days* 274M instructions*

787M clock cycles*

HPCb,1, FPGAc FPGA 56:09m 15.45s
271.2M instructions
772.5M clock cycles 1:49h 15.46s

271.3M instructions
772.9M clock cycles

a Intel Xeon E-2388G, 16 cores, 3.2GHz b 2x AMD Milan 7763, 64 cores, 2.45GHz c AMD VCU108 FPGA, 50MHz
1 FPGA synthesis * Linear projection based on 1K iterations

Fig. 4. TokenX runtime (100 iterations) of RTL simulation

Fig. 5. TokenX runtime (100 iterations) on FPGA

IV. CONCLUSION

We introduced an open-source top-down tool flow for highly
scalable Grids of Processing Cells (GPC) based on configurable
32-bit RISC-V cells with local memory. Our evaluation quan-
tifies the accuracy and execution speeds at different abstraction
levels over different simulation platforms and demonstrates
the advantage of nothing-shared grid architectures. Our flow
is highly automated and seamlessly combines SystemC with
the open-source Chipyard framework [4]. We intend to make
our models and scripts accessible by placing them in open
repositories once we have completed our other experiments
with FireSim and FireAxe. We only applied open-source tools
with the exception of AMD Vivado which has been identified
as the major obstacle for a fully fledged open-source tool flow.

Acknowledgements

The work described here is partially funded by the Ger-
man Bundesministerium für Bildung und Forschung (BMBF)
through the Scale4Edge project (16ME0133). We gratefully
acknowledge the computing time and resources provided on
the Noctua 2 HPC Cluster at the NHR Center PC2.

REFERENCES

[1] A. J. G. Hey, “Supercomputing with transputers—past, present and
future,” in Proceedings of the 4th International Conference on Supercom-
puting, ser. ICS ’90. New York, NY, USA: Association for Computing
Machinery, 1990, p. 479–489.

[2] R. Dömer, “A Grid of Processing Cells (GPC) with Local Memories,”
Center for Embedded and Cyber-physical Systems, UCI, Tech. Rep.
CECS-TR-22-01, Apr. 2022.

[3] L. Luchterhandt, T. Nellius, R. Beck, R. Dömer, P. Kneuper, W. Mueller,
and B. Sadiye, “Implementation of different communication structures for
a rocket chip based RISC-V grid of processing cells,” in MBMV 2024;
27. Workshop, 2024, pp. 79–89.

[4] A. Amid et al., “Chipyard: Integrated design, simulation, and implemen-
tation framework for custom socs,” IEEE Micro, vol. 40, no. 4, pp. 10–21,
2020.

[5] J. Bachrach et al., “Chisel: Constructing hardware in a scala embedded
language,” in DAC Design Automation Conference 2012, 2012, pp. 1212–
1221.

[6] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE
Transactions on Computers, vol. C-21, no. 9, pp. 948–960, 1972.

[7] J. von Neumann, “First draft of a report on the EDVAC,” University of
Pennsylvania, Tech. Rep., Jun. 1945.

[8] R. Dettmer, “Occam and the transputer,” Electronics and Power, vol. 31,
no. 4, pp. 283–287, 1985.

[9] Y. Wang, A. Daroui, and R. Dömer, “Demonstrating Scalability of
the Checkerboard GPC with SystemC TLM-2.0,” in Proceedings of
the International Embedded Systems Symposium (IESS). Lippstadt,
Germany: Springer, Nov. 2022.

[10] V. Govindasamy and R. Dömer, “Mixed-level modeling and evaluation of
a cache-less grid of processing cells,” ACM Transactions on Embedded
Computing Systems, Dec. 2024.

[11] V. Herdt, D. Große, and R. Drechsler, “Fast and accurate performance
evaluation for risc-v using virtual prototypes,” in 2020 Design, Automa-
tion and Test in Europe Conference (DATE), 2020, pp. 618–621.

[12] K. Asanović et al., “The rocket chip generator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr.
2016.

[13] A. Izraelevitz et al., “Reusability is firrtl ground: Hardware construc-
tion languages, compiler frameworks, and transformations,” in 2017
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2017, pp. 209–216.

[14] W. Snyder, P. Wasson, D. Galbi et al., Verilator. [Online]. Available:
https://verilator.org

[15] D. G. Feitelson, “Job scheduling strategies for parallel processing pro-
ceedings,” ser. Lecture notes in computer science 1459. Berlin: Springer,
1998.

https://verilator.org

	Introduction
	Related Work

	Tool Flow
	Functional Specification and Modeling with SystemC
	Hardware Construction, Simulation, and Synthesis
	Hardware Construction
	RTL Simulation
	FPGA Synthesis


	Evaluation
	Experimental Setup
	GPC Configurations
	Software Application Benchmark
	Experimental Results
	Grid vs. System Bus Communication

	Conclusion
	References

