
Center for Embedded and Cyber-physical Systems
University of California, Irvine

RISC Compiler and Simulator, Alpha Release V0.2.1:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainer Dömer

Technical Report CECS-15-02
October 30, 2015

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

+1 (949) 824-8919

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/∼doemer/risc.html

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

RISC Compiler and Simulator, Alpha Release V0.2.1:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainer Dömer

Technical Report CECS-15-02
October 30, 2015

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

+1 (949) 824-8919

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/∼doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specify and simulate Electronic System Level (ESL)
models. Despite the wide availability of multi-core processor hosts, however, the reference SystemC simulator is
still based on sequential Discrete Event Simulation (DES) and executes only a single thread at any time.

In recent years parallel SystemC simulators were proposed which run multiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle.

In this report, we describe the advanced Recoding Infrastructure for SystemC (RISC) approach where a
dedicated SystemC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event
Simulation (OoO PDES) for SystemC. OoO PDES can execute threads in parallel and out-of-order (ahead of
time) and thus achieves fastest simulation speed but nevertheless maintains the classic SystemC modeling se-
mantics.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the
RISC Alpha Release V0.2.1, as of October 30, 2015.

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Contents

1 Introduction 1

2 Out-of-Order Parallel Simulation 2
2.1 Notations 2
2.2 Discrete Event Scheduler 3
2.3 Parallel Discrete Event Scheduler 3
2.4 Out-of-Order Parallel Discrete Event Scheduler 4

3 RISC Compiler and Simulator 5
3.1 Segment Graph 6
3.2 Conflict Analysis 6
3.3 Source Code Instrumentation 7

4 Out-of-Order Parallel Simulatable SystemC Subset 7
4.1 SystemC Hierarchical Structure of Modules and Channels 8
4.2 SystemC Threads 8
4.3 SystemC Transaction Level Modeling (TLM) 8
4.4 SystemC Datatypes 16
4.5 SystemC Utilities and Other Constructs 16

5 Conclusion 17

Acknowledgements 17

References 17

A Appendix 20
A.1 Manual Page of the RISC Compiler and Simulator 20

ii

List of Figures

1 Traditional Discrete Event Simulation (DES) scheduler for SystemC. 3
2 Synchronous Parallel Discrete Event Simulation (PDES) scheduler forSystemC. 4
3 Out-of-Order Parallel Discrete Event Simulation (OoO PDES) schedulerfor SystemC. 5
4 RISC Compiler and Simulator for Out-of-Order PDES of SystemC. 6

iii

List of Tables

1 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset 9
2 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued) 10
3 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued) 11
4 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued) 12
5 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued) 13
6 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued) 14
7 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued) 15
8 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued) 16

iv

RISC Compiler and Simulator, Alpha Release V0.2.1:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainer Dömer
Center for Embedded and Cyber-physical Systems

University of California, Irvine
Irvine, CA 92697-2620, USA

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/∼doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specify and simulate Electronic System Level (ESL) models.
Despite the wide availability of multi-core processor hosts, however, the reference SystemC simulator is still
based on sequential Discrete Event Simulation (DES) and executes only asingle thread at any time.

In recent years parallel SystemC simulators were proposed which runmultiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle.

In this report, we describe the advanced Recoding Infrastructure for SystemC (RISC) approach where a dedi-
cated SystemC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event Sim-
ulation (OoO PDES) for SystemC. OoO PDES can execute threads in paralleland out-of-order (ahead of time)
and thus achieves fastest simulation speed but nevertheless maintains the classic SystemC modeling semantics.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the RISC
Alpha Release V0.2.1, as of October 30, 2015.

1 Introduction

As an IEEE standard [1], the SystemC System Level Description Language (SLDL) is widely used for the spec-
ification, modeling, validation and evaluation of Electronic System Level (ESL) models. Under the Accellera
Systems Initiative [2], the SystemC Language Working Group [3] maintains not only the official SystemC lan-
guage definition, but also provides an open source proof-of-concept library [4] that can be used to simulate
SystemC design models. However, implementing the classic scheme of Discrete Event Simulation (DES), this
reference simulator runs sequentially and cannot utilize the parallel computing resources available on multi-core
(or many-core) processor hosts. This severely limits the execution speedof SystemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation (PDES) [5] has recently gained again
significant attraction (examples include [6], [7], [8], [9], [10], and [11]). The PDES approach issues multiple
threads (i.e.SC METHOD, SC THREAD andSC CTHREAD) concurrently and runs them on the available proces-
sor cores in parallel. In turn, the simulation speed increases significantly.

Regular PDES is synchronous, however. That is, time advances globallyand all threads execute in lock-step
fashion. Here, the total order of time imposed by synchronous PDES still limits the opportunities for parallel ex-
ecution. When a thread completes its evaluation phase, it has to wait until all other threads finish their evaluation

1

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

phases as well. Earlier completed threads must stop at the simulation cycle barrier and available processor cores
are left idle until all runnable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel technique called Out-of-Order Parallel Discrete
Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time to individual threads and
carefully handling events at different times, the simulation kernel can issuethreads in parallel and ahead of time,
following a partial order of time without loss of accuracy. Thus, Ooo PDESsignificantly reduces the idle time
of available parallel processor cores and results in maximum simulation speed, while maintaining the traditional
language and modeling semantics.

The OoO PDES technique was originally implemented based on the SpecC language [16, 17, 18, 19]. In this
report, we document our efforts to apply OoO PDES to the SystemC SLDL [20, 21, 1] which is both the de-facto
and official standard for ESL design today. In particular, we describeour Recoding Infrastructure for SystemC
(RISC) [22] which consists of a dedicated SystemC compiler and corresponding out-of-order parallel simulator
and implements OoO PDES for SystemC.

The remainder of this report is organized as follows: After a brief description of the simulator scheduling
algorithms used for DES, PDES and OoO PDES in Section 2, we describe the RISC Compiler and Simulator
proof-of-concept prototype in Section 3. In Section 4, we then list in detail the SystemC subset that is supported
by the current RISC Alpha Release V0.2.1 (2015-10-30) and finally conclude this report in Section 5.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-of-order parallel simulation. We do
this incrementally, starting from the traditional Discrete Event Simulation (DES) scheduler, then describe the
synchronous Parallel DES (PDES) extension, and finally define the Out-of-Order PDES (OoO PDES) scheduling
algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the following notations are introduced.

1. Each SystemC thread (SC METHOD, SC THREAD andSC CTHREAD) is assigned a localized time stamp
(tth, δth).

2. Each event (sc event) is assigned a notification time stamp (te, δe), whereEVENTS= ∪EVENTSt,δ.

3. Threads are grouped into different queues. Specifically,

(a) QUEUES= {READY, RUN, WAIT, WAITTIME}.

(b) READY= ∪tht,δ where Threadth is ready to run at time (t,δ).

(c) RUN = ∪tht,δ where Threadth is running at time (t,δ).

(d) WAIT = ∪tht,δ where Threadth is waiting since time (t,δ).

(e) WAITTIME= ∪tht,0 where Threadth is waiting for simulation time advance to (t,0).

2

start

READY == ∅?

th =Pick(READY); Run(th);

yield

∀ch ∈ PRIM_CHANNEL, if ch's update method

is requested; perform ch's update method;

∀th ∈ WAIT, if th's event is triggered; Remove(th,

WAIT); Insert(th, READY); clear triggered events;

READY == ∅?

advance the simulation time;

move the first th ∈ WAITTIME to READY;

READY == ∅?

end

No

No

Yes

Yes

Yes

No

Figure 1: Traditional Discrete Event Simulation (DES) scheduler for SystemC.

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on DES.Figure 1 depicts such a traditional
DES scheduling algorithm. In DES, a single thread is running at all times. Whenall threads in theREADYand
RUNqueues complete their current delta cycle, the root thread resumes and performs the update and notification
phase. Then threads are woken up and moved from theWAIT queue back into theREADYqueue. A new delta
cycle begins.

If no threads are ready after the update and notification phase, the current time cycle finishes. The simulation
kernel advances the simulation time and processes the earliest timed event from theWAITTIMEqueue. A new
cycle begins for the updated simulated time.

Finally, when both theWAITTIMEandREADYqueues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple threads (SC METHOD, SC THREAD and
SC CTHREAD) concurrently in a delta cycle. These threads can then execute truly in parallel on the multiple
available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithm. In the evaluation phase, as long as the
READYqueue is not empty and an idle core is available, the PDES scheduler will issuea new thread from the
READYqueue. If a thread finishes earlier than other threads in the same cycle, a new ready thread is assigned to
the idle processor core, unless there is no thread available in theREADYqueue, in which case the core is keept
idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute barrier at the end of each delta and time
cycle. All threads need to wait at the barrier until all other runnable threads finish their current evaluation phase.

3

start

READY == !?

th =Pick(READY);

Run(th);

sleep

"ch # PRIM_CHANNEL, if ch's update method

is requested; perform ch's update method;

"th # WAIT, if th's event is triggered; Remove(th,

WAIT); Insert(th, READY); clear triggered events;

READY == !?

advance the simulation time;

move the first th # WAITTIME to READY;

READY == !?

end

No

No

Yes

Yes

Immediate

Notification

Delta Cycle

Timed Cycle

RUN == !?

|RUN| < #CPUs

&& READY != !? sleep

Yes

No

Yes

No

Yes

No

Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) scheduler for SystemC.

Only then the synchronous PDES scheduler resumes and performs the update and notification phases, and finally
advances to the next delta or time cycle.

For the SystemC language in particular, there is a very important aspect to consider when applying PDES. For
semantics-compliant SystemC simulation, complex inter-dependency analysis over all variables in the system
model is a prerequisite to parallel simulation [23].

The Standard SystemC Language Reference Manual (LRM) [1] clearlystates that“process instances execute
without interruption”. This requirement is also known as cooperative (or co-routine) multitasking which is
assumed by the SystemC execution semantics. As detailed in [23], the particularproblem of parallel simulation
is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical to
the co-routine semantics defined [...]. In other words, the implementation would be obliged to analyze
any dependencies between processes and constrain their execution to match the co-routine semantics.”

We will describe the required dependency analysis in more detail below (in Section 3.2), as it is also needed
for out-of-order PDES.

2.4 Out-of-Order Parallel Discrete Event Scheduler

In OoO PDES, we break the strict order of time (the synchronous barrier) by localizing time stamps to each
thread. Figure 3 shows the out-of-order parallel DES scheduling algorithm. Since each thread has its own
time stamp, the OoO PDES scheduler relaxes the event and simulation time updates,allowing more threads (at

4

different simulation cycles!) to run in parallel and ahead of time. This resultsin a higher degree of parallelism
and thus higher simulation speed.

start

∀th ∈ WAIT, if th's event is triggered at (te, δe);

Remove(th, WAITt
th

, δ
th

); Insert(th, READYt
e

, δ
e

+1); update

th's local time stamp to (te, δe+1); clear triggered events;

move ∀th ∈ WAITTIMEt, 0 to READYt, 0;

update th's local time stamp to (t, 0);

READY == ∅?

RUN == ∅?

Yes

Yes
|RUN| < #CPUs

&& READY != ∅?

th =Pick(READY);

NoConflicts(th)?

Remove(th, READYt, δ);

Insert(th, RUNt, δ);

Run(th); end

sleep

sleep
No

No

Yes

Yes

No

No

Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDES) scheduler for SystemC.

Note theNoCon f licts(th) condition shown in Figure 3. As already mentioned above for the synchronous
PDES, detailed dependency analysis is needed to avoid data or event conflicts for any shared variables among the
parallel threads. Only ifNoCon f licts(th) is true, a new thread is issued for parallel execution (moved from the
READYto theRUN queue).

We will be using advanced static compile-time analysis to identify all such potentialconflicts. Based on this
information (a simple table lookup will suffice!), the OoO PDES scheduler canthen at runtime quickly decide
whether or not a set of threads has any conflicts with each other.

3 RISC Compiler and Simulator

To realize the OoO PDES approach for the SystemC language, we presentnow our Recoding Infrastructure
for SystemC (RISC) and describe the overall RISC Compiler and Simulator proof-of-concept prototype (Alpha
Release V0.2.1 as of 2015-10-30). The RISC software is available as open source and can be downloaded freely
from the following web site [22]:http://www.cecs.uci.edu/∼doemer/risc.html

To perform semantics-compliant SystemC simulation with maximum parallelism, we introduce a dedicated
SystemC compiler. This is in contrast to the traditional SystemC simulation where a regular SystemC-agnostic
C++ compiler includes the SystemC headers and links the input model directly against the SystemC library.

As shown in Figure 4, our RISC compiler acts as a frontend that processes the input SystemC model and
generates an intermediate model with special instrumention for OoO PDES. Theinstrumented parallel model
is then linked against the extended RISC SystemC library by the target compiler(a regular C++ compiler) to

5

http://www.cecs.uci.edu/~doemer/risc.html

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

Out-of-Order
Parallel

Simulation

systemc
_par.h

Model
_par.cpp

C++
Compiler

Instrumented Model Executable
Model

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

produce the final executable output model. OoO PDES is then performed simply by running the generated
executable model.

From the user perspective, we essentially replace the regular SystemC-agnostic C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler). Otherwise, the overall Sys-
temC validation flow remains the same as before. It’s just faster due to the parallel simulation.

For reference, the detailed Linux manual page of the RISC compiler and simulator is included in Appendix A.1
of this report.

Internally, the RISC compiler performs three major tasks, namely Segment Graph construction, conflict anal-
ysis, and source code instrumentation.

3.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model into an abstract syntax tree (AST) and
then create a SystemC structural representation from the AST which reflects the SystemC module and channel
hierarchy, connectivity, and other SystemC-specific relations, similar to theSystemC-clang representation [24,
25]. For details on this part of the RISC application programming interface (API), please refer to the Doxygen-
generated documentation [26].

On top of this, the RISC compiler then builds a Segment Graph data structure for the model. A Segment
Graph (SG) [12] is a directed graph that represents the code segments executed during the simulation between
scheduling steps. That is, every segment is associated with a scheduler entry point, i.e. await statement in
SystemC.

At run time, threads switch back and forth between the states ofrunning(threads inREADYandRUNqueues)
andwaiting (threads inWAIT andWAITTIMEqueues). Whenrunning, they execute specific segments of their
code. These code segments make up the nodes in the Segment Graph, whereas edges in the graph indicate the
possible transitions from one segment to another (an abstraction of the model’s control flow).

For a formal description of the Segment Graph and it’s construction algorithm, the interested reader may refer
to [15]. For details on the RISC API, please refer to the Doxygen-generated documentation [26].

3.2 Conflict Analysis

The Segment Graph data structure serves as the foundation for static (compile-time) conflict analysis. As outlined
earlier, the OoO PDES scheduler must ensure that every parallel threadto be issued has no conflicts with any
other threads currently in theREADYandRUNqueues. Here, we utilize the RISC compiler to detect any possible
conflicts already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, and timing hazards, all of which may exist
among the segments executed by the threads considered for parallel execution. Please refer to [15] for a detailed
discussion of these hazards and their conservative identification in the model.

6

As a result of the conflict analysis, the RISC compiler generates severalconflict tables that describe all possible
conflicts between threads in any two segments. Using this conservative information, the simulator can then at
run-time quickly determine by a simple table look-up whether or not it is safe to issue any given thread in parallel
or ahead of time.

3.3 Source Code Instrumentation

As shown above in Figure 4, the RISC compiler and simulator work closely together. The compiler performs
conservative static analysis and passes the analysis results to the simulator which then can make safe scheduling
decisions quickly.

To pass information from the compiler to the simulator, we use automatic model instrumentation. That is,
the intermediate model generated by the compiler contains instrumented (automatically generated) source code
which the simulator then can rely on. At the same time, the RISC compiler also instruments user-defined SystemC
channels with automatic protection against race conditions among communicating threads.

In total, the RISC source code instrumentation includes four major components:

1. Segment and instance IDs: Individual threads are uniquely identifiedby a creator instance ID and their
current code location (segment ID). Both IDs are passed into the simulatorkernel as additional arguments
to scheduler entry functions, includingwait and thread creation.

2. Data and event conflict tables: Segment concurrency hazards dueto potential data conflicts, event conflicts,
or timing conflicts are provided to the simulator as two-dimensional tables indexedby a segment ID and
instance ID pair. For efficiency, these table entries are filtered for scope, instance path, and reference and
port mappings.

3. Current and next time advance tables: The simulator can make better scheduling decisions by looking ahead
in time if it can predict the possible future thread states. This optimization is discussed in detail in [14].

4. User-defined channel protection: SystemC allows the user to design channels for custom inter-thread com-
munication. To ensure such communication is safe also in the OoO PDES situation where threads execute
truly in parallel, the RISC compiler automatically inserts locks (binary semaphores) into these channels so
that mutually-exclusive execution of the channel methods is guaranteed. Otherwise, race conditions could
exist when communicating threads exchange data.

After this automatic source code instrumentation, the RISC compiler passes the generated intermediate model
to the underlying regular C++ compiler which produces the final simulator executable by linking the instrumented
code against the RISC extended SystemC library.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically is a C++ application programming
interface (API) with a corresponding simulation library, has evolved frombasic constructs for modeling parallel
modules connected by signals and channels to a highly complex set of macros, types, classes, templates, and
functions for very advanced modeling (i.e. Transaction Level Modeling (TLM) 2.0 [27, 28]) and highly optimized
simulation of SystemC models. Usually these optimizations have aimed at higher simulation speed, i.e. by
minimizing context switches in the simulator, or at higher levels of abstraction dueto purposely relaxed timing.
Often, the uninterrupted (sequential) execution semantics on a single processor host have been assumed or are
explicitly required.

7

In contrast, RISC now aims for truly parallel execution on multi- or many-corehosts. Changing these fun-
damental assumptions about SystemC simulator execution consequently may affect some constructs and APIs
which need to be revisited and evaluated anew. The goal of this section is to start this process and enable fruitful
discussions.

Below, we describe and list the out-of-order parallel simulatable SystemC subset supported by the current
RISC Compiler and Simulator, Alpha Release V0.2.1. In particular, Table 1 through Table 8 list for each SystemC
construct whether or not it is supported at this time. If applicable, an explanation note is provided that briefly
outlines the status and/or the plans for the given feature.

Overall, our current RISC proof-of-concept prototype supports the classic SystemC constructs for hierarchical
modeling and multi-threaded execution, but many advanced features are not supported yet or left undecided at
this stage. The status “undecided” in particular indicates that further studyis needed to decide whether or not the
given construct can be supported in efficient and reasonable mannerby RISC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition of theSystemC design model. This in-
cludes the SystemC program start (sc main, sc start) and the general composition (SC CTOR) of modules
(sc module, SC MODULE, sc behavior) and channels (sc channel, sc prim channel).

Connectivity and communication of the instantiated components is supported through ports (sc port,sc in,
sc inout, sc out) and interfaces (sc interface).

In contrast to the traditional Accellera library, which only provides a type definition sc channel to
sc module, the RISC header files clearly distinguish channels from modules. Here, aseparatesc channel
class is inherited fromsc module, providing the same functionality, but making the two classes explicit.

Most of the SystemC predefined primitive channels (such assc signal) are supported for OoO PDES,
exceptsc prim channel::update() andsc fifo::operator=which are not supported in the current
release. For more details, please refer to the Doxygen-generated documentation [29].

4.2 SystemC Threads

The explicit and statically analyzable multi-threading of a SystemC design model isnaturally sup-
ported in RISC OoO PDES. This includes SystemC processes (SC HAS PROCESS, sc process handle,
sc cthread process, sc method process, sc thread process) and the corresponding threads and
methods (SC CTHREAD, SC METHOD, SC THREAD). For basic inter-thread synchronization, SystemC event no-
tifications (sc event.notify) and waiting for events or simulation time advance (sc wait) are supported.

However, dynamic SystemC thread creation and deletion (sc spawn, SC FORK, SC JOIN) is not supported
at this time.

While the application programming interface (API) for these constructs remains unmodified from the SystemC
user perspective, the RISC SystemC kernel internally supports extra parameters or arguments for these constructs
which are utilized after the automatic source code instrumentation by the RISC compiler (see Section 3.3 above).
In particular, segment and instance identifiers are supplied with each of these function calls so that the simulator
kernel is aware of the exact thread state upon every scheduler entry.This includes in particular the thread creation
constructs (SC CTHREAD, SC METHOD, SC THREAD). and wait (sc wait) statements.

4.3 SystemC Transaction Level Modeling (TLM)

While transaction level modeling in general is a natural feature supported by OoO PDES [15], the modeling and
implementation choices made by SystemC TLM 2.0 [28] create significant problemsfor supporting it efficiently

8

Table 1: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes

sc abs function Undecided
This function may not work with

some arithmetic SystemC datatypes.
sc actions typedef Supported typedef unsigned scactions

sc argc function Supported
sc argv function Supported

sc assemblevector function Undecided Work on this function in the future
sc assert macro Undecided Work on this macro in the future

sc attr base class Undecided Work on this class in the future
sc attr cltn class Undecided Work on this class in the future
sc attribute class Undecided Work on this class in the future
sc behavior typedef Supported typedef scmodule scbehavior

sc bigint class template Supported
sc biguint class template Supported

sc bind proxy class Supported
sc bind macro Undecided Work on this macro in the future
sc bit type (deprecated) Undecided Work on this type in the future

sc bitref r class template Undecided Work on this class template in the future
sc bitref class template Undecided Work on this class template in the future
sc buffer class Supported

sc bv base class Undecided Work on this class in the future
sc bv class template Undecided Work on this class template in the future

sc channel class Supported

sc clock class Not Supported Now
sc clock::beforeendof elaboration()

calls scspawn().
sc closevcd tracefile function Undecided Work on this function in the future

sc concatref class Undecided Work on this class in the future
sc concrefr class template Undecided Work on this class template in the future

sc contextbegin enumeration Supported
sc copyright function Supported

sc cor class Supported
sc cor pkg class Supported

sc cor pthread class Supported
sc cor pkg pthread class Supported

sc createvcd tracefile function Undecided Work on this function in the future
sc cref macro Undecided Work on this macro in the future

sc cthreadprocess class Supported

SC CTHREAD macro Supported
The risc compiler can generate

the segment graph for SCCTHREAD,
however, it cannot handle the clock.

SC CTOR macro Supported

9

Table 2: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc cycle Not Supported Now

sc cycle() calls scsimcontext::cycle(),
function which is not supported in

(deprecated) the out-of-order simulation
in the current release.

sc deltacount function Supported
This function returns the local

delta count of the running process.
sc elabandsim function Supported

sc endof simulationinvoked function Undecided Work on this function in the future
sc eventandexpr class Not Supported Now Work on this class in the future
sc eventand list class Not Supported Now Work on this class in the future

sc eventfinder t class template Undecided
Work on this class template

in the future
sc eventfinder class Undecided Work on this class in the future

sc eventor expr class Not Supported Now Work on this class in the future
sc eventor list class Not Supported Now Work on this class in the future

sc eventqueueif class Supported

sc eventqueue class Not Supported Now
The constructor function is not
supported by the out-of-order

simulation in the current release.

sc event class Supported
The immediate notification is not

supported by the out-of-order
simulation in the current release.

sc exception typedef Undecided Work on this typedef in the future
sc exportbase class Not Supported Now No port following in compiler analysis

sc export class Not Supported Now No port following in compiler analysis
sc fifo blocking in if class Supported

sc fifo in if class Supported
sc fifo in class Supported

sc fifo nonblockingin if class Supported
sc fifo out if class Supported
sc fifo out class Supported

sc fifo class Not Supported Now
sc fifo::trace() and scfifo::operator =
are not supported by the out-of-order

simulation in the current release.
sc find event function Undecided Work on this function in the future
sc find object function Undecided Work on this function in the future

sc fix fast class Undecided Work on this class in the future
sc fix class Supported

sc fixed fast class template Undecided
Work on this class template

in the future
sc fixed class template Supported

10

Table 3: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
SC FORK macro Undecided Work on this macro in the future

sc fxcast context class Undecided Work on this class in the future
sc fxcast switch class Undecided Work on this class in the future
sc fxnum bitref class Undecided Work on this class in the future

sc fxnum fast bitref class Undecided Work on this class in the future
sc fxnum fast subref class Undecided Work on this class in the future

sc fxnum fast class Undecided Work on this class in the future
sc fxnum subref class Undecided Work on this class in the future

sc fxnum class Supported
sc fxtype context class Undecided Work on this class in the future
sc fxtype params class Undecided Work on this class in the future

sc fxval fast class Undecided Work on this class in the future
sc fxval class Undecided Work on this class in the future

sc genuniquename function Undecided Work on this function in the future
sc genericbase class Undecided Work on this class in the future

sc get curr processhandle
function

Supported
(deprecated)

sc get currentprocesshandle function Supported

sc get default time unit
function

Supported
(deprecated)

sc get status function Supported
sc get stopmode function Supported

sc get time resolution function Supported
sc get top level events function Undecided Work on this function in the future
sc get top level objects function Undecided Work on this function in the future

SC HAS PROCESS macro Supported
sc hierarchicalnameexists function Undecided Work on this function in the future

sc in clk typedef Supported
sc in resolved class Supported

sc in rv class Supported

sc in class Supported

sc in::add trace() and other tracing
functions are not supported by

the out-of-order simulation
in the current release.

sc in<bool> class Supported

sc in<bool>::add trace() and other
tracing functions are not supported by

the out-of-order simulation
in the current release.

sc in<sc dt::sc logic> class Supported

sc in<sc dt::sc logic>::add trace()
and other tracing functions are

not supported by the out-of-order
simulation in the current release.

11

Table 4: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc initialize
function

Supported
(deprecated)

sc inout clk type (deprecated) Supported
sc inout resolved class Supported

sc inout rv class Supported
sc inout class Supported

sc int base class Supported
sc int bitref r class Undecided Work on this class in the future
sc int bitref class Undecided Work on this class in the future

sc int class template Supported
sc interface class Supported

sc interrupthere function Undecided Work on this function in the future
sc is prerelease function Undecided Work on this function in the future

SC IS PRERELEASE macro Supported
sc is running function Supported

sc is unwinding function Supported
SC JOIN macro Undecided Work on this macro in the future

sc lengthcontext class Undecided Work on this class in the future
sc lengthparam class Undecided Work on this class in the future

sc logic class Undecided Work on this class in the future
sc lv base class Undecided Work on this class in the future

sc lv class template Undecided Work on this class template in the future
sc main function Supported

sc max time function Not Supported Now
This function is not supported by

the out-of-order simulation
in the current release.

sc max function Supported
sc methodprocess class Supported

SC METHOD macro Supported
sc min function Supported

sc modulename class Supported
sc module class Supported

SC MODULE macro Supported

sc mutex if class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc mutex class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc object class Supported
sc out clk type (deprecated) Supported

12

Table 5: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc out resolved class Supported

sc out rv class Supported
sc out class Supported

sc pause function Undecided Work on this function in the future
sc pendingactivity at currenttime function Undecided Work on this function in the future
sc pendingactivity at future time function Undecided Work on this function in the future

sc pendingactivity function Undecided Work on this function in the future
sc phash class (deprecated) Undecided Work on this class in the future
sc plist class (deprecated) Undecided Work on this class in the future
sc port class Supported

sc port base class Supported
sc ppq class (deprecated) Undecided Work on this class in the future

sc prim channel class Supported
sc prim channel::update() is not
supported by the out-of-order

simulation in the current release.
sc processb type (deprecated) Supported

sc processhandle class Supported
sc pvector class (deprecated) Undecided Work on this class in the future

sc ref macro Undecided Work on this macro in the future
sc release function Supported

sc reporthandlerproc typedef Undecided Work on this typedef in the future
sc reporthandler class Undecided Work on this class in the future

sc report class Undecided Work on this class in the future

sc semaphoreif class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc semaphore class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc sensitiveneg class (deprecated)Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc sensitivepos class (deprecated)Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc sensitive class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc setdefault time unit
function

Supported
(deprecated)

sc set stopmode function Undecided Work on this function in the future

13

Table 6: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc set time resolution function Supported

sc set vcd time unit
member function

Undecided Work on this function in the future
(deprecated)

sc signal in if class Supported
sc signal in if<bool> class Supported

sc signal in if<sc logic> class Supported
sc signal inout if class Supported
sc signalout if type (deprecated) Supported

sc signal resolved class Supported
sc signal rv class Supported

sc signalwrite if class Supported

sc signal class Supported
sc signal::trace() is not supported

by the out-of-order simulation
in the current release.

sc signal<bool> class Supported
sc signal<bool>::trace() is not
supported by the out-of-order

simulation in the current release.

sc signal<sc logic> class Supported
sc signal<sc logic>::trace() is not

supported by the out-of-order
simulation in the current release.

sc signedbitref r class Undecided Work on this class in the future
sc signedbitref class Undecided Work on this class in the future

sc signedsubrefr class Undecided Work on this class in the future
sc signedsubref class Undecided Work on this class in the future

sc signed class Supported

sc simcontext Supported

sc simcontext::initialcrunch(), cycle()
class and other functions are partially

(deprecated) supported by the out-of-order
simulation in the current release.

sc simulationtime
function

Supported
(deprecated)

sc spawnoptions class Supported

sc spawn function Not Supported Now
sc spawn() is not supported

by the out-of-order simulation
in the current release.

sc start of simulationinvoked function Undecided Work on this function in the future
sc start function Supported

sc start(double) function Not Supported Now
This function is not supported by

the out-of-order simulation
in the current release.

sc status enumeration Supported

14

Table 7: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc stophere function Undecided Work on this function in the future

sc stop function Undecided Work on this function in the future

sc string
class

Undecided Work on this class in the future
(deprecated)

sc subrefr class template Undecided
Work on this class template

in the future
sc subref class Undecided Work on this class in the future
sc switch enumeration Supported

sc threadprocess class Supported
SC THREAD macro Supported

sc time class Supported
sc time stamp function Supported

sc time to pendingactivity function Undecided Work on this function in the future

sc tracedeltacycles
function

Undecided Work on this function in the future
(deprecated)

sc tracefile class Undecided Work on this class in the future
sc trace function Undecided Work on this function in the future

sc ufix fast class Undecided Work on this class in the future
sc ufix class Supported

sc ufixed fast class template Undecided Work on this class template in the future
sc ufixed class template Supported

sc uint base class Supported
sc uint bitref r class Undecided Work on this class in the future
sc uint bitref class Undecided Work on this class in the future

sc uint subrefr class Undecided Work on this class in the future
sc uint subref class Undecided Work on this class in the future

sc uint class template Supported
sc unsignedbitref r class Undecided Work on this class in the future
sc unsignedbitref class Undecided Work on this class in the future

sc unsignedsubrefr class Undecided Work on this class in the future
sc unsignedsubref class Undecided Work on this class in the future

sc unsigned class Supported
sc unwind exception class Undecided Work on this class in the future

sc valuebase class Undecided Work on this class in the future
sc vectorassembly class Undecided Work on this class in the future

sc vectorbase class Undecided Work on this class in the future
sc vector class Undecided Work on this class in the future

sc versionmajor function Supported
sc versionminor function Supported

sc versionoriginator function Supported
sc versionpatch function Supported

15

Table 8: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc versionprerelease function Supported

sc versionreleasedate function Supported
sc versionstring function Supported

sc version function Supported

wait function Supported
wait(sceventand list), wait(sceventor list),

wait(void) are not supported by
the risc compiler in the current release.

next trigger function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

halt function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

in RISC. The root problem here lies in the elimination of explicit channels, which were a key contribution in the
early days of research on system-level design [16, 17, 18]. As most researchers agreed, the concept of separation
of concerns was of highest importance, and for system-level design in particular, this meant the clear separation
of computation (in behaviors or modules) and communication (in channels).

Regrettably, SystemC TLM 2.0 chose to implement communication interfaces directlyas sockets in modules
[30] and this indifference between channels and modules thus breaks theassumption of communication being
safely encapsulated in channels. Without such channels, there is very littleopportunity for safe parallel execution.

At this point, it is unclear how this situation can be worked around or corrected. Thus, SystemC TLM 2.0 can
currently not be supported by RISC.

4.4 SystemC Datatypes

A large part of the SystemC language covers special data types designedfor bit-accurate hardware
modeling, simulation time representation, and other ESL specifics. These SystemC data types include
sc bigint, sc biguint, sc bit, sc bv, sc fix, sc ufix, sc fixed, sc ufixed, sc int,
sc uint, sc logic, andsc lv.

While all these SystemC data types are available in RISC, only a few of them have been validated and tested
for being safe in a truly parallel multi-threading context. At this point, RISC supportssc int, sc uint,
sc fixed, andsc ufixed (which are MT-safe). All other data types are so far untested and may ormay not
be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Table 1 through Table 8, there is a plethora of other SystemC APIs available. Some of
these are easily supported in RISC (such assc copyright, sc version major, sc version minor,
sc version patch, sc version), others are not supported at this time, such as the SystemC built-in trac-
ing features (sc trace, sc trace file) and the end of simulation due tosc stop.

At this point, there is also a large number of special SystemC constructs for which it is unclear whether

16

or not these can be supported in an OoO PDES context with reasonable effort and efficiency. An example
of such constructs are those functions which involve or allow to inspect thesimulator state at run-time, such
as sc find event, sc find object, sc get current process handle, sc get status,
sc get time resolution, sc get top level events, sc get top level objects,
sc hierarchical name exists, sc is running, sc is unwinding, sc simcontext, and
sc status.

On the other hand, access to the current simulated time (sc time, sc simulation time,
sc delta count), an essential part of every SystemC model evaluation, is supported by RISC OoO PDES.

5 Conclusion

While SystemC is the de-facto and official standard language for ESL design, SystemC simulation largely is still
performed sequentially following classic DES semantics. Thus, SystemC simulation cannot utilize the parallel
processing capabilities available on today’s multi- and many-core host computers.

In this report, we have described the Recoding Infrastructure for SystemC (RISC), an agressive simulation
approach beyond traditional parallel DES, where a dedicated SystemC compiler and advanced parallel simulator
implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES) for SystemC. This approach promises
to exploit parallel computing resources to the maximum extend and thus fastestsimulation speed. At the same
time, OoO PDES maintains the traditional SystemC modeling semantics.

At this time, this technical report documents the RISC Compiler and Simulator and details the SystemC subset
supported by the RISC Alpha Release V0.2.1.

As we move on in the project, we will update this report and in particular the supported subset tables accord-
ingly.

Acknowledgements

This work has been supported in part by substantial funding from IntelCorporation under an initial seed grant
and a following three year grant for the project titled“Out-of-Order Parallel Simulation of SystemC Virtual Plat-
forms on Many-Core Architectures”. The authors thank Intel Corporation for the valuable support and express
special gratitude to Abhijit Davare, Ajit Dingankar and Desmond Kirkpatrickfor fruitful discussions, productive
feedback and invaluable insights.

References

[1] IEEE Computer Society.IEEE Standard 1666-2011 for Standard SystemC Language ReferenceManual.
IEEE, New York, USA, 2011.

[2] Accellera Systems Initiative.http://www.accellera.org.

[3] SystemC Language Working Group (LWG).http://accellera.org/activities/working-groups/systemc-language.

[4] SystemC Language Working Group. SystemC 2.3.1, Core SystemC Language and Examples.
http://accellera.org/downloads/standards/systemc.

[5] Richard Fujimoto. Parallel Discrete Event Simulation.Communications of the ACM, 33(10):30–53, Oct
1990.

17

http://www.accellera.org
http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/downloads/standards/systemc

[6] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann. parSC: Synchronous Par-
allel SystemC Simulation on Multi-Core Host Architectures. InProceedings of the International Conference
on Hardware/Software Codesign and System Synthesis, pages 241–246, 2010.

[7] Dukyoung Yun, Jinwoo Kim, Sungchan Kim, and Soonhoi Ha. Simulation Environment Configuration for
Parallel Simulation of Multicore Embedded Systems. InProceedings of the Design Automation Conference
(DAC), pages 345–350, 2011.

[8] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur Simon, andDeepak Ravi. Parallelizing Sys-
temC Kernel for Fast Hardware Simulation on SMP Machines. InPADS ’09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and DistributedSimulation, pages 80–87, 2009.

[9] Rohit Sinha, Aayush Prakash, and Hiren D. Patel. Parallel simulation of mixed-abstraction SystemC models
on GPUs and multicore CPUs. InProceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC), 2012.

[10] Weiwei Chen, Xu Han, and Rainer Dömer. Multi-Core Simulation of Transaction Level Models using the
System-on-Chip Environment.IEEE Design and Test of Computers, 28(3):20–31, May/June 2011.

[11] J.H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, and L.Tosoratto. Time-decoupled parallel systemc
simulation. InProceedings of the Design, Automation and Test in Europe (DATE) Conference, Dresden,
Germany, March 2014.

[12] Weiwei Chen, Xu Han, and Rainer Dömer. Out-of-Order Parallel Simulation for ESL Design. InProceed-
ings of the Design, Automation and Test in Europe (DATE) Conference, March 2012.

[13] Weiwei Chen and Rainer D̈omer. An Optimizing Compiler for Out-of-Order Parallel ESL Simulation
Exploiting Instance Isolation. InProceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC), pages 461–466, February 2012.

[14] Weiwei Chen and Rainer D̈omer. Optimized Out-of-Order Parallel Discrete Event Simulation using Predic-
tions. InProceedings of the Design, Automation and Test in Europe (DATE) Conference, March 2013.

[15] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rainer Dömer. Out-of-Order Parallel Discrete
Event Simulation for Transaction Level Models.IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), 33(12):1859–1872, December 2014.

[16] Jianwen Zhu, Rainer D̈omer, and Daniel D. Gajski. Syntax and semantics of the SpecC language. In
Proceedings of the International Symposium on System Synthesis, Osaka, Japan, December 1997.

[17] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao.SpecC: Specification
Language and Design Methodology. Kluwer Academic Publishers, 2000.

[18] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski.System Design: A Practical Guide
with SpecC. Kluwer Academic Publishers, 2001.

[19] Rainer D̈omer, Andreas Gerstlauer, and Daniel Gajski.SpecC Language Reference Manual, Version 2.0.
SpecC Technology Open Consortium,http://www.specc.org, December 2002.

[20] Open SystemC Initiative,http://www.systemc.org. Functional Specification for SystemC 2.0, 2000.

18

http://www.specc.org
http://www.systemc.org

[21] Thorsten Gr̈otker, Stan Liao, Grant Martin, and Stuart Swan.System Design with SystemC. Kluwer Aca-
demic Publishers, 2002.

[22] Guantao Liu, Tim Schmidt, and Rainer Doemer. Recoding Infrastructure for SystemC (RISC) Compiler
and Simulator.http://www.cecs.uci.edu/∼doemer/risc.html.

[23] Rainer D̈omer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-Core Parallel Simulation of System-
Level Description Languages. InProceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC), pages 311–316, January 2011.

[24] Anirudh Kaushik and Hiren D. Patel. SystemC-clang: An Open-source Framework for Analyzing Mixed-
abstraction SystemC Models. InProceedings of the Forum on Specification and Design Languages (FDL),
Paris, France, September 2013.

[25] Hiren Patel. ”SystemC-clang: SystemC parser using the clang front-end”.
https://github.com/hdpatel/systemcclang.

[26] Tim Schmidt. Recoding Infrastructure for SystemC (RISC) API.
http://www.cecs.uci.edu/∼doemer/risc/html risc 021/index.html.

[27] Frank Ghenassia.Transaction-Level Modeling with SystemC: TLM Concepts and Applications for Embed-
ded Systems. Springer, 2005.

[28] Open SystemC Initiative (OSCI).OSCI TLM-2.0 Language Reference Manual. OSCI, July 2009.

[29] Guantao Liu. Out-of-Order Parallel SystemC API.http://www.cecs.uci.edu/∼doemer/risc/html oopsc
021/index.html.

[30] David C. Black. The Definitive Guide to SystemC: TLM-2.0 and the IEEE1666-2011 Standard. Tutorial
at Design Automation Conference, San Francisco, California, June 2015.

19

http://www.cecs.uci.edu/~doemer/risc.html
http://www.cecs.uci.edu/~doemer/risc/html_risc_021/index.html
http://www.cecs.uci.edu/~doemer/risc/html_oopsc_021/index.html

A Appendix

A.1 Manual Page of the RISC Compiler and Simulator

NAME

risc – Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [options] design[options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purpose ofrisc is to parse, analyze, in-
strument, and compile a SystemC source program into an executable programfor out-of-order parallel
simulation.risc is a frontend source-to-source compiler for SystemC built on top of the ROSE compiler
infrastructure with GNU C++ as the backend target compiler. As such,risc relies on and supports also
most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the specifieddesignis compiled. By default,
risc reads the SystemC source file, performs preprocessing and builds an internal representation (ab-
stract syntax tree) and a Segment Graph (SG) of the model. Next, static conflict analysis is performed
and the design model is instrumented for Out-of-Order Parallel Discrete Event Simulation (OoO PDES).
Finally, instrumented C++ code is generated, compiled, and linked into an executable file that can be
run for fast parallel simulation.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error
code with a brief diagnostic message is written to the standard error stream and the compilation is
aborted with an exit value greater than zero (i.e. 10).

For preprocessing and C++ compilation,risc relies on the availability of an external C++ compiler
which is used automatically in the background. By default, the GNU C++ compilerg++ is used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of
designis used as base name for all intermediate and output files;

OPTIONS

–h | —-help print the compiler version and a brief usage information message to standardoutput and
quit;

–v | —-verbose increment the verbosity level so that all tasks performed are logged to standard error
(default: be silent); at level 1, high-level messages about the tasks performed are dis-
played; at level 2, additional details such as input and output file names are listed; at
level 3, very detailed information about each executed task is printed;

–w | —-warnings increment the warning level so that compiler warning messages are enabled(default:
warnings are disabled); four levels are supported ranging from only important warnings
(level 1) to pedantic warnings (level 4); for most cases, warning level2 is recommended
(–w –w);

20

–g | –g level add a symbol table suitable for debugging (e.g. gdb) to the generated simulation exe-
cutable (default: no debugging symbols);

–O | –O level optimize the generated simulation executable for higher execution speed and/orless
memory usage (default: no optimization);

–Idir add the specifieddir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in the order of their
specification; the standard include path ($SYSTEMCLW HOME/include or $SYS-
TEMC OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

–Ldir add the specifieddir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; the standard library
path ($SYSTEMCOOPHOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

–llib add the specifiedlib to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
lsystemc) are automatically appended to this list; by default, only standard libraries
are used;

–c perform only the preprocessing, analysis, instrumentation, and compilationtasks; skip
the final linking stage so that only an object file is created (default: perform all tasks
including linking);

–o output file specify the name of the final output file explicitly (default: a.out);

–rose:option pass this option through to the underlying ROSE compiler (default: none);

–GNU option pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

RISC is used to determine the installation directory of the RISC compiler and simulator where the
RISC system components are located.

SYSTEMCLW HOME is used to find the RISC light-weight SystemC header files (in directory $SYS-
TEMC LW HOME/include).

SYSTEMCOOP HOME is used to find the RISC OoO PDES SystemC header files (in directory $SYS-
TEMC OOPHOME/include) and the RISC OoO PDES SystemC library (in directory $SYS-
TEMC OOPHOME/lib).

VERSION

The RISC compiler and simulator is alpha release version 0.2.1.

AUTHORS

Tim Schmidt <schmidtt@uci.edu>, Guantao Liu <guantaol@uci.edu>, and Rainer Doemer
<doemer@uci.edu>.

21

COPYRIGHT

(c) 2015 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

Probably many, since this is an alpha release of a proof-of-concept prototype implementation.

22

	1 Introduction
	2 Out-of-Order Parallel Simulation
	2.1 Notations
	2.2 Discrete Event Scheduler
	2.3 Parallel Discrete Event Scheduler
	2.4 Out-of-Order Parallel Discrete Event Scheduler

	3 RISC Compiler and Simulator
	3.1 Segment Graph
	3.2 Conflict Analysis
	3.3 Source Code Instrumentation

	4 Out-of-Order Parallel Simulatable SystemC Subset
	4.1 SystemC Hierarchical Structure of Modules and Channels
	4.2 SystemC Threads
	4.3 SystemC Transaction Level Modeling (TLM)
	4.4 SystemC Datatypes
	4.5 SystemC Utilities and Other Constructs

	5 Conclusion
	Acknowledgements
	References
	A Appendix
	A.1 Manual Page of the RISC Compiler and Simulator

