Center for Embedded and Cyber-Physical Systems
University of California, Irvine

A Linux-based YUYV Video Player

Zhuoqi Li, Rainer Domer

Technical Report CECS-23-02
May 19, 2023

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
(949) 824-8919

zhuoqil3@uci.uci.edu
http://www.cecs.uci.edu

zhuoqil3@uci.uci.edu
http://www.cecs.uci.edu

A Linux-based YUYV Video Player

Zhuoqi Li, Rainer Domer

Technical Report CECS-23-02
May 19, 2023

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
(949) 824-8919

zhuoqil3@cecs.uci.edu
http://www.cecs.uci.edu

Abstract

A video player named ”BEST” will be introduced in this report. This tool can play YUV format video in
a Linux environment, and the player also implements some basic operations, which can make the users more
convenient to control the video playback. At the same time, the tool is based entirely on the C programming
language and GTK, which makes it more compatible with the Linux environment. Therefore, this report will
describe the details of the development, features, and basic usage of this tool, so that users can better understand
the BEST player.

zhuoqil3@cecs.uci.edu
http://www.cecs.uci.edu

Contents

1 Introduction

2 Method and Procedure

2.1
22

23
24

General Design L e
Data Structure e e e e e e e e
22.1 PixelBuffer e
Control Flow e e e
Player Functions
241 Pause e e e e
242 Replay
2.4.3 Fast-Forward e
244 Backward e e
245 FileChoose e e e

24.6 Quit

3 User Manual

4 Conclusion and Future Work

References

5 Appendix

5.1

Source Code

ii

AR DR DD LWWEN = -

=

List of Figures

1 YUYV video structure . .
2 data structure
3 Choose File
4 Choose File
5 Play Video Successfully

iii

DN W N =

A Linux-based YUYV Video Player

Zhuoqi Li, Rainer Domer

Center for Embedded and Cyber-Physical Systems

University of California, Irvine
Irvine, CA 92697-2620, USA
zhuoqil3@uci.edu
http://www.cecs.uci.edu

Abstract

A video player named "BEST” will be introduced
in this report. This tool can play YUV format video
in a Linux environment, and the player also imple-
ments some basic operations, which can make the
users more convenient to control the video playback.
At the same time, the tool is based entirely on the
C programming language and GTK, which makes it
more compatible with the Linux environment. There-
fore, this report will describe the details of the devel-
opment, features, and basic usage of this tool, so that
users can better understand the BEST player.

1 Introduction

With the development of computer technology, an
embedded system has been ubiquitous in today’s
living environment. For example, some intelligent
household appliances, refrigerators, televisions, and
intelligent systems in automobiles all require embed-
ded systems to assist and control them. At the same
time, the embedded system plays an important role in
computer control and operation. To be more specific,
embedded systems can be divided into hardware and
software. In the field of hardware, hardware about
embedded applications, such as processors and mem-
ory, are an important part of the computer. In addi-
tion, operating systems, applications, and other em-
bedded software also give the computer more func-
tions and improve the user’s work efficiency. Among
them, Linux, as a common operating system, provides

a large number of applications for computers to help
users improve their work efficiency.

The BEST player in this study also belongs to an
embedded model design, used as a software program
in the Linux operating system environment. The main
purpose of the BEST player is to play the YUV video.
However, different from other common YUYV players,
the BEST player is based directly on the GTK[3] and
C programming languages[5], so this player will be
more compatible with Linux servers. Moreover, while
some traditional YUV players[6] can also do similar
jobs, their operations are more complicated, such as
coding the command line. Therefore, this new player
tool can help to eliminate these unnecessary steps,
making video operations easier and greatly increas-
ing user efficiency. In addition, the BEST player also
includes the basic operated function of the video, such
as pause, fast forward, backward, and replay. These
functions also can help the users to manage and edit
their videos more efficacious.

2 Method and Procedure

2.1 General Design

As the information provided in Figure 1, YUV
videos are composed of multiple frames, so the BEST
player has to analyze each frame of the video first
and store the corresponding pixel to the pixel buffer.
Then, the pixel buffer can be displayed in the image
by the usage of the set image methods of GTK. By
displaying each frame quickly on the screen in se-
quence, the viewer can see a coherent sequence of
actions or scenes being represented.

s ~
Video
N /)
l s N
L Frame Frame qt Frame
A J

Figure 1: YUV video structure

zhuoqil3@uci.edu
http://www.cecs.uci.edu

At the same time, YUV is a common color model
and an efficient video storage format[4]. To be more
specific, this color model controls the brightness and
color of each pixel through three attribute variables Y,
U, and V. Thus, users can modify videos by adjusting
the YUV variables contained in each pixel, and some
YUYV players examine these YUV variables to ana-
lyze video files and play them. Based on this theorem,
the BEST player will also store the color variables
from the video file, and then set each variable to the
corresponding position in the pixel buffer[2] which is
generated by using the method in GTK. After that, the
image method “gtk_image_set_from_pixbuf” to obtain
the image from the pixel buffer and display it on the
window.

However, as mentioned before, the BEST player

has to ensure Linux servers are adapted as well as
possible, BEST player fully adopts C language and
GTK2.0 to implement video functions. Therefore,
due to the limitations of GTK2.0, the pixel buffer
can only store images in RGB format. Therefore, us-
ing YUV variables directly will be difficult to show
through GTK. To solve this problem, BEST player
will convert each frame in the video from YUV for-
mat to RGB using the existing conversion formula be-
fore storing the video.[4] After that, the pixel buffer
will be filled by the RGB values of each image, and
these images will also be rendered on the screen one
by one in the loop.

2.2 Data Structure

Current
Frame

FIrst Entry

ImagelList

Last Entry

Image
Entry

Image
Entry

Image
Entry

IENTRY IENTRY
e
ILIST L|st1 (*Next ’ *proy W

P -
Image YUV Image RGB

J

Figure 2: data structure

Since the player needs to do the conversion be-
tween YUV and RGB, a special data structure needs
to be designed to attain this requirement. Fortunately,

the data structure in EECS 22 assignment[1] can be
revised and used into this project. As figure 2 shown
above, after the YUV video is loaded, the entire video

file is stored in a data structure called Movie. The
movie structure consists of ImageList and Current-
Frame. CurrentFrame is a pointer that will point to
a frame or an image, and the ImageList will point to
the EntryList. At the same time, the first and the last
entry will be pointed by ImageList. The EntryList is
a linked list that will have a pointer to point to the
next or previous entry, and each entry also will point
to its parent ImageList. In addition, each entry will
store the pixels of the YUV image and the converted
RGB image, and these pixels are stored separately in
a one-dimensional array of YUV and RGB. In this
data structure storage, we can distinguish and save the
frames and pixels of the loaded video file.

2.2.1 Pixel Buffer

In addition to storing the video, we also need to
store the converted RGB image in the pixel buffer
in GTK2.0. According to the method in GdkPixBuf
introduction of the GDK website, it introduces the
structure of the pixel buffer exactly. Similar to the
one-bit array that stores RGB images, a pixel buffer
stores the red, green, and blue values of RGB in a one-
dimensional form. Besides to RGB value, the pixel
buffer also will store the alpha value which will set
the transparency of the image. However, since this
research will only implement the common situation,
the alpha variable will not be considered and used in
this tool. After using the method in GTK2.0, we can
get the corresponding Channel and RowStride for the
pixel buffer. Channel is the size of one pixel, and the
RowsStride is the size of one row. Therefore, accord-
ing to the position of the pixel in a frame, the position
of the pixel in the pixel buffer also will be calculated.
In other words, by allowing the number of rows in
which the pixel in the frame is located to be multi-
plied by a RowStride and adding the product of the
number of pixel columns and the number of channels,
the player can manipulate the corresponding position
of the pixel in the pixel buffer. Hence, we can calcu-
late and store the value of RGB in the corresponding
pixel buffer.

2.3 Control Flow

After the video file is loaded, the whole process
will enter the Main Control Loop, so that the win-
dow and the picture can continue to display. When
a video is loaded, every pixel of data is stored in a
Movie structure. After that, the YUV data will be
converted to RGB. Meanwhile, the second loop which
is inside the Main Control Loop in the Main method
will detect the state of the pointer in the Movie. If a
video is detected to be loaded, the process will enter a
second nested Loop and conduct other following as-
signments. In the second nested loop, the pixel value
of the CurrentFrame will be transferred to the pixel
buffer and the image on the screen will be updated
after the loop is finished.

Also, an If statement checks the current task state
in the second nested loop. For example, if the user
clicks the Pause button, the process state goes into a
paused state 1. In this case, the data transfer pro-
cess will not proceed until the user clicks the Pause
button again to restore the process state to ”0”. For
other function buttons, they do not affect the running
of the main process. When the user clicks the function
buttons, such as Forward and Backward, the process
will enter the corresponding function. Finally, when
the task finishes, the process returns the Main method.

2.4 Player Functions

[] [] N\ BEST player

Pause Replay Forward Backward Quit

ChoosefFile

Figure 3: Choose File

The player provides users with some common con-
trol functions. As the figure 3 shows, each button in
the layout has its own function, and clicking on them
allows you to manipulate the video.

2.4.1 Pause

In addition to playing the video, the BEST player
offers a range of control options to manipulate the
video. The pause option stops the video and keeps
the current video screen displayed. When the user
clicks the Pause button, the CurrentFrame pointer in
the movie structure will point to the current frame
which is playing now. At the same time, the status
of the video will be set to ”1” which represents the
pause status. Similarly, the user can select the option
to continue playing in the paused state. At this point,
the video will continue to play the remaining frames
from the paused point. Therefore, the frame which
is pointed by the CurrentFrame pointer will be trans-
ferred to the pixel buffer, and then this frame will be
printed on the screen.

24.2 Replay

The replay function allows you to replay the current
video at any time. When the user clicks the Replay
button, the CurrentFrame pointer will point directly
to the first frame of the ImageL.ist, so the video will
start playing from the first frame.

2.4.3 Fast-Forward

The video fast-forward feature allows you to jump
the video forward several frames to fast-forward the
effect. When the user clicks the Fast Forward button,
the CurrentFrame will enter a loop to achieve the fast
forward function. Because ImageList is LinkedList,
we need to loop the CurrentFrame pointer to the next
frame over and over again. When the loop is ended,
the frame which is pointed by the CurrentFrame will
be transferred to the pixel buffer, and the rest of the
video continues to play.

2.4.4 Backward

Backward is similar to fast-forward, which also
let the CurrentFrame pointer enter a loop and com-

plete the backward assignment. However, different
from the fast forward, the CurrentFrame pointer in
the Backward mode will ceaselessly point to the pre-
vious frame. Therefore, after finishing the loop, the
CurrentFrame will point to a frame which is played
before. Then, the video will start from this frame and
continue to play the rest of the video.

2.4.5 File Choose

The ChooseFile button can help the user to find
their YUV video file automatically. After the users
click the button, a window will be generated by GTK
and it will look through the content library of the user
on the server. At the same time, this method will filter
the other file and only list the YUV file on the screen.
When the user has found the file and clicked the but-
ton "OK”, the video will be loaded and played by the
BEST player.

In addition, the users do not need to input any com-
mand line, since the BEST player will help to find the
size of the file and the number of frames. The only
thing that needs to be done by the user is to provide
the resolution of the video. In this way, since the size
of each frame in the video is the same, we can allow
the total size of the video to be divided by the product
of the size of one frame and 1.5, which will help to
get the total number of frames. After that, the video
can be loaded successfully. Furthermore, the BEST
player also provides some error detection functions
to check the availability of the video. Therefore, if a
video has some problems, the BEST player will print
some messages on the screen.

2.4.6 Quit

The Quit button will stop all the processes and
close the windows. Then, the BEST player will be
exited.

3 User Manual

Before users can run BEST player, they need to en-
sure the name format of the YUV video. Because
when the BEST player loads the video, the name of
the video will be detected first so that the resolution

of the video can be obtained. For example, if the
width of a video named “example” is 480 and the
height is 360, the name of the video would be “ex-
ample_480_360.yuv”.

‘@ X| Choose a Movie

&) Recently Used

Q search spotlight_480_270.yuv 21.4MB 03/0323
rotate_480_270.yuv 21.4MB 03/0323
playersesT 136M8 03/03/23
136M8 03/03/23
136M8 030323
270.yuv 284MB 03/0323
ainzelmaennc hen_320_240.yuv 563.6 MB 03/03/23
@ home anteater_352_288.yuv 228MB 03/0323
£ boot. dive_320_240.yuv 20.7MB 03/0323
bird_352_288.yuv 21.4MB 03/0323
re: 136M8 03/02/23
13.6MB 0302123
nchen.yuv 563.6 MB 02/24/23
ark_512_288.yuv 155M8 0112723
verse.yuv 155M8 03/07/22
155MB 03/07/22

aging_512_288.yuv

& [= Untitled filter v

oK Cancel

7

Figure 4: Choose File

Later, as the figure 4 presented above, when the
user starts running BEST player, they need to first
click the ChooseFile button to select the video file.
After clicking, the user’s file directory will be dis-
played on the screen, so the user just needs to find the
file they want and click OK to play the video. Then,
as figure 5 performed, the video will be played suc-
cessfully.

[JoX] \ BEST player

Play Replay Forward Backward Quit

ChooseFile Total Frames: 70

Figure 5: Play Video Successfully

In addition, when the user clicks Pause, the video
stops playing. Meanwhile, the Pause button will be-
come the Play button. In other words, if the user con-
tinues to click the play button, the video will continue
to play. Moreover, users can click the Forward and

Backward buttons to show the video going forward
and backward. At the same time, users can tap the
two buttons at any time a video is playing, regardless
of whether the video is paused or playing.

Finally, if users want to quit the video player, they
can either click the Quit button or the Close option in
the upper left corner of the window. These two clos-
ing methods have the same effect and impact, both
will end the current task and exit the video player.

4 Conclusion and Future Work

The current version of BEST player can play the
YUV files normally. Also, without the help of ex-
ternal extension packs or other resources, this tool
can adapt to the Linux operating environment bet-
ter. At the same time, this tool also provides
users with some essential operation modes, which
also greatly improves the users' efficiency. How-
ever, the BEST player has the potential for more
progress. For example, while the BEST player can
play normal-resolution video smoothly, it can not
guarantee the same smoothness when playing high-
resolution video. In future updates, the BEST player
will do more consideration and improvement on these
issues, and continue to enhance the functionality of
the software, so that it can better serve users.

References

[1] EECS 22. https://canvas.eee.uci.edu/
courses/41966/pages/assignments.

[2] GdkPixbuf. https://docs.gtk.org/gdk-pixbuf/
class.Pixbuf.html.

[3] GTK. https://docs.gtk.org/gtk3/.

[4] Intel® Integrated Performance
itives Developer Reference.
//www.intel.com/content/www/us/en/
docs/ipp/developer-reference/2021-7/
color-models.html.

Prim-

https:

[5] Brian W. Kernighan and Dennis M. Ritchie. The
C Programming Language. Pearson Education,
1988.

[6] yay. https://github.com/mattzzw/yay.

https://canvas.eee.uci.edu/courses/41966/pages/assignments
https://canvas.eee.uci.edu/courses/41966/pages/assignments
https://docs.gtk.org/gdk-pixbuf/class.Pixbuf.html
https://docs.gtk.org/gdk-pixbuf/class.Pixbuf.html
https://docs.gtk.org/gtk3/
https://www.intel.com/content/www/us/en/docs/ipp/developer-reference/2021-7/color-models.html
https://www.intel.com/content/www/us/en/docs/ipp/developer-reference/2021-7/color-models.html
https://www.intel.com/content/www/us/en/docs/ipp/developer-reference/2021-7/color-models.html
https://www.intel.com/content/www/us/en/docs/ipp/developer-reference/2021-7/color-models.html
https://github.com/mattzzw/yay

0NN AW

S Appendix

The Appendix section will show the BEST Player code section.

5.1 Source Code

<stdio .h>
<stdlib .h>
<gtk/ gtk .h>
<string .h>
<assert.h>
<time .h>
<math .h>
<sys/time .h>

#include
#include
#include
#include
#include
#include
#include
#include

E QUSRS RS R UC RN US R US I US U I U IUC I N I (O I NS I (O R NS I (S N S I N T NS R N i e e el e
SOOI UN AW, OOV R WD, OOV A WND—~ON\©

#include
#include
#include
#include
#include

/% 0 1is
int pause

/+* 0 do nothing,
repeat

int

int
int
int
int

quit
fps

GtkWidget
GtkWidget
GtkWidget
GtkWidget
GtkWidget
GdkPixbuf
GtkWidget
GtkWidget
GtkWidget
GtkWidget
GtkWidget

play, 1

image_width
image_height

”Movie.h”
”Constants .h”
”Image .h”
”ImageList.h”
”FilelO .h”

is
0;
1 repeat

pause =/

Play
[

0;

:0’

0;
33000;

xpausePlaybtn;
xrepeatbtn;
xfastForwardbtn ;
*backwardbtn ;
+window ;
xpixelBuffer;
+frame ;
xquitbtn ;
x*loadbtn , xenter;
«fileChoosebtn ;
*FPSbutton ;

MOVIE s#movie;

GtkWidget

+*Vbox, xHbox, xHbox2;

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

/%

/%

IE:

/%

IE:

void

/%

Load one movie frame from the input file =/
YUVIMAGE #xLoadOneFrame(const char xfname, int n,

unsigned int width, unsigned height);

Load the movie frames from the input file =/
MOVIE xLoadMovie(const char =xfname, int frameNum,
unsigned int width, unsigned height);

Saves one movie frame to the output file =/
void SaveOneFrame (YUVIMAGE #ximage, const char xfname, FILE xfile);

Save the movie frames to the output file =/
int SaveMovie(const char xfname, MOVIE xmovie) ;

Set the RGB in each pixel of pixel buffer =/

guchar B,

set_pixel (GdkPixbuf =pixbuffer, int w, int h, guchar R, guchar G,

guchar alpha);

Set the pixel
void drawOneFrame(int

in one frame =/

/+ pause the video =/
void pausePlayMode (GtkWidget «Widget, gpointer Data);

/%

/%

/%

image_width, int image_height);

repeat the video and reset the pointer =/
void repeatMode (GtkWidget *Widget, gpointer Data);

adjust the pointer and fast-—forward the video =/
void fastForwardMode (GtkWidget =Widget, gpointer Data);

adjust

the pointer and backward the video =/

void backwardMode (GtkWidget =Widget, gpointer Data);

/%

exit

this

tool

*/

void quitMode (GtkWidget *Widget, gpointer Data);

IE:

/%

/%

IE:

load the movie =/
void loadMovie (GtkWidget =Widget, gpointer Data);

generate

the dialog windows =/
void dialogStart (GtkWidget *Widget, gpointer Data);

get the width and height from the name of the video file =/
void get_Width_And_Height(char name[], int widthAndHeight[]) ;

exit

the

tool

*/

86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125

void closePlayer (GtkWidget «Widget, gpointer Data);

/% This method will generate a dialog window and initialize some
information about the video. At the same time, it will help the users
to get the size of the video file and calculate the number of the total
frames . %/

void dialogStart (GtkWidget *Widget, gpointer Data)

{

gint response;

GtkWidget =xdialog;

char =fileName;

const char =*fileNameCst;
FILE x=file;

int widthAndHeight[2];
int fileSize;

int numOfFrame;

char totalNum|[256];

dialog = gtk_file_chooser_dialog_new (”Choose a Movie”, GTK-WINDOW (
window) , GTK_FILE_.CHOOSER_ACTION_OPEN, GTK_STOCK OK,
GTK_RESPONSE_ACCEPT, GTK_STOCK_CANCEL, GTK_RESPONSE CANCEL, NULL);

GtkFileFilter =filter = gtk_file_filter_new ();

gtk _file_filter_add_pattern (filter , “x.yuv”);

gtk _file_chooser_add_filter (GTK_FILE.CHOOSER (dialog), filter);

gtk _widget_show_all(dialog);
response = gtk_dialog_run (GTK.DIALOG(dialog));
if (response == GTK_RESPONSE_ACCEPT)

{

fileName = gtk_file_chooser_get_filename (GTK_FILE.CHOOSER (dialog))

b}

/% get the width and height of the video =/

memset (widthAndHeight, 0, sizeof(widthAndHeight));
get_Width_And_Height(fileName , widthAndHeight);

[l printf(%d, %d\n”, widthAndHeight[0], widthAndHeight[1]);

fileNameCst = fileName ;

/+ get the size of the video =/
file = fopen(fileNameCst, "r”);
if (file == NULL)

{

gtk_entry_set_text (GTKENTRY(enter), ”File Error”);

126 gtk _widget_destroy (dialog);

127 return ;

128 }

129 fseek (file , 0, SEEK END) ;

130 fileSize = ftell (file);

131 //printf(”filesize: %d\n”, fileSize);

132

133 /% calculate the number of frame =/

134 if (widthAndHeight[0] % widthAndHeight[1] != 0)

135 {

136 numOfFrame = fileSize / (widthAndHeight[0] % widthAndHeight[1]

* 1.5);

137 }

138 else

139 {

140 gtk _entry_set_text (GTKENTRY(enter), “Frame Size Error”);

141 gtk _widget_destroy (dialog);

142 return ;

143 }

144 if (numOfFrame != (int)numOfFrame)

145 {

146 /% incorrent the size of the frame =/

147 gtk _entry_set_text (GTKENTRY(enter), “Frame Size Error”);

148 gtk_widget_destroy (dialog);

149 return ;

150 }

151 // printf ("numOfFrame: %d\n”, numOfFrame) ;

152

153 movie = LoadMovie(fileNameCst, numOfFrame, widthAndHeight[O],
widthAndHeight[1]) ;

154 YUV2RGBMovie (movie) ;

155 movie—>currentFrame = movie-—>Frames—>First ;

156 // printf (”Load success\n”);

157

158 /+ update the size of the frame =/

159 pixelBuffer = gdk_pixbuf_new (GDK_COLORSPACE RGB, FALSE, 8§,
widthAndHeight [0], widthAndHeight[1]);

160 memset(totalNum, O, sizeof(totalNum));

161 sprintf (totalNum, ”Total Frames: %d”, numOfFrame) ;

162 gtk _entry_set_text (GTKENTRY(enter), totalNum);

163

164 /% close the file after loading =/

165 fclose (file);

166 file = NULL;

167 // printf (”out success\n”);

168 }

169 else

170 {

171 gtk _entry_set_text (GTKENTRY(enter), ”Please choose a file !7);

172 }

173

174 gtk_widget_destroy (dialog);

175 '}

176

177 /+ In this method, each pixel in the frame is traversed and accessed
through a nested loop, and the RGB value of each pixel is set. =/

178 void drawOneFrame(int image_width, int image_height)

179 {

180 int w = 0;

181 int h = 0;

182 for (w = 0; w < image_width; w++)

183 {

184 for (h = 0; h < image_height; h++)

185 {

186 set_pixel (pixelBuffer, w, h, GetPixelR(movie->currentFrame —>

RGBImage, w, h), GetPixelG (movie—>currentFrame —>RGBImage, w
, h), GetPixelB (movie—>currentFrame -—>RGBImage, w, h), 0);

187 }

188 }

189 }

190

191 /+ This method will change the status of video to pause or play the video
Yy

192 void pausePlayMode (GtkWidget «Widget, gpointer Data)

193 {

194

195 if (pausePlay == 0)

196 {

197 gtk_button_set_label (GTKBUTTON(pausePlaybtn), "Play”);

198 pausePlay = 1;

199 }

200 else

201 {

202 gtk _button_set_label (GTK BUTTON(pausePlaybtn), “Pause”);

203 pausePlay = 0;

204 }

205 }

206

207 /= By changing the current pointer, the first frame of this video will be
set. =/

208 void repeatMode (GtkWidget *Widget, gpointer Data)

209 {

10

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253

if (movie != NULL)

{

movie—>currentFrame = movie—>Frames—>First;

drawOneFrame (image_width , image_height);

repeat = 1;

gtk_image_set_from_pixbuf (GTKIMAGE(frame), pixelBuffer);
}

}

/+ This method will use loop to achieve the fast forward function.
void fastForwardMode (GtkWidget =Widget, gpointer Data)

{

int 1 = 0;
//printf(”enter\n”);

while ((movie != NULL) && (movie—>currentFrame != NULL) && (movie—>

currentFrame—>Next != NULL) && (i < 5))

{

movie—>currentFrame = movie—>currentFrame—->Next;

i++;
}

// printf (”out\n”);

if ((movie != NULL) && (movie—>currentFrame != NULL))

{

drawOneFrame (image_width , image_height);
gtk_image_set_from_pixbuf (GTKIMAGE(frame), pixelBuffer);

}

/+ This method will use loop to achieve the backward function. =/
void backwardMode (GtkWidget =Widget, gpointer Data)

{

int 1 = 0;

while ((movie != NULL) && (movie—>currentFrame != NULL) && (movie—>

currentFrame—>Prev) && (i < 10))

{

movie—>currentFrame = movie—>currentFrame—->Prev;
i++;

}

if ((movie != NULL) && (movie—>currentFrame != NULL))

11

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276
277
278
279
280
281
282
283
284

285

286
287

288
289
290
291
292
293
294
295

drawOneFrame (image_width , image_height);
gtk_image_set_from_pixbuf (GTKIMAGE(frame), pixelBuffer);

}

/% This method will exit all of the processes and exit the tool =/
void quitMode (GtkWidget *Widget, gpointer Data)

{
¥

quit = 1;

/+ This method will do the same thing with quitMode and exit the tool =/
void closePlayer (GtkWidget =Widget, gpointer Data)

{

// printf(”close player\n”);
quit = 1;

}

/+The real method will assign each pixel’s RGB value =/
void set_pixel (GdkPixbuf =pixbuffer, int w, int h, guchar R, guchar G,
guchar B, guchar alpha)

{
int rowstride;
int channels;
guchar =pixels;
guchar =target;
channels = gdk_pixbuf_get_n_channels(pixbuffer);
rowstride = gdk_pixbuf_get_rowstride (pixbuffer); // define the hight
position of a pixel.
pixels = gdk_pixbuf_get_pixels(pixbuffer); /!l return a pointer
to point the address of pixel data in buffer.
target = pixels + w % channels + h % rowstride; // find the pixel
which need to be modified.
target [0] = R;
target[1] = G;
target[2] = B;
}
int main(int argc, char =argv[])
{

12

296
297
298
299
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316
317
318
319
320
321
322

323
324
325
326
327

328
329
330
331
332

333
334
335
336

gtk_init(&argc, &argv);

window = gtk_window_new (GTK_-WINDOW_TOPLEVEL) ;
gtk_window _set_title (GTK WINDOW (window) , "BEST player”);
g_signal_connect(window, “destroy”, G.CALLBACK(closePlayer), NULL);

/% vertical boxes =/
Vbox = gtk_vbox_new (FALSE, 0);
gtk _container_add (GTK.CONTAINER (window) , Vbox);

/+ create frame =/

image_height = 360;

image_width 480;

pixelBuffer gdk_pixbuf_new (GDK_.COLORSPACERGB, FALSE, 8, image_width
, image_height);

frame = gtk_image_new_from_pixbuf(pixelBuffer);

gtk _box_pack_start (GTKBOX(Vbox), frame, TRUE, TRUE, 0);

/+* create Hbox for buttons =/
Hbox = gtk_hbox_new (TRUE, 0);
gtk_box_pack_start (GTKBOX(Vbox), Hbox, FALSE, FALSE, 0);

/+ create Hbox2 for buttons =/
Hbox2 = gtk_hbox_new (TRUE, 0);
gtk_box_pack_start (GTKBOX(Vbox), Hbox2, FALSE, FALSE, 0);

pausePlaybtn = gtk_button_new_with_label (" Pause”);

/1l gtk_container_add (GTK.CONTAINER (Hbox), pausePlaybtn);

g_signal_connect (G.OBJECT(pausePlaybtn), “clicked”, G.CALLBACK(
pausePlayMode), NULL) ;

gtk _box_pack_start (GTKBOX(Hbox), pausePlaybtn, TRUE, TRUE, 0);

repeatbtn = gtk _button_new_with_label (" Replay”);

// gtk_container_add (GTK.CONTAINER (Hbox), repeatbtn);

g_signal_connect (G.OBJECT(repeatbtn), “clicked”, G.CALLBACK(repeatMode
), NULL) ;

gtk_box_pack_start (GTK BOX(Hbox), repeatbtn , TRUE, TRUE, 0);

fastForwardbtn = gtk _button_new_with_label (” Forward”);

// gtk_container_add (GTK.CONTAINER (Hbox), fastForwardbtn);

g_signal_connect (G.OBJECT(fastForwardbtn), “clicked”, G.CALLBACK(
fastForwardMode), NULL) ;

gtk_box_pack_start (GTKBOX(Hbox), fastForwardbtn , TRUE, TRUE, 0);

backwardbtn = gtk_button_new_with_label (”Backward”);
// gtk_container_add (GTK.CONTAINER (Hbox), backwardbtn);

13

337 g_signal_connect (G.OBJECT(backwardbtn), “clicked”, G.CALLBACK(
backwardMode), NULL) ;

338 gtk _box_pack_start (GTKBOX(Hbox), backwardbtn, TRUE, TRUE, 0);

339

340 quitbtn = gtk_button_new_with_label (" Quit”);

341 // gtk_container_add (GTK.CONTAINER (Hbox), quitbtn);

342 g_signal_connect (G.LOBJECT(quitbtn), “clicked”, G.CALLBACK(quitMode) ,
NULL) ;

343 gtk_box_pack_start (GTKBOX(Hbox), quitbtn , TRUE, TRUE, 0);

344

345 /% 1initialize the fileChoosebtn x/

346 fileChoosebtn = gtk _button_new_with_label (" ChooseFile”);

347 g_signal_connect (G.OBJECT(fileChoosebtn), “clicked”, G.CALLBACK(
dialogStart), NULL);

348 gtk_box_pack_start (GTKBOX(Hbox2), fileChoosebtn , TRUE, TRUE, 0);

349

350 /% enter bar and load button =/

351 enter = gtk_entry_new () ;

352 gtk _box_pack_start (GTKBOX(Hbox2), enter , TRUE, TRUE, 0);

353

354 gtk _widget_show _all (window) ;

355

356 [r——————— GIK Initialization END-—————— %/

357

358 struct timeval start;

359 struct timeval end;

360 int timeDifference;

361

362 /+ Play the movie =/

363 while (quit == 0)

364 {

365

366 while ((movie != NULL) && (movie—>currentFrame) && (quit == 0))

367 {

368

369 image_width = movie->currentFrame —>RGBImage—>W,;

370 image_height = movie—>currentFrame —>RGBImage—>H;

371 if (pausePlay == 0)

372 {

373 gettimeofday(&start , NULL);

374 /% Play =/

375 drawOneFrame (image_width , image_height);

376 movie—>currentFrame = movie—>currentFrame —>Next;

3717 /+ Update the event =/

378 gtk_image_set_from_pixbuf (GTKIMAGE(frame), pixelBuffer);

379

14

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

}

/%

gettimeofday(&end, NULL);
timeDifference = (end.tv_sec * 1000000 + end.tv_usec) -
(start.tv_sec = 1000000 + start.tv_usec);
//printf ("FPS: %d\n”,timeDifference);
if (timeDifference > 0) {
usleep (timeDifference);

¥
}
else
{
usleep (33333);
¥
while (gtk_events_pending())
{
gtk_main_iteration () ;
¥

}
usleep (33333);

if (gtk_events_pending())

{

}
¥
// printf (”Player tool has been exited successfully !\n”);
return O;

gtk_main_iteration () ;

Load one movie frame from the input file =/

YUVIMAGE *LoadOneFrame(const char xfname, int n,

{

unsigned int width, unsigned height)

FILE =file ;
unsigned int x, y;
unsigned char c;
YUVIMAGE *YUVimage;

/% Check errors x/
assert (fname) ;
assert(n >= 0);

YUVimage = CreateYUVImage (width, height);
if (YUVimage == NULL)
{

}

return NULL;

15

426

427 /+ Open the input file =/

428 file = fopen(fname, "r”);

429 if (file == NULL)

430 {

431 DeleteYUVImage (YUVimage) ;

432 return NULL;

433 }

434

435 /% Find the desired frame =/

436 fseek (file, 1.5 % n % width % height, SEEK_SET);
437

438 for (y = 0; y < height; y++)

439 {

440 for (x = 0; x < width; x++)

441 {

442 ¢ = fgetc(file);

443 SetPixelY (YUVimage, x, y, ¢);

444 } /xrof «/

445 }

446

447 for (y = 0; y < height; y 4= 2)

448 {

449 for (x = 0; x < width; x += 2)

450 {

451 ¢ = fgetc(file);

452 SetPixelU (YUVimage, x, y, ¢);

453 SetPixelU (YUVimage, x + 1, y, c);
454 SetPixelU (YUVimage, x, y + 1, c);
455 SetPixelU (YUVimage, x + 1, y + 1, ¢);
456 }

457 }

458

459 for (y = 0; y < height; y += 2)

460 {

461 for (x = 0; x < width; x += 2)

462 {

463 c = fgetc(file);

464 SetPixelV (YUVimage, x, y, c);

465 SetPixelV (YUVimage, x + 1, y, c);
466 SetPixelV (YUVimage, x, y + 1, c);
467 SetPixelV (YUVimage, x + 1, y + 1, ¢);
468 }

469 }

470

471 /% Check errors =/

16

472
473
474
475
476
4717
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

assert(ferror(file) == 0);

/% Close the input file and return =/
fclose (file);

file = NULL;

return YUVimage;

}

/+ Load the movie frames from the input file =/
MOVIE xLoadMovie(const char =xfname, int frameNum,

unsigned int width, unsigned height)
{

MOVIE s#movie;
movie = CreateMovie () ;

assert (movie) ;
int i = 0;
YUVIMAGE #yuvimage ;

for (i = 0; 1 < frameNum; 1i++)

{
yuvimage = LoadOneFrame (fname, i, width, height);
AppendYUVImage (movie—>Frames , yuvimage)

}

// printf (”The movie file EngPlaza.yuv has been read successfully!\n”);

return movie;

}

/+ Save the movie frames to the output file =/
int SaveMovie(const char =xfname, MOVIE smovie)
{
FILE xoutputfile;
outputfile = fopen(fname, "w”);
int linklength = 0;
IENTRY =f, =1;
f = movie—>Frames—>First;
assert (f—>YUVImage) ;
for (linklength = 0; linklength < movie—>Frames—>Length;

{

1 = f—>Next;
SaveOneFrame (f->YUVImage, fname, outputfile);

17

linklength ++)

518 fclose (outputfile);

519 outputfile = NULL;

520 // printf (”The movie file out.yuv has been written successfully!\n”);

521 /lprintf("%d frames are written to the file out.yuv in total.\n”,
movie—>Frames—>Length) ;

522 return O;

523 }

524

525 /+ Saves one movie frame to the output file =/
526 void SaveOneFrame (YUVIMAGE =ximage, const char xfname, FILE xfile)

527 {

528 int x, y;

529 for (y = 0; y < image—>H; y++)

530 {

531 for (x = 0; x < image-—>W; X++)

532 {

533 fputc (GetPixelY (image, x, y), file);
534 }

535 }

536

537 for (y = 0; y < image->H; y += 2)

538 {

539 for (x = 0; x < image—>W; x += 2)

540 {

541 fputc (GetPixelU (image, x, y), file);
542 }

543 }

544

545 for (y = 0; y < image—>H; y += 2)

546 {

547 for (x = 0; x < image—>W; x += 2)

548 {

549 fputc (GetPixelV (image, x, y), file);
550 }

551 }

552}

553

554 /% This method will get the width and height of a video by checking the
key words in the name of the file. =/
555 void get_Width_And_Height(char name[], int widthAndHeight[2])

556

557 int 1 = 0;

558 int start = —1;

559 int end = -1;

560 char chars[256];

561 memset(chars, 0, sizeof(chars));

18

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

}

for (i = 0; i < strlen(name); i++)
{
if (name[i] == "_")
{
if ((start > 0) && (start < 1))
{
start = start;
}
else
{
start = 1;
}
}
else if (name[i] == ’.7)
{
end = 1;
}
}
if (start < 0)
{
widthAndHeight[0] = O;
widthAndHeight[1] = O0;
}
else
{
strncpy (chars , name + start, end — start);
sscanf(chars, 7 _%d _%d”, widthAndHeight, widthAndHeight + 1);
}

19

	Introduction
	Method and Procedure
	General Design
	Data Structure
	Pixel Buffer

	Control Flow
	Player Functions
	Pause
	Replay
	Fast-Forward
	Backward
	File Choose
	Quit

	User Manual
	Conclusion and Future Work
	References
	Appendix
	Source Code

