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Abstract— Most parallel SystemC approaches have

two limitations: (a) the user must manually separate all

parallel threads to avoid data corruption due to race con-

ditions, and (b) available hardware vector units are not

utilized. In this paper, we present an advanced compiler

infrastructure for automatic parallelization of SystemC

models at the thread-level. In addition, our infrastruc-

ture exploits opportunities for data-level parallelization.

Our experimental results show a nearly linear speedup of

NxM, where N and M denote the thread and data-level

factors, respectively. In turn, a 4-core multi-processor

achieves a speedup of up to 8.8x, and a 60-core Xeon

Phi processor reaches up to 212x.

1. INTRODUCTION
The functional complexity of embedded systems has in-

creased dramatically over the last years. Additionally, many
complex design properties like energy consumption or ther-
mal heating must be considered during the design process.
Designers use simulation as a tool to validate all kinds of
characteristics of their prototypes. The combination of the
increasing complexity and the number of validated proper-
ties makes the simulation intensively time-consuming.

SystemC [1] is the de facto standard for modeling, sim-
ulating, and validating embedded systems. The Accellera
reference implementation performs simulations in a sequen-
tial fashion. In other words, at any time of the simulation
at most one simulation thread is active. SystemC TLM-2.0
provides the concept of time decoupling to speed up simula-
tions. Unfortunately, the benefit of a speed boost comes at
the price of simulation inaccuracy [2]. Other work such as [3]
and [4] propose a modified SystemC kernel that supports
multithreading. However, designers must manually iden-
tify and resolve all potential race conditions in their models.
Also, they have to ensure that the design is thread-safe.
Consequently, overlooked and not protected race conditions
often lead to incorrect simulation results.

We propose an automated compiler approach for paral-
lelizing the simulation using thread and data-level paral-
lelism to save simulation time. This approach is in contrast
with existing works that require manual code transforma-
tion. First, our SystemC compiler [5] performs a fully auto-
matic analysis to identify and exploit the available thread-
level parallelism. Additionally, our compiler performs an
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analysis for data-level parallelism based on our SystemC-
aware internal representation. The outcome is a report that
lists source code locations for vectorization optimization.
Finally, our associated parallel SystemC library simulates
the thread-safe design in out-of-order parallel fashion sim-
ilar to [6]. The data-level analysis is based on and guided
by thread-level analysis which is aware of PDES and specif-
ically SystemC semantics. Note that this distinguishes our
compiler from general-purpose compilers (such as Intel icpc)
that cannot automatically identify SIMD parallelism in the
source code.

To the best of our knowledge, this work is the first to
apply and exploit SIMD vectorization on top of thread-level
parallel SystemC simulation.

1.1 Problem Definition
The official simulation kernel of SystemC schedules the

individual threads in a sequential fashion although parallel
multi- and many-core platforms are available. Consequently,
the simulation time of modern embedded systems becomes a
bottleneck in the design flow. Simulations may run for hours
until unexpected events occur or the simulation crashes. De-
signers try to fix the behavior and then they have to rerun
the simulation from the beginning. The results of their ad-
justments are available only after another long wait.

Tile 1,1 Tile 1,2 Tile 1,y

Tile 2,1 Tile 2,2 Tile 2,y

Tile x,1 Tile x,2 Tile x,y

...

...

...

... ...

...

Grid

Simulation
Thread

Channel

Tile

Vector Unit

PU PU PU PU

Data Pool

Instruction
Pool

Tile x,y

Data Level
Parallelization

Simulation
Thread

Figure 1: General structure of a Network-on-Chip design
model with vector units in tiles

Many attempts have been made to perform SystemC sim-
ulations in parallel. Most of these solutions have two major
limitations. First, the designer has to manually partition
his design into different domains. Through the lack of au-
tomation for parallelization, designers merge the orthogo-
nal concepts of design methodology and techniques to save
simulation time. Second, traditional parallel discrete-event
simulation is limited to thread-level parallelism. Vectoriza-
tion units for high-performance computing are not utilized
although they have been available in standard PCs for 8
years. General-purpose compilers like the Intel icpc have
significantly higher difficulty in identifying potential paral-
lelism because they are not aware of the intricate SystemC
semantics.



Network-on-Chip (NoC) design is a popular pattern in the
embedded systems domain. Figure 1 illustrates a typical
NoC platform that is assembled by a hosting grid and tiles
which are organized in rows and columns. A tile communi-
cates with the other tiles located to the north, west, south,
and east. This architecture is well-suited for distributed al-
gorithms. Often, tiles follow the same computation pattern
but they are computing different parts of the same problem.
Such a NoC supports parallel simulation in multiple ways.
On one hand, thread-level parallelism is given through the
individual tiles which process in parallel. On the other hand,
each tile can perform faster through data-level parallelism.

In this paper, we propose an automatic solution to run
simulations in an ultimate parallel fashion. We extend the
SystemC compiler [5] which first reads a design and identifies
the associated design hierarchy. Next, it performs conflict
analysis to identify potential race conditions and partitions
each thread into a set of segments [6]. Each segment consid-
ers all statements that can be executed in a scheduling step
of a thread. In addition to the thread-level parallelism, we
add analysis to identify data-level parallelism. More specif-
ically, our compiler identifies candidates for vectorization
in the design by taking the information from the thread-
level analysis into account. Finally, the designer can decide
whether or not the identified code locations are suitable and
worthwhile for vectorization.

1.2 Related Work
Parallel discrete-event simulation is a well-studied subject.

Initial work has been contributed by [7] on thread-level par-
allelism.

The concept of a segment graph for parallel simulation
of threads was first introduced in [6] for synchronous and
out-of-order parallel simulation. Later, the segment graph
infrastructure was used for may-happen-in-parallel analysis
for safe ESL models in [8]. In contrast, we are using the
segment graph to identify and exploit thread and data-level
parallelism to achieve higher simulation performance.

Time decoupling is a widely-used method which can speed
up the simulation of SystemC models. Parts of the model
execute in an unsynchronized manner for a user-defined time
quantum. However, this strategy generally suffers from in-
accurate simulation results [2]. [4] and [9] propose a tech-
nique to parallelize time-decoupled designs. This technique
requires the designer to manually partition and instrument
the model in segments of time-decoupled zones. The au-
thors state ”Preparation for time-decoupled parallel simula-
tion was done in less than one person-day.” [9]. In contrast,
our approach supports a 100% accurate simulation of designs
and our compiler automatically instruments the design for
parallel execution in minutes. In other words, the designer
does not need to be familiar with the design to perform a
safe and fast parallel simulation.

A tool flow for parallel simulation of SystemC RTL mod-
els was proposed in [10]. The model was partitioned ac-
cording to a modified version of the Chandy–Misra–Bryant
algorithm [11]. In contrast, our conflict analysis considers
the individual statements of threads. Also, our solution is
not restricted to RTL models.

An approach of static analysis for simulation of SystemC
models on GPUs was provided in [12]. In contrast, our ap-
proach performs an automatic analysis on the thread and
data-level parallelism. [13] proposes an automated tranfor-

mation of RTL applications to GPUs. Here, it is required
that the RTL input description is synthesizable.

2. PARALLEL COMPUTATION
Parallel computation is a general strategy to optimize the

execution time of programs. This technique is applied on
various levels e.g. instruction-level, data-level, and thread-
level parallelism, as well as through distributed computing.
The objective of exploiting instruction-level parallelism is to
maximize instruction throughput. Here, a CPU is organized
as a pipeline, such as the traditional RISC hardware archi-
tecture. Each instruction is partially executed at a different
stage in the pipeline. Data-level parallelism is often associ-
ated with the term single instruction multiple data (SIMD).
Multiple operations of the same kind are executed in par-
allel with different data sets. This technique is often used
to parallelize low-level loops. At the thread-level parallelism,
the individual threads of a program are executing in paral-
lel fashion. It must be verified that no race condition occurs
among the individual threads. Otherwise, the simulation
is compromised and incorrect behavior occurs. Finally, the
computation can be distributed over a network of PCs which
is called distributed computing.

2.1 Thread Level Parallelism
The thread-level analysis identifies potential race condi-

tions between the individual threads. In detail, we partition
each thread into segments. A segment considers all poten-
tially executed expressions between two scheduling steps. A
new scheduling step is triggered with a wait() function call
which yields control back to the simulation kernel. Figure 3
shows a segment graph of the simple source code in Figure 2.

0 void foo() { 

1   index++;

2   wait(1,SC_NS);

3   k=i+j;

4   if(test){

5     cnt2++;

6     wait(2,SC_NS);

7     cnt3++;

8   } else {

9     cnt=iter+k;

10  }

11  sqr=sqr*sqr;

12  wait(3,SC_NS)

13  iter2=sqr+9; }

Figure 2:
Example Source Code

index++

k=i+j;

test

cnt2++;

cnt=iter+k;

sqr=sqr*sqr;

wait(1,SC_NS)

cnt3++;

sqr=sqr*sqr;

wait(2,SC_NS)

iter2=sqrt+9

wait(3,SC_NS)

Figure 3:
Segment Graph of Figure 2

The segment graph has similarities with a control flow
graph but differs significantly in semantics. A new segment
is only started when a wait() function call occurs. For in-
stance, the exemplary graph in Figure 3 has four different
segments where the first segment is the initial one and the
three others are initiated with wait() calls. Also, it is pos-
sible that a statement occurs in multiple segments. The
segments starting in line 2 and line 6 both include the state-
ment sqr=sqr*sqr.

After the segment graph is created for all threads, the
data conflict analysis takes place. All read and written vari-
ables are analyzed for each segment. Next, all segments are
compared for possible read-after-write and write-after-write
conflicts. Finally, we pass the conflict table to the parallel
simulator for decision making at run time.



2.2 Data Level Parallelism
Vectorization, a.k.a. parallelization utilizes additional hard-

ware units in parallel lanes to speedup the computation.
Multiple operations of the same type are executed with dif-
ferent data in parallel. For instance, the Intel Advanced
Vector Extensions (AVX) have a data width of 256 bit and
they can process up to eight 32 bit integer operations or four
64 bit double operations in parallel. Due to some overhead
of arranging data in lanes, data-level parallelism pays off
best in loops.

Various criteria must be satisfied to vectorize a loop. First,
the loop contains only straight-line code. In other words,
each lane in the vectorization unit must perform the same
operation. On one hand, goto and switch statements are
not allowed because for each loop iteration the control flow
would change. On the other hand, if statements are al-
lowed, if they can be transformed into masked assignments.
Second, vectorization includes unrolling of loops. So a loop
can be only vectorized if the number of loop iterations is
countable. Additionally, no loop index variable can be writ-
ten in the loop body. Next, no data dependent exit condi-
tions are allowed e.g. if(...)break;. Finally, no backward-
carried data dependencies (e.g. A[i]=A[i-1]+2;) can be in
the loop body. A full list of vectorization requirements is
available in [14]. We do not follow function calls of built-in
functions that are available as vectorized versions. Built-
in mathematical functions, such as sqrt() and sin() are
supported by the Intel icpc compiler for vectorization.

Listing 1 shows the structure of a canonical loop. The
code fragment can be easily vectorized. Listing 2 shows two
nested loops where the inner loop cannot be parallelized due
to the data conflicts. On one hand, the inner loop writes
two variables. First, the scalar k is modified, which cannot
be vectorized. The parallel writing of the individual vec-
tor units causes conflicts. Second, the writing of array[i]

cannot be parallelized either. The inner loop iterates over
j and the writing of array[i] is interpreted as writing of
a scalar. On the other hand, the outer loop can be paral-
lelized. First, the variable k is a local variable in the loop
body. Consequently, this variable is independent from the
outer loop iterations. Second, the inner loop wont be paral-
lelized when the outer loop is parallelized.

1 int array [ 1 0 ] ;
2 for ( int i =0; i <10; i ++){
3 array [ i ]=42;}

Listing 1: Canonical loop

1 int array [ 1 0 ] ;
2 for ( int i =0; i <10; i ++){
3 int k ;
4 for ( int j =0; j <10; j++){
5 k++;
6 array [ i ]=42; }}

Listing 2: Nested loop

Our heuristic analysis produces a list of loops which are
potential candidates for vectorization. To confirm this, the
designer must annotate them in the source code. Specifi-
cally, a #pragma simd is inserted before the loop to be vec-
torized. We should emphasize that this manual interaction
is necessary because data-level parallelization requires appli-
cation knowledge that only the designer can provide. The
underlying compiler (the Intel icpc) can cover only C++ se-
mantics. Our proposed compiler adds SystemC interpreta-
tion, but application-specific knowledge can only come from
the human designer.

Algorithm 1 shows our proposed heuristic to identify data-
level parallelism in a SystemC application. The recursive

algorithm takes as input a statement s and analyzes if all
reachable statements from s are vectorizable. The return
value is a tuple where the first element indicates whether or
not the statements are vectorizable. The second element is
the list of the reachable statements. We provide as input
statement the function body of each individual simulation
thread. This information is only available with the sup-
port of our SystemC-aware compiler which also performs
the thread-level analysis.

Algorithm 1 Identification of SIMD loop candidates

1: function Vectorizable(s)
returns (isV ectorizable, expressions)

2: if s ∈ {goto, continue, break, label} then
3: return (NotVectorizable, ∅)
4: end if
5: if s ∈ {variabledeclaration, expression} then
6: (r1, e1)← ( Vectorizalbe, Expr(s))
7: for all f ∈ FuncCalls(s) do
8: (r2, e2)← Vectorizable(GetFuncDefBody(f))
9: (r1, e1)← (r1 ⊕ r2, e1 ∪ e2)
10: end for
11: return (r1, e1)
12: end if
13: if s ∈ {if} then
14: (r1, e1)← Vectorizable(IfBlock(s))
15: (r2, e2)← Vectorizable(ElseBlock(s))
16: return (r1 ⊕ r2,Condition(s) ∪ e1 ∪ e2)
17: end if
18: if s ∈ {switch} then
19: for all c ∈ Cases(s) do
20: Vectorizable(c)
21: end for
22: return (NotVectorizable, ∅)
23: end if
24: if s ∈ {compound} then
25: (r1, e1)← (Vectorizable , ∅)
26: for all s′ ∈ Statements(s) do
27: (r2, e2)← Vectorizable(s′)
28: (r1, e1)← (r1 ⊕ r2, e1 ∪ e2)
29: end for
30: return (r1, e1)
31: end if
32: if s ∈ {for, while, do-while} then
33: if ¬IsCanonical(s) then
34: return (NotVectorizable, ∅)
35: end if
36: (rb, eb)← Vectorizable(Body(s))
37: rc ← ConflictCheck(eb), IncrVar(s))
38: if (rb = Vectorizable ∧ rc = Vectorizable) ∨
39: (rc = Vectorizable ∧
40: rb ∈ {ScalarConflict, VectorConflict}) then
41: Recommend this loop for vectorization
42: return (Vectorizable, eb)
43: end if
44: if rc = VectorConflict ∧ rb = VectorConflict then
45: return (VectorConflict, eb)
46: end if
47: if rc = ScalarConflict ∧ rb = ScalarConflict then
48: return (ScalarConflict, eb)
49: end if
50: return (NotVectorizable, ∅)
51: end if
52: end function

In Algorithm 1, our classification in the first tuple ele-
ment has four different states which belong to three dif-
ferent classes. The classes are Vectorizable, NotVectorizable,
and Maybe where Maybe includes ScalarConflict and Vector-
Conflict. NotVectorizable considers the situations where the
statement s includes directly or indirectly control flow state-
ments such as switch, goto, break, or label. These jump
statements cannot be vectorized. The class Maybe consid-
ers expressions which cannot be vectorized for the current
loop but potentially for enclosing loops. ScalarConflict



reflects the situation in Listing 2 in Line 5. The loop writes
the scalar k and cannot be vectorized. However, a potential
outer loop can be vectorized as in Line 4. VectorConflict
describes a similar situation where an array is written but
the loop variable does not match the array index variable,
as loop variable j and array index i in Listing 2. The sta-
tus Vectorizable indicates that the statement is suitable for
vectorization.

We introduce the operator⊕(r1, r2)→ r3 where all operands
belong to any classification. The result is the more con-
flicting classification e.g. V ectorizable⊕ScalarConflict→
ScalarConflict. If the result belongs to the set Maybe it
can be either ScalarConflict or VectorConflict. We decided
to maintain both types instead of merging them into one,
in order to the provide more detailed information to the de-
signer.

The core of the algorithm is the if-clause in Line 32 where
we analyze if a loop is applicable for vectorization. Specif-
ically, three conditions must be satisfied. First, the loop
iterations must be countable. The function IsCanonical
checks if this is the case. Second, all nested statements must
be supported. The recursive function call in Line 36 analyzes
all nested statements. Third, we have to check if all expres-
sions are conflict-free. The function ConflictCheck ana-
lyzes if all write operations target local variables or vectoriz-
able arrays. A loop is vectorizable under two circumstances:
a) the second and the third check return Vectorizable. b) the
second check may result in ScalarConflict or VectorConflict,
but the result for the third is Vectorizable. This describes
the situation where the inner loop is not vectorizable but
the outer is. Otherwise, we distinguish if the result belongs
to the class Maybe or NotVectorizable.

2.3 Tool Flow
First, our SystemC compiler reads the design design.cpp

and translates it into a thread-safe design risc_design.cpp

to achieve thread-level parallelism. Additionally, our com-
piler provides to the designer information with candidates
for loop vectorization to exploit data-level parallelism in the
terminal. After selecting from the provided source code loca-
tions, the user inserts the statement #pragma simd in front
of the chosen loops. Finally, the design risc_design.cpp is
compiled with the Intel icpc.

The feedback of the designer is needed. An example is the
following C function: void add(float *a,float *b,float

*c,int n){for(int i=0;i<n;i++){a[i]=a[i]+b[i]+c[i];}}.
Here, arrays passed as pointers can only be vectorized if
the user asserts that there is no vector dependence in the
way. This is only possible with application knowledge, not
by static compiler analysis. Our proposed compiler, which
is aware of SystemC and its concurrent multi-threading se-
mantics, can identify this loop as a potential candidate, but
the final data independence assertion must come from the
user who knows the application specifics (i.e. the pointers
point to non-overlapping arrays).

3. EXPERIMENTS AND RESULTS
We have implemented the approach outlined above and

demonstrate the combined speedup of thread and data-level
parallelism on two different applications, namely a parti-
cle simulator on a NoC and a video Mandelbrot renderer
unit. For both applications, we measure the sequential, the
sequential with SIMD, the parallel, and the parallel with

SIMD simulator run times. On one hand, the experiments
execute on an Intel Xeon E3-1240 multi-core processor with
4 CPU cores. Each core has one simulation thread with a
vectorization unit of 256 bit width. On the other hand, we
use an Intel Xeon Phi™ Coprocessor 5110P many-core ar-
chitecture. The coprocessor contains 60 cores where each
core has a vectorization unit of 512 bit. To obtain unam-
biguous measurements, we turn CPU frequency scaling off
for all experiments.

3.1 Network-on-Chip Particle Simulator
As a comprehensive example we select a Network-on-Chip

(NoC) particle simulator model in SystemC to demonstrate
the parallel simulation capabilities of our thread and data-
level parallelism analysis. The abstract architecture of the
particle simulator is illustrated in Figure 1. The grid is
assembled of tiles where each tile communicates bidirection-
ally with a tile to its north, south, east, or west. For a 4x4
example, we have 16 tiles and one grid module. Each tile
has one thread which computes the motion of the individ-
ual particles in a certain area of the model. The particles
move continuously in 2D space. The moment when a par-
ticle crosses the boundary, the responsibility of computing
and updating the position of the particles shifts from one tile
to its neighbor tile. The entire design can be scaled up to
any quadratic size. The user can configure via the command
line the number of tiles as well as the number of particles,
the gravity, and other options.

At the beginning of the simulation, the testbench sends
the initial particles to each individual tile. This happens in
a purely sequential fashion. Next, all tiles simulate the par-
ticles and then synchronize with their neighbor tiles. A tile
is blocked when it communicates with one of its neighbors.
At the end of the simulation, all the tiles send the particle
positions back to the testbench.

First, our compiler performs a thread-level analysis of the
design. Each thread is identified and analyzed for race con-
ditions with all other threads in the design. The resulting
conflict table is then passed to our parallel SystemC library
which performs out-of-order scheduling.

Next, our infrastructure creates and inspects the call graph
of all possible threads for vectorization. The data-level par-
allelism analysis generates a list of potential locations for
the vectorization. After inspection of the list, the function
apply_force() is selected for parallelization. This function
computes the gravity influence of the individual particles on
each other. The Intel icpc compiler cannot directly identify
this function for vectorization. Our analysis builds a call
graph for each thread and filters it for possible candidate
locations. Suitable candidates are vetted by the designer
using his application knowledge. To confirm vectorization,
the designer adds #pragma simd before the for-loop in ques-
tion.

3.1.1 Experiment on the Multi-Core Host
Figure 4 shows the speedup for the particle simulator on

the four core machine. First, the blue line (diamonds) shows
the speedup M for the sequential SIMD simulation between
1.6x and 2.1x. This confirms our SIMD discussion above
where the maximal speedup of 4x cannot be reached due
to the needed overhead of packing and unpacking the lanes.
The increasing communication of particles among tiles re-
sults in lower parallelism (Amdahl’s law) which explains the
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decreasing speedup. For a 7x7 grid size, 49 threads are ac-
tive and communicating synchronously bidirectional to the
associated neighbor threads. So, intensive core to core com-
munication limits the parallelism.

The red line (squares) shows the thread-level speedup N ,
generally increasing with higher grid sizes. The measure-
ment and the resulting total speedup (N × M) shown in
green (triangles) show a zig-zag pattern. Grid sizes with
an even number of rows and columns perform better than
the grid sizes with odd number of rows and columns. This
phenomenon is due to the implementation of the particle
simulator, in particular due to its communication character-
istics. Figure 5 compares the communication pattern of a
3x3 and 4x4 grid.
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Figure 5: Communication pattern of the Particle Simulator

First, for the 4x4 grid the odd rows are communicating
with the neighbors to the south (indicated as 1 ). In this
case, eight communication pairs are active at the same time.
Next, the even rows communicate to their south neighbors.
Here, the last row communicates with the first row. Again,
eight pairs are available for the parallel simulation (indicated
as 2 ). So, at any point all four cores are fully utilized. The
same applies for the horizontal communication.

For the 3x3 grid, the simulation has different characteris-
tics. First the odd rows start communicating which is only
the first row 1 . Three pairs are available for execution
which means that only three out of four cores are used. Next,
the odd rows communicate 2 . Again, only three pairs are
available, one core stays idle. Finally, the last row commu-
nicates with the first row 3 . In all phases, only three out
of four cores are utilized. All over, the 4x4 grid can gain

higher speed up due to the higher core utilization.
This explanation applies for the other gird sizes as well.

For instance, the 6x6 grid size with 36 threads can be better
utilized than a 5x5 with 25 threads on a 4 core machine.

Finally, the green (triangle) line shows the combination of
the parallel and SIMD technique essentially the product of
N ×M . The product of the sequential with SIMD and par-
allel simulation show the combined speedup. The maximal
speedup is 6.8x which is impressive on 4 cores.

3.1.2 Experiment on the Many-Core Host
We simulated the particle simulator on the many-core ar-

chitecture as well. The Intel Xeon Phi 5110P Coproces-
sor hardware has a ring architecture of cores. Two cores
are communicating over a third core which hosts as a so-
called tag directory. This communication scheme causes a
high traffic congestion. In our simulations, the speedup is
marginal (below 5x) and constantly decreases with the in-
creasing number of threads. Similar results and the impor-
tance of a sophisticated thread to core mapping have been
shown in [15] for this specific architecture. So, we decide not
to investigate the NoC benchmark further on this platform.

3.2 Mandelbrot Renderer
The Mandelbrot renderer is a parallel video application

to compute the Mandelbrot set [16]. Basically, the Device
under Test (DUT) hosts a number of renderer units. Each
unit computes a different slice of the Mandelbrot image. At
compile time, the user defines how many slices are available.
During the simulation, the DUT provides coordinates to the
individual slices. A slice computes the Mandelbrot set for
the given coordinates and sends the results back. The DUT
receives the data from each unit and stores them. Finally,
new coordinates are provided to all slices for the next frame.
In contrast to the NoC particle simulator where tiles are
intensively communicating, the individual renderer units are
fully independent.

Our compiler automatically applies the thread-level paral-
lelism to the individual threads of the renderer units. The
data-level parallelism analysis identifies the central loop in
the function mandel_row() as a candidate for vectorization,
which we confirm.
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3.2.1 Experiment on the Multi-Core Host
Figure 6 shows the simulation speedup for the Mandel-

brot renderer with up to 256 different units on the 4 core
machine. First, the sequential simulation with SIMD sup-
port (blue diamonds) achieves a speedup M of about 1.7x.



Table 1: Simulation speedup for the Mandelbrot renderer on the multi- and many-core host architectures.

Slices 4 Core Machine 60 Core Machine with 4 Hyperthreads Each

Execution Time / CPU Utilization Speedup Execution Time Speedup
seq seq.simd par par.simd seq.simd par par.simd seq seq.simd par par.simd seq.simd par par.simd

1 41.53 100% 23.80 99% 41.74 99% 23.88 99% 1.74 0.99 1.74 393.76 56.94 393.52 56.70 6.92 1.00 6.94
2 41.66 99% 23.99 99% 25.14 165% 14.32 166% 1.74 1.66 2.91 393.75 56.92 234.15 33.44 6.92 1.68 11.77
4 41.91 99% 24.22 99% 14.53 297% 8.39 294% 1.73 2.88 5.00 393.79 56.92 129.45 18.58 6.92 3.04 21.19
8 42.36 99% 24.61 99% 12.28 354% 7.31 341% 1.72 3.45 5.79 393.75 56.92 67.36 9.82 6.92 5.85 40.10

16 43.07 99% 25.23 99% 11.74 372% 6.90 361% 1.71 3.67 6.24 393.77 56.93 34.62 5.43 6.92 11.37 72.52
32 44.58 99% 26.51 99% 11.44 381% 6.76 369% 1.68 3.90 6.59 393.80 56.97 18.47 2.87 6.91 21.32 137.21
64 46.69 99% 28.05 99% 11.41 382% 6.73 371% 1.66 4.09 6.94 393.90 57.12 9.59 1.89 6.90 41.07 208.41

128 50.85 99% 32.42 99% 11.46 381% 6.70 373% 1.57 4.44 7.59 393.97 57.14 8.51 1.85 6.89 46.29 212.96
256 58.99 99% 41.37 99% 11.43 382% 6.69 374% 1.43 5.16 8.82 394.20 57.35 7.90 2.03 6.87 49.90 194.19

The increasing number of slices slightly affect the speedup.
Through the increasing number of threads in combination
with the data need of the vectorization units, higher mem-
ory traffic occurs. Next, the thread-level parallelism (red
squares) provides a speedup N of nearly 5.1x. This super-
linear speedup is possible due to the poor cache utilization of
sequentially scheduling 256 threads on the 4-core machine.
Table 1 shows the increase from 41.5 seconds to 59 seconds
for this sequential reference case. Finally, the combination
of the thread and data-level parallelism N ×M reach a total
of up to 8.8x.

3.2.2 Experiment on the Many-Core Host
Finally, we simulate the Mandelbrot renderer on the Intel

Xeon Phi many-core architecture. Figure 7 shows the sim-
ulation results. Due to the minimal communication needs
compared to the particle simulator, highest speedups are
reached. The vectorization unit with 512 bit can execute up
to eight double-precision floating-point operations in paral-
lel. A speedup M of 6.9x is achieved. The thread-level par-
allelization increases strongly on the 60 cores with a speedup
N of 50x. Afterwards, the speed slows down. Due to the 60
physical cores and use of hyper threads. Finally, the com-
bination of the thread and data level parallelization N ×M
generates a speedup of up to 212x.
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Figure 7: Speedup of the Mandelbrot Renderer

4. CONCLUSION AND FUTURE WORK
In this paper, we present our compiler infrastructure for

the automatic parallelization of SystemC models at the thread
level. Additionally, our infrastructure performs an analysis
to identify source locations that are suitable for data-level
parallelization. The vectorization analysis depends strongly
on our SystemC aware compiler which identifies the simula-
tion threads of the individual models and channels. To the
best of our knowledge, this work is the first to apply and
exploit SIMD vectorization on top of thread-level parallel
SystemC simulation. We demonstrated our techniques on
NoC particle simulator and Mandelbrot renderer SystemC

benchmarks on a multi- and many-core architecture. On the
4 core machine, we achieved a speedup of up to 8.8x through
the combination of thread and data-level parallelism. On
the 60 core architecture, we gained up to 212x of simulation
speedup. In future work, we plan to investigate both tech-
niques on less than highly-parallel benchmarks and other
SystemC modules.

ACKNOWLEDGMENT

This work has been supported in part by substantial funding from
Intel Corporation for the project titled ”Out-of-Order Parallel Sim-
ulation of SystemC Virtual Platforms on Many-Core Architectures”.
The authors thank Intel Corporation for the valuable support.

5. REFERENCES
[1] “IEEE Standard SystemC Language Reference Manual, IEEE

Std 1666-2011,” 2011.

[2] G. Glaser, G. Nitschey, and E. Hennig, “Temporal Decoupling
with Error-Bounded Predictive Quantum Control,” in Forum
on Specification and Design Languages (FDL), 2015.

[3] N. Ventroux and T. Sassolas, “A New Parallel SystemC Kernel
Leveraging Manycore Architectures,” in DATE, 2016.

[4] J. H. Weinstock, R. Leupers, G. Ascheid, D. Petras, and
A. Hoffmann, “SystemC-Link: Parallel SystemC Simulation
using Time-Decoupled Segments,” in DATE, 2016.

[5] G. Liu, T. Schmidt, and R. Dömer, “RISC Compiler and
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