
BusyMap, an Efficient Data Structure to Observe
Interconnect Contention in SystemC TLM-2.0

Emad M. Arasteh
Chapman University
Orange, CA, USA

arasteh@chapman.edu

Vivek Govindasamy, and Rainer Dömer
Center for Embedded and Cyber-physical Systems

University of California, Irvine, USA
{vbgovind,doemer@uci.edu}

Abstract—For designing embedded computer architectures that
meet desired performance constraints at low cost, fast and
accurate simulation models are needed early in the design flow. To
identify and avoid bottlenecks early at the system level, observing
the contention of shared resources is critical. In this paper, we
propose and evaluate a novel data structure called BusyMap that
accurately reflects contention at system busses or similar inter-
connect components. BusyMap is an efficient data structure that
allows the system designer to accurately model and easily observe
contention in IEEE loosely-timed TLM-2.0. In contrast to prior
state-of-the-art, our model fully supports temporal decoupling and
multiple levels of interconnect. Our experiments demonstrate the
effectiveness of BusyMap with results showing high accuracy at
high-speed SystemC simulation.

Index Terms—transaction-level modeling, temporal decoupling,
systemc, memory contention, multi-core processor

I. INTRODUCTION

The emergence of new data-intensive applications, such as
artificial intelligence (AI), machine learning (ML), robotics,
virtual reality, the Internet of Things (IoT), and personalized
medicine, requires a significant increase in embedded computer
systems’ computation and storage capacity. Additionally, the
energy efficiency requirements of embedded computer systems
create extra design challenges to achieve on-par performance
improvements. To overcome the challenges of designing today’s
complex system-on-chips (SoCs), electronic system level (ESL)
methodology has been proposed for modeling systems at higher
levels of abstraction early in the design flow [1], [2]. ESL ideas
resulted in defining system-level description languages (SLDL),
such as SpecC [3] and SystemC, the IEEE standard language
for system modeling and simulation that can model hardware
and software components and their detailed interactions [4].

With the ever-increasing demand for performance require-
ments of new embedded applications, one critical aspect of
modeling and analyzing system models is finding resource
contention early in the design flow. SystemC’s loosely-timed
coding style supports modeling hardware components, such
as processors, interconnects, memories, timers, and interrupts,
in a modern multiprocessor system on a chip (MPSoC). This
coding style is suitable for software development with a virtual
platform model of an MPSoC. This coding style also supports
temporal decoupling, allowing individual SystemC processes to
operate ahead of simulation time in a local ”time warp” until
they require synchronization with the rest of the system. This
technique can lead to faster simulation for specific systems

due to the enhanced data and code locality and the reduced
scheduling overhead within the simulator.

A. Problem Definition

SystemC loosely-timed models provide a good trade-off
between timing accuracy and simulation speed by modeling
only two timing points for each transaction in a system: the
start and end. However, resource contention is often detectable
with increasing timing points for each transaction, which will
result in significantly slower simulation. While there have been
efforts to model contention in loosely-timed SystemC models,
the approaches lack supporting temporal decoupling for faster
simulation speed and multiple interconnect levels. A fast and
accurate loosely-timed contention model allows the system
designer to rapidly detect resource contentions and evaluate
design candidates for lower-level implementations.

Our key contributions are as follows:
(1) Novel resource contention modeling in TLM-2.0 loosely-

timed system models supporting temporal decoupling with high
accuracy at high-speed simulation

(2) Support multiple-level hierarchical interconnects, includ-
ing multi-level caches or multiple levels of buses

II. RELATED WORK

System-level performance modeling and resource contention
analysis have been widely studied under two broad cate-
gories: analytical and simulated-based approaches. Analytical
approaches involve the mathematical modeling of systems and
the derivation of their performance as a function of workload
and input parameters [5], [6]. These analytical models depend
on the program or the architecture modeled, and a new model
must be developed for each new application, which requires
a profound understanding of the application [7]. Furthermore,
analytical modeling fails to consider the system’s dynamic
behavior [8].

Simulation-based techniques have the capacity to capture
dynamic interactions within a given system. Two commonly
utilized system-level description languages for the purpose of
modeling, simulation, and validation of complex system-on-
chip models are SpecC [3] and SystemC [9]. The SystemC
C++ class library, an IEEE standard, facilitates system and
transaction-level modeling through discrete event simulation
(DES) [4]. However, prolonged simulator run times often hinder
simulation techniques when operating at lower abstraction
levels. Additionally, the manual construction and debugging

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA 

	



of simulation models can result in significant design and
development time.

To address the limitations of simulation-based methods,
a hybrid approach that combines analytical and simulation
methodologies has been proposed [7], [10], [11]. Although
mixed methodologies have been employed to reduce simulator
run times, the simulation’s ability to cover corner cases remains
challenging [11]. Aside from analytical and simulation-based
modeling approaches, there are also statistical and stochastical
techniques to capture the effect of resource contention [12],
[13]. However, these approaches mainly operate at a signifi-
cantly higher level of abstraction than transaction-level model-
ing, resulting in a trade-off between accuracy and simulation
speedup.

Contention modeling in transaction-level abstraction has also
been studied to break the speed-accuracy simulation trade-
off. For instance, [14] proposes a TLM-2.0 loosely-timed
contention-aware modeling (LT-CA) technique that offers high
simulation speed with the accurate observation of memory
contention in the system model. However, the approach does
not support temporal decoupling and pipelined transactions.
Moreover, the LT-CA described in [14] does not support con-
tention modeling of hierarchical interconnects such as multiple
levels of caches or buses in the system platform model.

III. LOOSELY-TIMED CONTENTION-AWARE MODELING

The emphasis of transaction-level modeling (TLM) is mainly
on the abstraction of data communication. In the TLM-2.0
loosely-timed (LT) modeling style, each transaction has two
timing points: start and end. In this modeling style, transactions
are completed in a single blocking transport method call, which
simulates fast. However, observing resource contention often
requires a detailed sequence of interactions in a transaction
with more than two timing points. However, increasing the
number of transaction timing points will significantly slow the
simulation speed. Like conventional LT models, the loosely-
timed contention-aware (LT-CA) modeling approach also uses
a blocking transport call, which each transaction completes in
a single method call. In contrast to conventional LT modeling,
the LT-CA model style uses the timing annotation in the
blocking transport interface to keep track of the contention
status of resources in the transaction’s path. By retaining the
resource-busy status within a state variable located within the
interconnect, it can effectively schedule transactions at the
appropriate simulation time [14].

LT-CA approach benefits system designers and increases
their productivity in multiple ways. First, it does not require
implementing an elaborate call sequence with multiple phases
of the transaction using non-blocking transport interface meth-
ods. Bug-free implementation of the transaction base protocol
used in approximately-timed modeling without race-condition
tends to be time-consuming and cumbersome. Second, LT-
CA modeling does not require complex data structures such
as Payload Event Queue (PEQ) to store pending transactions
that can potentially slow the simulation speed. Finally, the
LT-CA model can be effectively used to create an agile
hardware/software co-design environment where the system

designer can develop software by taking the effect of critical
aspects of resource contention early in the design flow. Given
the significant benefits of the LT-CA approach, it is not intended
to replace approximately-timed or cycle-accurate simulations.

The LT-CA model can effectively model system platforms
with multi-cores and shared interconnect and memory. As
depicted in Fig. 1, a 16-core multi-core architecture connected
to the shared bus interconnect and memory is modeled using
TLM-2.0 sockets, generic payloads with memory addressing
and transaction timings.

 bus interconnection

core0 core15

memory

core1 core2 core14

Fig. 1: SystemC TLM-2.0 platform model of simplified multi-
core architecture with bus interconnect and shared memory
(adapted from [14])

In this work, we will extend the approach by also supporting
multi-level hierarchies and caches as illustrated in Fig. 2.

bus interconnect

cache_L2_1cache_L2_0

cache_L1_1cache_L1_0

core0 core1

memory

cache_L3

devices

cache_L2_15

cache_L1_15

core15

cache_L2_14

cache_L1_14

core14

Fig. 2: SystemC TLM-2.0 virtual platform model of symmetric
multiprocessing system (SMP) with multi-level caches and
shared memory

A. Bus Contention using busy_until [14]

Before we describe our novel BusyMap approach for LT-
CA modeling, we briefly review the existing work [14] as a
reference for later comparison. The published approach [14]
is very simple yet effective. It uses a single time stamp
busy_until, which keeps track of the time a resource is
busy. We replicate this approach in Algorithm 1 (with minor
modifications1) for easier comparison. The bus module for-
wards incoming transactions to a memory or other targets after
performing address translation. It observes the delay incurred

1The original component [14] supports only one outgoing target socket
(essentially acts as a multiplexer), but we use it here as a bus that routes
packets to different targets.



in the target (memory_delay) and uses that to maintain
bus contention. Here, the bus is considered busy for its own
bus_delay plus the memory_delay. This is recorded in
the status variable busy_until. The remaining time left until
the bus and memory become available again (busy_delay)
is added to the cumulative contention of the bus during the
simulation. Finally, the timing annotation of the transaction is
extended with the bus_delay (latency of address translation
and routing) and busy_delay (time to wait for bus access
due to other transactions being processed).

Algorithm 1: Modeling bus contention using a time
stamp busy_until (adapted from [14])

Module Bus BusyUntil begin
target socket S in[NUM TARGETS];
initiator socket S OUT[NUM INITIATORS];
time bus delay;
time contention := 0;
time busy until := 0;
Procedure ForwardRequest(trans, delay) begin

// perform address translation
socket := decode and translate(trans.address);
// forward the transaction
d1 := delay;
socket→b transport(transaction, delay);
d2 := delay;
memory delay := d2 - d1;
// maintain bus contention
busy span := bus delay + memory delay;
busy until := max(busy until, global time);
busy delay := busy until - global time;
busy until += busy span;
contention += busy delay;
delay += bus delay + busy delay;

end
end

While this approach supports a First-Come-First-Served
(FCFS) arbitration policy2, it cannot handle temporal decou-
pling because it relies on global_time being current at all
times. Looking closer into [14], we note two assumptions that
must hold:

1) Components after the bus (outgoing b_transport
calls to the initiator sockets) must never call wait
because such delay would not be observed.

2) Components before the bus (incoming b_transport
calls from the target sockets) must always call wait to
keep current with the global_time.

While the first assumption is desirable and necessary for
speedy LT-CA simulation, the second assumption is too strict
because it forbids temporal decoupling. With temporal decou-
pling, initiators use the interconnect out-of-order with different
delay offsets from the global_time. We will address this
short-coming of [14] in the next section.

IV. BUSYMAP

The BusyMap data structure is an ordered map of key-value
pairs (k, v). Both keys and values are of type time (sc_time

2A Round-Robin approximation is also supported [14], but not relevant here.

in SystemC). As illustrated in Fig. 3, the key k specifies the
start time when the resource becomes busy. The corresponding
value v specifies the duration of how long the resource is used.
In the example, the resource is busy from the start time 0 until
time 3, then available until time 5, when it becomes busy again
for the duration of 2 time units, and so on. Note that the busy
periods [k, v) include the start time indicated by the key k and
last up to time k + v (exclusively).

[0, 3)

0 5 10

[5, 7) [8, 12)Busy Periods:

Map Elements: 0 3

Type: std::map<sc_time,sc_time>

5 2 8 4

Timeline:

Fig. 3: BusyMap data structure, an ordered map of
(start,duration) pairs

Since BusyMap is an ordered map, busy periods can be main-
tained efficiently during simulation. Whenever a resource is
used, a corresponding reservation is entered into its BusyMap.
Note that due to temporal decoupling, reservations can come
in out-of-order. The complexity of finding or inserting a new
busy period into the data structure is O(log n) where n is the
number of existing map elements. This holds true even when
we merge busy periods to keep the size of the data structure at
a minimum. For example, if in Fig. 3 the resource is reserved
at time 3 for 1 time unit, we extend the preceding map element
[0, 3) to [0, 4) (busy_map[0]=4;) rather than inserting a new
element [3, 4). Also, if an available period is reserved entirely,
for example, time [7, 8), we merge the two adjacent periods
[5, 7) and [8, 12) into a single one, i. e. [5, 12).

When the simulator increases the system time, we adjust
the BusyMap data structure accordingly to keep its size at
minimum3. Specifically, we delete all elements with time
periods before the current system time. Here, if the first map
element (k, v) overlaps the current time t, we shorten it to
(t, v − (t− k)).

A. Bus Contention using BusyMap

To observe and reflect contention in TLM-2.0 models
with temporal decoupling, we place a BusyMap instance
inside arbitrated interconnect components. Algorithm 2 lists
the pseudo-code of a bus module with its essential member
variables and methods. In contrast to Algorithm 1 with the
busy_until member, the BusyMap algorithm contains the
ordered busy_map.

The method ForwardRequest implements the bus functionality.
It decodes and translates addresses before forwarding the
b_transport call. For the latter, it considers any delay off-
set in addition to global_time due to temporal decoupling.
This produces an accurate memory_delay, regardless of

3Unless we want to use older BusyMap elements for tracing purposes or
other analysis, we remove expired elements as soon as possible to minimize
the complexity of the data structure maintenance operations.



Algorithm 2: Modeling bus contention using BusyMap
Module Bus BusyMap begin

target socket S in[NUM TARGETS];
initiator socket S OUT[NUM INITIATORS];
time bus delay;
time contention := 0;
ordered map<time,time> busy map;
Procedure ForwardRequest(trans, delay) begin

// perform address translation
socket := decode and translate(trans.address);
// forward the transaction
d1 := global time + delay;
socket→b transport(transaction, delay);
d2 := global time + delay;
memory delay := d2 - d1;
// maintain bus contention
busy span := bus delay + memory delay;
AdvanceTime();
available slot := FindFreeSlot(d1, busy span);
busy delay := availabe slot - d1;
SetBusy(available slot, busy span);
contention += busy delay;
delay += bus delay + busy delay;

end
Procedure AdvanceTime begin

if busy map.empty() then
return;

end
keep := busy map.upper bound(global time);
if keep = busy map.begin() then

return;
end
cut := prev(keep);
if cut→start = global time then

busy map.erase(busy map.begin(), cut);
return;

end
if (cut→start + cut→duration) > global time then

cut duration := cut→start + cut→duration -
global time;

busy map.erase(busy map.begin(), keep);
busy map[global time] := cut duration;

else
if keep = busy map.end() then

busy map.clear();
else

busy map.erase(busy map.begin(), keep);
end

end
end

end

whether components after the bus call wait or not (condition
1 in Section III-A).

Bus contention is then maintained similar to Algorithm 1
but with three helper functions using the busy_map. First,
AdvanceTime updates the busy_map to keep it in sync with any
advances in global_time. As mentioned above, any map
elements before global_time are erased or cut short to keep
the data structure’s size minimal.

Second, FindFreeSlot listed in Algorithm 3 finds the first
available time where a period [earliest,span) can be reserved.
It efficiently locates the earliest applicable map element and
traverses the map until a large enough gap is found.

Finally, SetBusy reserves an identified slot in busy_map.

Algorithm 3: Modeling bus contention using BusyMap
(continued)

Function FindFreeSlot(earliest,span) begin
if busy map.empty() then

return earliest;
end
iter := busy map.upper bound(earliest);
if iter = busy map.begin() then

gap at := 0;
else

gap at := prev(iter)→start + prev(iter)→duration;
end
if gap at<earliest then

gap at := earliest;
end
while iter ̸= busy map.end() do

gap duration := iter→start - gap at;
if span ≤ gap duration then

return gap at;
end
gap at := iter→start + iter→duration;
iter++;

end
return gap at;

end
Procedure SetBusy(slot,span) begin

if busy map.empty() then
busy map[slot] := span;
return;

end
r := busy map.upper bound(slot);
if r = busy map.begin() then

if r→start = slot + span then
busy map[slot] := span + r→duration;
busy map.erase(r);

else
// no adjacency, insert a new element
busy map[slot] := span;

end
return;

end
l := prev(r);
if l→start + l→duration = slot then

if (r ̸= busy map.end()) and (r→start = slot + span)
then
// merge in between adjacent elements
l→duration += span + r→duration;
busy map.erase(r);

else
// merge with adjacent element on the left
l→duration += span;

end
else

if (r ̸= busy map.end()) and (r→start = slot + span)
then
// merge with adjacent element on the right
busy map[slot] := span + r→duration;
busy map.erase(r);

else
// no adjacency, insert a new element
busy map[slot] := span;

end
end

end



As indicated above, any adjacent elements are merged for
efficiency.

V. EXPERIMENTS

We have applied the proposed contention modeling approach
to several SystemC model examples. We first tested two syn-
thetic examples to validate our modeling approach’s accuracy,
effectiveness, and generality. Then, we evaluate the contention
modeling with a real-world design, a parallel implementation
of a JPEG encoder running on an RISC-V SMP model with
multiple levels of caches to demonstrate the performance of
the BusyMap contention modeling. The experiments are per-
formed on an Intel Xeon(R) E-2388G host machine, running
on 3.20GHz with 16 cores (8 cores with 2-way hyperthreaded).

A. Bus3Init

We first examine the accuracy of the proposed BusyMap bus
on a synthetic example of three TLM-2.0 loosely-timed core
initiator modules. Fig. 4a shows how cores are connected to the
shared bus and memory. The three cores concurrently process
a sample workload for three time units and send a transaction
that occupies the bus and memory for two time units. We
repeat this test pattern thrice in each core. Fig. 4b shows a
sample simulation trace for the BusyUntil bus with the global
quantum value of zero. As shown, the total simulated time 4 and
bus contention 5 are 21 and 12 units, respectively. To validate
the proposed BusyMap’s temporal decoupling accuracy, we
simulate the model with the BusyMap bus and sweeping global
quantum values from 0 to 13 units. As shown in Table I,
the simulated time and bus contention values show the high
accuracy of BusyMap.

B. Hierachical buses

We also design and evaluate a TLM-2.0 LT model of cores
and hierarchy of caches and interconnects to show the effective-
ness of BusyMap in supporting multiple-level bus hierarchies.
Fig. 5 shows a mock-up example of two cores connected to
L1 caches and a high-performance bus model, such as the
Advanced High-performance Bus (AHB) to shared memory.
The AHB bus is connected to a peripheral bus, such as the
Advanced Peripheral Bus (APB), via a bridge to slower devices
like the keyboard and mouse. In contrast to the BusyUntil
bus, the BusyMap bus supports multiple-level caches and
buses hierarchy. Moreover, relaxing the need that components
before the bus must always call wait to stay current with
the global_time (condition 2 in Section III-A) would lead
to built-in atomicity for transactions that the system designer
can leverage for faster simulation while maintaining accurate
contention modeling as we show in Section V-C.

C. Parallel JPEG encoder on RISC-V SMP virtual platform

We evaluate the simulation performance of BusyMap using
a real-world parallel JPEG encoder application running on a
RISC-V instruction set simulator (ISS) [15] using hierarchical
caches on a symmetric multiprocessor (SMP) model (Fig. 2).

4The time advanced and maintained by the simulator
5Total accumulated contention experienced by all transactions

Our system platform models caches as fully associative with
the Least Recently Used (LRU) replacement algorithm. We
model write-through with write-upgrade caches to maintain
coherency between the local caches and instantly update the
new value in every other local cache. We use write-through
with upgrade as this coherency method ensures data consistency
between the caches even when atomic operations are not
guaranteed, as the busy_until bus does not work when
multiple blocking transports are generated from the same socket
(limitation due to condition 2 in Section III-A). To alleviate
this issue, the cache must call wait() before issuing another
blocking transport. During the wait() statement, the cache
data may no longer be consistent, so write-upgrade is the best
policy for this evaluation. As shown in Table II, the simulated
time in the BusyMap bus matches the busy_until bus
at lower values of global quantum. As the global quantum
increases, the simulation accuracy is reduced by around 12%.
However, a significant simulator run time speed-up is gained.
We also measure the number of (wait()) statements required
for local quantum keepers in cores to synchronize with the
global quantum. We observe that as the global quantum value
increases, the number of wait() calls is reduced, reducing
context switching and improving simulator run time.

A significant advantage of the BusyMap bus is the ability
to monitor contention accurately while retaining the atomicity
in the model. Considering the RISC-V ISS, the core only calls
the wait() statement after performing a blocking transport
to retrieve either instructions or data from the main memory.
When we introduce hierarchical caches between the core and
memory into the model, these caches must be coherent with
each other. If we call wait(), in either the caches or memory,
then the atomicity of the transaction is lost, as the simulator
will context switch, and another core may change the data,
which could end up with incorrect data when the blocking
transport returns to the core. This is a limitation when modeling
more complicated write-back caches using the busy_until
bus, as the core must wait before generating new transaction
through the same socket (i.e., the cache needs to write-back
data and simultaneously retrieve data from the main memory
for its core). The BusyMap does not have this limitation, as it
can accurately monitor bus contention and only needs to call
wait() at the core. This enables the system designer to model
more complex write-back caches to maintain coherency while
guaranteeing atomicity (e.g., MESI protocol).

VI. CONCLUSION

Resource contention modeling is a critical aspect that must
be addressed early in the design flow for effective embedded
system design. However, system models that can reflect re-
source contention accurately must have detailed timing, which
significantly slows simulation speed and is often developed
later in the design stages. This paper proposes BusyMap, a
novel data structure that can efficiently be used in resource
contention modeling in SystemC TLM-2.0 loosely-timed and
temporally decoupled models. Our experimental results show
that BusyMap can successfully be used in modeling multi-
level interconnects and caches in temporal decoupled loosely-



core0 core2

bus interconnect

memory

core1

(a)

Time
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

C0 C1 C2

18
19
20

Computation

Memory access

Bus contention

(b)
Fig. 4: (a) TLM-2.0 model of 3 initiator modules concurrently sending transactions to a shared bus and memory (b) Simulation
trace for BusyUntil bus with global quantum value of zero (simulated time = 21 units, bus contention = 12 units)

TABLE I: Total simulated time and bus contention for Bus3Init model with different global quantum values

Simulated time Bus contention
Global quantum BusyUntil BusyMap BusyUntil BusyMap
0 21 21 12 12
1 21 21 12 12
2 21 21 12 12
3 21 21 12 12
4 21 21 12 12
5 21 21 12 12
6 22 20 15 14

Simulated time Bus contention
Global quantum BusyUntil BusyMap BusyUntil BusyMap
7 22 23 15 14
8 21 25 19 14
9 21 20 19 14
10 27 20 24 14
11 27 22 24 16
12 27 27 24 16
13 29 29 32 16

TABLE II: Parallel JPEG simulation results running on RISC-V SMP

Simulated time Bus Contention Simulator run-time # wait statements (cores) # wait statements (caches)
Global quantum BusyUntil BusyMap BusyUntil BusyMap BusyUntil BusyMap BusyUntil BusyMap BusyUntil BusyMap
0ns 2.33s 2.33s 3.94s 4.00s 30m49s 18m50s 63574400 63628015 21359780 0
10ns N/A 2.33s N/A 4.00s N/A 18m48s N/A 63628015 N/A 0
100ns N/A 2.33s N/A 3.90s N/A 13m33s N/A 22157149 N/A 0
1000ns N/A 2.44s N/A 4.71s N/A 11m38s N/A 6478006 N/A 0
10000ns N/A 2.65s N/A 5.95s N/A 10m20s N/A 896267 N/A 0

cachecache

core0 core1

AHB

memory

keyboard

APB

mouse

bridge

Fig. 5: Hierarchical buses with multi-level caches

timed models. The SystemC model can achieve a speedup of
up to 3x on a 16-core host with only 10% accuracy loss in
simulated time and bus contention. Our future work includes the
evaluation of BusyMap on more industry-strength applications
and improving its speed-accuracy tradeoff.

REFERENCES

[1] D. C. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: From the
Ground Up, Second Edition, 2nd ed. Springer Publishing Company,
Incorporated, 2009.

[2] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System
Design: Modeling, Synthesis and Verification, 1st ed. Springer Publishing
Company, Incorporated, 2009.

[3] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Design Methodology. Kluwer Academic
Publishers, 2000.

[4] IEEE Computer Society, IEEE Standard 1666-2011 for Standard SystemC
Language Reference Manual. IEEE, New York, USA, 2011.

[5] M. I. Frank, A. Agarwal, and M. K. Vernon, “Lopc: Modeling contention
in parallel algorithms,” p. 276–287, 1997.

[6] C. Chen and F. Lin, “An easy-to-use approach for practical bus-based
system design,” IEEE Trans. Computers, vol. 48, no. 8, pp. 780–793,
1999.

[7] A. Bobrek, J. M. Paul, and D. E. Thomas, “Shared resource access
attributes for high-level contention models,” in 2007 44th ACM/IEEE
DAC, 2007, pp. 720–725.

[8] D. Bertsekas and R. Gallager, Data Networks (2nd Ed.). USA: Prentice-
Hall, Inc., 1992.

[9] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC,
2002.

[10] S. Kunzli, F. Poletti, L. Benini, and L. Thiele, “Combining simulation and
formal methods for system-level performance analysis,” in Proceedings
of the DATE Conference, vol. 1, 2006, pp. 1–6.

[11] E. Wandeler, “Modular performance analysis and interface based design
for embedded real time systems,” Ph.D. dissertation, ETH Zurich, Zurich,
Switzerland, 2006.

[12] F. Gregoretti, G. Balbo, G. Conte, and M. Marsan, “Modeling bus
contention and memory interference in a multiprocessor system,” IEEE
Transactions on Computers, vol. 32, no. 01, pp. 60–72, jan 1983.

[13] A. Bobrek, J. M. Paul, and D. E. Thomas, “Stochastic contention
level simulation for single-chip heterogeneous multiprocessors,” IEEE
Transactions on Computers, vol. 59, pp. 1402–1418, 2010.

[14] E. M. Arasteh and R. Dömer, “Fast loosely-timed deep neural network
models with accurate memory contention,” ACM Transaction on Embed-
ded Computer Systems, jul 2023.

[15] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Extensible and config-
urable risc-v based virtual prototype,” in 2018 Forum on Specification &
Design Languages (FDL), 2018, pp. 5–16.


