Center for Embedded and Cyber-physical Systems
University of California, Irvine

RISC Compiler and Simulator, Alpha Release V0.2.1:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainebber

Technical Report CECS-15-02
October 30, 2015

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

RISC Compiler and Simulator, Alpha Release V0.2.1:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainebber

Technical Report CECS-15-02
October 30, 2015

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specdysanulate Electronic System Level (ESL)
models. Despite the wide availability of multi-core prasmshosts, however, the reference SystemC simulator is
still based on sequential Discrete Event Simulation (DE®) @xecutes only a single thread at any time.

In recent years parallel SystemC simulators were proposadharun multiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES)as#tins. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle

In this report, we describe the advanced Recoding Infrastme for SystemC (RISC) approach where a
dedicated SystemC compiler and advanced parallel simulatplement Out-of-Order Parallel Discrete Event
Simulation (OoO PDES) for SystemC. OoO PDES can executad#ie parallel and out-of-order (ahead of
time) and thus achieves fastest simulation speed but ieless maintains the classic SystemC modeling se-
mantics.

This report describes the RISC Compiler and Simulator andildethe SystemC subset supported by the
RISC Alpha Release V0.2.1, as of October 30, 2015.

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Contents

1 Introduction\

2 Out-of-Order Parallel Simulation

2.1 NotationNS e
2.2 Discrete Event Scheduler o oo
2.3 Parallel Discrete Event Scheduler. e e
2.4 Out-of-Order Parallel Discrete Event Scheduler

3 RISC Compiler and Simulator
3.1 SegmentGraph e e e e e
3.2 ConflictAnalysis e e e
3.3 Source Code Instrumentation

4 Out-of-Order Parallel Simulatable SystemC Subset

4.1 SystemC Hierarchical Structure of Modulesand Channels
4.2 SystemCThreads e e
4.3 SystemC Transaction Level Modeling (TLM) o
4.4 SystemC Datatypes e e
4.5 SystemC Utilities and Other Constructs,

5 Conclusion

Acknowledgementé
References

A Appendix
A1 Manual Page of the RISC Compiler and Simulator

List of Figures

1 Traditional Discrete Event Simulation (DES) scheduler for Systme
\2 Synchronous Parallel Discrete Event Simulation (PDES) schedul8y&temC.
3 Out-of-Order Parallel Discrete Event Simulation (00O PDES) schethri&ystemC.
4 RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

List of Tables

1 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC SUbSet 9
2 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (con)lnued 10
3 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 11
4 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 12
5 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 13
6 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (con}inued. 14
7 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 15
8 RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset (con}inued. 16

RISC Compiler and Simulator, Alpha Release V0.2.1:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, and Rainer Domer
Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
{guantaol,schmidtt,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specify and simulate Ble&ystem Level (ESL) models.
Despite the wide availability of multi-core processor hosts, however, tieeerece SystemC simulator is still
based on sequential Discrete Event Simulation (DES) and executes sinlyl@thread at any time.

In recent years parallel SystemC simulators were proposed whicmultiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES) semanticeh&ymous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle.

In this report, we describe the advanced Recoding Infrastructure fte8)yC (RISC) approach where a dedi-
cated SystemC compiler and advanced parallel simulator implement Gitelei- Parallel Discrete Event Sim-
ulation (OoO PDES) for SystemC. OoO PDES can execute threads in panatladut-of-order (ahead of time)
and thus achieves fastest simulation speed but nevertheless maintaifestie 8ystemC modeling semantics.

This report describes the RISC Compiler and Simulator and details then8ystebset supported by the RISC
Alpha Release V0.2.1, as of October 30, 2015.

1 Introduction

As an |IEEE standard [1], the SystemC System Level Description Laegi®dL) is widely used for the spec-
ification, modeling, validation and evaluation of Electronic System Level {EfSadels. Under the Accellera
Systems Initiative [2], the SystemC Language Working Group [3] maintaihemlyg the official SystemC lan-
guage definition, but also provides an open source proof-of-goriteary [4] that can be used to simulate
SystemC design models. However, implementing the classic scheme of Disceste3tiwviulation (DES), this
reference simulator runs sequentially and cannot utilize the parallel corgpatources available on multi-core
(or many-core) processor hosts. This severely limits the execution sp&ydtemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation @& has recently gained again
significant attraction (examples include [6], [7], [8], [9], [10], aridl]). The PDES approach issues multiple
threads (i.e SC_.METHOD, SC_THREAD andSC_CTHREAD) concurrently and runs them on the available proces-
sor cores in parallel. In turn, the simulation speed increases significantly.

Regular PDES is synchronous, however. That is, time advances glaloallgll threads execute in lock-step
fashion. Here, the total order of time imposed by synchronous PDES still lingitsgghortunities for parallel ex-
ecution. When a thread completes its evaluation phase, it has to wait untilelitbtbads finish their evaluation

{guantaol, schmidtt, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

phases as well. Earlier completed threads must stop at the simulation cyate dad-available processor cores
are left idle until all runnable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel techridjad ©ut-of-Order Parallel Discrete
Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time dovidual threads and
carefully handling events at different times, the simulation kernel can thseiads in parallel and ahead of time,
following a partial order of time without loss of accuracy. Thus, Ooo PBIg8ificantly reduces the idle time
of available parallel processor cores and results in maximum simulation,spleiéel maintaining the traditional
language and modeling semantics.

The 000 PDES technique was originally implemented based on the SpecCdarj@6al7, 18, 19]. In this
report, we document our efforts to apply OoO PDES to the SystemC SLQR2[2A] which is both the de-facto
and official standard for ESL design today. In particular, we desailvedRecoding Infrastructure for SystemC
(RISC) [22] which consists of a dedicated SystemC compiler and comesgpout-of-order parallel simulator
and implements OoO PDES for SystemC.

The remainder of this report is organized as follows: After a brief digthon of the simulator scheduling
algorithms used for DES, PDES and OoO PDES in Section 2, we describd 3 Empiler and Simulator
proof-of-concept prototype in Section 3. In Section 4, we then list inildb&SystemC subset that is supported
by the current RISC Alpha Release V0.2.1 (2015-10-30) and finallglade this report in Section 5.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-ofropdeallel simulation. We do
this incrementally, starting from the traditional Discrete Event Simulation (DEB@duler, then describe the
synchronous Parallel DES (PDES) extension, and finally define thef@dtder PDES (OoO PDES) scheduling
algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the followdtagions are introduced.

1. Each SystemC threa®&C_METHOD, SC_THREAD and SC_CTHREAD) is assigned a localized time stamp
(teh, Gth).

2. Each eventgc_event) is assigned a notification time stantg @¢), whereEVENT S= UEVENT $s.
3. Threads are grouped into different queues. Specifically,

(a) QUEUES= {READY, RUN, WAIT, WAITTIME}.

(b) READY= Uth 5 where Threadh is ready to run at timet(d).

(c) RUN= Uth, 5 where Threadh is running at timet(, d).

(d) WAIT = Uth; 5 where Threadh is waiting since timet(d).

(e) WAITTIME= uth; o where Threadh is waiting for simulation time advance to Q).

start

Yes
READY == 27

No
th =Pick(READY); Run(th);

| yield
v

vch e PRIM_CHANNEL, if ch's update method
is requested; perform ch's update method;

]

vth € WAIT, if th's event is triggered; Remove(th,
WAIT); Insert(th, READY); clear triggered events;

No
READY == @7

0

Yes

advance the simulation time;
move the first th € WAITTIME to READY;

No
READY == o7

Figure 1: Traditional Discrete Event Simulation (DES) scheduler for &ySte

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on Blg8re 1 depicts such a traditional
DES scheduling algorithm. In DES, a single thread is running at all times. \&hémreads in thdREADY and
RUN queues complete their current delta cycle, the root thread resumesrémnsehe update and notification
phase. Then threads are woken up and moved frorMAET queue back into thREADY queue. A new delta
cycle begins.

If no threads are ready after the update and notification phase, tlentctime cycle finishes. The simulation
kernel advances the simulation time and processes the earliest timed evethé&VAIT TIME queue. A new
cycle begins for the updated simulated time.

Finally, when both th&/AIT TIMEandREADY queues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple thr8&ds8HTHOD, SC_THREAD and
SC_CTHREAD) concurrently in a delta cycle. These threads can then execute trulyatigbam the multiple
available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithme kevetiuation phase, as long as the
READY queue is not empty and an idle core is available, the PDES scheduler willassew thread from the
READY queue. If a thread finishes earlier than other threads in the same cyels,raady thread is assigned to
the idle processor core, unless there is no thread available READY queue, in which case the core is keept
idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute bathie end of each delta and time
cycle. All threads need to wait at the barrier until all other runnable tleréaish their current evaluation phase.

3

No
READY == @7 ~
IRUNI < #CPUs
&& READY = 27 Immediate
Notification
th =Pick(READY);
Run(th); <
vch € PRIM_CHANNEL, if ch's update method R
is requested; perform ch's update method;
]
vth e WAIT, if th's event is triggered; Remove(th, Delta Cycle
WAIT); Insert(th, READY); clear triggered events;
No
READY == 27 -
advance the simulation time;
move the first th e WAITTIME to READY; .
Timed Cycle
No
READY == 27

Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) atdrddr SystemC.

Only then the synchronous PDES scheduler resumes and performgitite apd notification phases, and finally
advances to the next delta or time cycle.

For the SystemC language in particular, there is a very important aspectsioleowhen applying PDES. For
semantics-compliant SystemC simulation, complex inter-dependency analgsialbvariables in the system
model is a prerequisite to parallel simulation [23].

The Standard SystemC Language Reference Manual (LRM) [1] clstatgs thatprocess instances execute
without interruption”. This requirement is also known as cooperative (or co-routine) multitgskirich is
assumed by the SystemC execution semantics. As detailed in [23], the pampicdbem of parallel simulation
is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware supjporconcurrent processes
may permit two or more processes to run concurrently, provided tiedb@mavior appears identical to
the co-routine semantics defined [...]. In other words, the implementatioidvibe obliged to analyze
any dependencies between processes and constrain their executiatthothe co-routine semantics.”

We will describe the required dependency analysis in more detail belovwe(iticf 3.2), as it is also needed

for out-of-order PDES.

2.4 Out-of-Order Parallel Discrete Event Scheduler

In OoO PDES, we break the strict order of time (the synchronous bahyelocalizing time stamps to each
thread. Figure 3 shows the out-of-order parallel DES schedulingitiigor Since each thread has its own
time stamp, the OoO PDES scheduler relaxes the event and simulation time uptiatéag more threads (at

4

different simulation cycles!) to run in parallel and ahead of time. This resulishigher degree of parallelism
and thus higher simulation speed.

[e |

| sleep | ()
vth € WAIT, if th's event is triggered at (te, de);
Remove(th, WAIT, .5,); Insert(th, READYt, 5e+1); update

th's local time stamp to (te, de+1); clear triggered events;

move vth e WAITTIMEt, o to READY4, o;

update th's local time stamp to (t, 0);
No IRUNI < #CPUs
&& READY != 27

Yes No
| th =Pick(READY); | RUN == o7

Yes
Remove(th, READY4, 5);
Insert(th, RUNt, 5); —
Run(th); end

No
READY == 27

Yes

Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDES)daler for SystemC.

Note theNoConflictgth) condition shown in Figure 3. As already mentioned above for the synobson
PDES, detailed dependency analysis is needed to avoid data or evitiste&or any shared variables among the
parallel threads. Only iNoConflictgth) is true, a new thread is issued for parallel execution (moved from the
READYto theRUN queue).

We will be using advanced static compile-time analysis to identify all such poteotidlicts. Based on this
information (a simple table lookup will suffice!), the OoO PDES schedulertican at runtime quickly decide
whether or not a set of threads has any conflicts with each other.

3 RISC Compiler and Simulator

To realize the OoO PDES approach for the SystemC language, we preserdur Recoding Infrastructure
for SystemC (RISC) and describe the overall RISC Compiler and Simulatof-pf-concept prototype (Alpha
Release V0.2.1 as of 2015-10-30). The RISC software is availablessissgpirce and can be downloaded freely
from the following web site [22]http://www.cecs.uci.edu/~doemer/risc.html

To perform semantics-compliant SystemC simulation with maximum parallelism, we uictecal dedicated
SystemC compiler. This is in contrast to the traditional SystemC simulation whegrilar&ystemC-agnostic
C++ compiler includes the SystemC headers and links the input model direattysathe SystemC library.

As shown in Figure 4, our RISC compiler acts as a frontend that praed¢issanput SystemC model and
generates an intermediate model with special instrumention for OoO PDESn§themented parallel model
is then linked against the extended RISC SystemC library by the target cortgilegular C++ compiler) to

5

http://www.cecs.uci.edu/~doemer/risc.html

Input Model Instrumented Model Executable

- t - Model
RISC Compiler Sy;;rﬂc Target Compiler
systemc.h -

L7
L— 7 > Segment Graph Source Code | | | Model | | C++ ||
Conflict Analysis || Instrumentation —par.cpp Compiler
Model.cpp i @‘7

7 RISC
SystemC

\Library J

Out-of-Order
Parallel
Simulation

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

produce the final executable output model. OoO PDES is then performedy dpunning the generated
executable model.

From the user perspective, we essentially replace the regular SysigmoSta C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compi@therwise, the overall Sys-
temC validation flow remains the same as before. It's just faster due to tHeepsiraulation.

For reference, the detailed Linux manual page of the RISC compiler antbsanis included in Appendix A.1
of this report.

Internally, the RISC compiler performs three major tasks, namely Segmeph Goastruction, conflict anal-
ysis, and source code instrumentation.

3.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model intostraesyntax tree (AST) and

then create a SystemC structural representation from the AST whichtsafiecSystemC module and channel
hierarchy, connectivity, and other SystemC-specific relations, similar t&ysemC-clang representation [24,
25]. For details on this part of the RISC application programming interfa&d)(Alease refer to the Doxygen-

generated documentation [26].

On top of this, the RISC compiler then builds a Segment Graph data structutleefonodel. A Segment
Graph (SG) [12] is a directed graph that represents the code segmeatsgesl during the simulation between
scheduling steps. That is, every segment is associated with a schetlnjepa@nt, i.e. anai t statement in
SystemC.

At run time, threads switch back and forth between the stateswiing (threads irREADYandRU N queues)
andwaiting (threads inVAIT andWAIT T IME queues). Whenunning, they execute specific segments of their
code. These code segments make up the nodes in the Segment Gragasvdugres in the graph indicate the
possible transitions from one segment to another (an abstraction of théswaarol flow).

For a formal description of the Segment Graph and it's construction alguritie interested reader may refer
to [15]. For details on the RISC API, please refer to the Doxygen-gée@idocumentation [26].

3.2 Conflict Analysis

The Segment Graph data structure serves as the foundation for statfuilestime) conflict analysis. As outlined
earlier, the OoO PDES scheduler must ensure that every parallel tlordsdissued has no conflicts with any
other threads currently in tHREADYandRU N queues. Here, we utilize the RISC compiler to detect any possible
conflicts already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, angl tiaziards, all of which may exist
among the segments executed by the threads considered for paraligi@xeBlease refer to [15] for a detailed
discussion of these hazards and their conservative identification in thel. mod

As a result of the conflict analysis, the RISC compiler generates seaflict tables that describe all possible
conflicts between threads in any two segments. Using this conservativenaifon, the simulator can then at
run-time quickly determine by a simple table look-up whether or not it is safeue sy given thread in parallel
or ahead of time.

3.3 Source Code Instrumentation

As shown above in Figure 4, the RISC compiler and simulator work closelyttiegeThe compiler performs
conservative static analysis and passes the analysis results to the simbiatothen can make safe scheduling
decisions quickily.

To pass information from the compiler to the simulator, we use automatic modelnesitation. That is,
the intermediate model generated by the compiler contains instrumented (auttyngéinarated) source code
which the simulator then can rely on. At the same time, the RISC compiler also instisinser-defined SystemC
channels with automatic protection against race conditions among communicatiagsh

In total, the RISC source code instrumentation includes four major components

1. Segment and instance IDs: Individual threads are uniquely idenkifieal creator instance ID and their
current code location (segment ID). Both IDs are passed into the simukatoel as additional arguments
to scheduler entry functions, includimgi t and thread creation.

2. Data and event conflict tables: Segment concurrency hazarde gatential data conflicts, event conflicts,
or timing conflicts are provided to the simulator as two-dimensional tables indaxedsegment ID and
instance 1D pair. For efficiency, these table entries are filtered foreséogtance path, and reference and
port mappings.

3. Current and next time advance tables: The simulator can make bettdukabe&lecisions by looking ahead
in time if it can predict the possible future thread states. This optimization is disdus detail in [14].

4. User-defined channel protection: SystemC allows the user to designels for custom inter-thread com-
munication. To ensure such communication is safe also in the OoO PDES situagoa threads execute
truly in parallel, the RISC compiler automatically inserts locks (binary semaphor® these channels so
that mutually-exclusive execution of the channel methods is guarantdbkdrwise, race conditions could
exist when communicating threads exchange data.

After this automatic source code instrumentation, the RISC compiler passesrtiated intermediate model
to the underlying regular C++ compiler which produces the final simulataugable by linking the instrumented
code against the RISC extended SystemC library.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically +3 @g@plication programming
interface (API) with a corresponding simulation library, has evolved foasic constructs for modeling parallel
modules connected by signals and channels to a highly complex set of mypes, classes, templates, and
functions for very advanced modeling (i.e. Transaction Level Modelihg) 2.0 [27, 28]) and highly optimized
simulation of SystemC models. Usually these optimizations have aimed at higher simdpéied, i.e. by
minimizing context switches in the simulator, or at higher levels of abstractiomodperposely relaxed timing.
Often, the uninterrupted (sequential) execution semantics on a singlespood®st have been assumed or are
explicitly required.

In contrast, RISC now aims for truly parallel execution on multi- or many-tmss. Changing these fun-
damental assumptions about SystemC simulator execution consequently swysaffie constructs and APIs
which need to be revisited and evaluated anew. The goal of this sectiortdsttthis process and enable fruitful
discussions.

Below, we describe and list the out-of-order parallel simulatable Systerh§essupported by the current
RISC Compiler and Simulator, Alpha Release V0.2.1. In particular, Table Gighrdable 8 list for each SystemC
construct whether or not it is supported at this time. If applicable, an eapta note is provided that briefly
outlines the status and/or the plans for the given feature.

Overall, our current RISC proof-of-concept prototype supporstassic SystemC constructs for hierarchical
modeling and multi-threaded execution, but many advanced featurestessepported yet or left undecided at
this stage. The status “undecided” in particular indicates that further s&umheded to decide whether or not the
given construct can be supported in efficient and reasonable mapRIEC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition oSylséemC design model. This in-
cludes the SystemC program stat(mai n, sc_st ar t) and the general compositioBC_CTOR) of modules
(sc_nodul e, SC.MODULE, sc_behavi or) and channelssc _channel , sc_pri mchannel).

Connectivity and communication of the instantiated components is supportediports§c _port,sc.i n,
sc_i nout, sc_out) and interfacesdc_i nt er f ace).

In contrast to the traditional Accellera library, which only provides a typéinition sc_channel to
sc_nodul e, the RISC header files clearly distinguish channels from modules. Heepaaatesc _channel
class is inherited fromsc _nodul e, providing the same functionality, but making the two classes explicit.

Most of the SystemC predefined primitive channels (suck@si gnhal) are supported for OoO PDES,
exceptsc_pri mchannel : : updat e() andsc_fif o:: oper at or =which are not supported in the current
release. For more details, please refer to the Doxygen-generatetheiiztion [29].

4.2 SystemC Threads

The explicit and statically analyzable multi-threading of a SystemC design modelatisrally sup-
ported in RISC OoO PDES. This includes SystemC proces3€sHAS_PROCESS, sc_pr ocess_handl e,
sc_ct hread_process,sc_net hod_pr ocess, sc_t hr ead_pr ocess) and the corresponding threads and
methods $C_CTHREAD, SC_METHOD, SC_THREAD). For basic inter-thread synchronization, SystemC event no-
tifications 6c_event . not i f y) and waiting for events or simulation time advanse (wai t) are supported.

However, dynamic SystemC thread creation and delefongpawn, SC_FORK, SC_JQA N) is not supported
at this time.

While the application programming interface (API) for these constructs remnaimodified from the SystemC
user perspective, the RISC SystemC kernel internally supports exénapters or arguments for these constructs
which are utilized after the automatic source code instrumentation by the Ri8flleo(see Sectidn 3.3 above).
In particular, segment and instance identifiers are supplied with eachsef tinection calls so that the simulator
kernel is aware of the exact thread state upon every scheduler Ehigyncludes in particular the thread creation
constructs $C_CTHREAD, SC_METHOD, SC_THREAD). and wait §c_wai t) statements.

4.3 SystemC Transaction Level Modeling (TLM)

While transaction level modeling in general is a natural feature suppoyt€b® PDES [15], the modeling and
implementation choices made by SystemC TLM 2.0 [28] create significant prolidemmispporting it efficiently

8

Table 1: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes
. . This function may not work with
scabs function Undecided) .
some arithmetic SystemC datatypes.
scactions typedef Supported typedef unsigned sactions
scargc function Supported
scargv function Supported
scassemblevector function Undecided Work on this function in the future
scassert macro Undecided Work on this macro in the future
scattr_base class Undecided Work on this class in the future
scattr_cltn class Undecided Work on this class in the future
scattribute class Undecided Work on this class in the future
sc.behavior typedef Supported typedef scmodule scbehavior
sc.bigint class template Supported
sc.biguint class template Supported
sc.bind_proxy class Supported
scbind macro Undecided Work on this macro in the future
scbit type (deprecated Undecided Work on this type in the future
scbitref_r class template Undecided Work on this class template in the future
sc bitref class template Undecided Work on this class template in the future
scbuffer class Supported
schv_base class Undecided Work on this class in the future
scbv class template Undecided Work on this class template in the future
sc.channel class Supported
scclock class Not Supported Now scclock::beforeend of_elaboration()
calls scspawn().
scclosevcd tracefile function Undecided Work on this function in the future
sc.concatref class Undecided Work on this class in the future
sc.concrefr class template Undecided Work on this class template in the future
sc.contextbegin enumeration Supported
sc.copyright function Supported
sc.cor class Supported
sc.corpkg class Supported
sc.cor_pthread class Supported
sc.cor_pkg pthread class Supported
sccreatevcd. tracefile function Undecided Work on this function in the future
sccref macro Undecided Work on this macro in the future
sc.cthreadprocess class Supported
The risc compiler can generate
SC CTHREAD macro Supported the segment graph for SCTHREAD,
however, it cannot handle the clock.
SCCTOR macro Supported

Table 2: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
sc.cycle() calls scsimcontext::.cycle(),
function which is not supported in
sceycle (deprecated) Not Supported Now the out—of—orderpsri)mulation
in the current release.
sc deltacount function Supported This function returns_the local
delta count of the running process.
scelahandsim function Supported
scend of_simulationinvoked function Undecided Work on this function in the future
sceventandexpr class Not Supported Now Work on this class in the future
sceventandlist class Not Supported Now Work on this class in the future

Work on this class template

sceventfindert class template Undecided .
in the future
sc eventfinder class Undecided Work on this class in the future
sc.eventor_expr class Not Supported Now Work on this class in the future
sceventor_list class Not Supported Now Work on this class in the future
sceventqueueif class Supported
The constructor function is not
sceventqueue class Not Supported Now supported by the out-of-order
simulation in the current release.
The immediate notification is not
scevent class Supported supported by the out-of-order
simulation in the current release.
scexception typedef Undecided Work on this typedef in the future
scexportbase class Not Supported Now No port following in compiler analysis
sc.export class Not Supported Now No port following in compiler analysis
scfifo_blocking.in_if class Supported
scfifo_in_if class Supported
scfifo_in class Supported
scfifo_nonblockingin _if class Supported
scfifo_out.if class Supported
scfifo_out class Supported
scfifo::trace() and sdifo::operator =
scfifo class Not Supported Now are not supported by the out-of-order
simulation in the current release.
scfind_event function Undecided Work on this function in the future
scfind_object function Undecided Work on this function in the future
sc fix_fast class Undecided Work on this class in the future
scfix class Supported
sc fixed_fast class template Undecided Work on this class template
in the future
scfixed class template Supported

10

Table 3: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
SCFORK macro Undecided Work on this macro in the future
scfxcastcontext class Undecided Work on this class in the future
scfxcastswitch class Undecided Work on this class in the future
scfixnum_bitref class Undecided Work on this class in the future
scfxnum_fastbitref class Undecided Work on this class in the future
sc.fxnum_ fastsubref class Undecided Work on this class in the future
sc.fxnum_fast class Undecided Work on this class in the future
sc.fxnum_subref class Undecided Work on this class in the future
scfxnum class Supported
sc fxtype_context class Undecided Work on this class in the future
sc fxtype params class Undecided Work on this class in the future
sc fxval_fast class Undecided Work on this class in the future
scfxval class Undecided Work on this class in the future
scgenuniqguename function Undecided Work on this function in the future
sc.generichase class Undecided Work on this class in the future
function
scgetcurr_processhandle (deprecated Supported
scgetcurrentprocesshandle| function Supported
. . function
scgetdefaulttime_unit (deprecated Supported
scgetstatus function Supported
sc getstopmode function Supported
sc gettime_resolution function Supported
scgettop_level events function Undecided Work on this function in the future
scgettop_levelobjects function Undecided Work on this function in the future
SCHAS_PROCESS macro Supported
sc hierarchicalnameexists function Undecided Work on this function in the future
scin_clk typedef Supported
scin_resolved class Supported
scin_rv class Supported
scin::addtrace() and other tracing
. functions are not supported by
scin class Supported the out-of-order simulation
in the current release.
scin<bool>::addtrace() and other
scin<bool> class Supported tracing functions are npt supported by
the out-of-order simulation
in the current release.
scin<scdt::sclogic>::addtrace()
. 3 . and other tracing functions are
scin<scdt::sclogic> class Supported

not supported by the out-of-order
simulation in the current release.

11

Table 4: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subssir{oed)

Name Type Supported or not Notes
S function
scinitialize (deprecated) Supported
scinoutclk type (deprecated Supported
scinoutresolved class Supported
scinoutrv class Supported
scinout class Supported
scint_base class Supported
scint_bitref r class Undecided Work on this class in the future
scint_bitref class Undecided Work on this class in the future
scint class template Supported
scinterface class Supported
scinterrupthere function Undecided Work on this function in the future
scis_prerelease function Undecided Work on this function in the future
SCIS_.PRERELEASE macro Supported
scis_running function Supported
scis_unwinding function Supported
SCJOIN macro Undecided Work on this macro in the future
sclength context class Undecided Work on this class in the future
sclengthparam class Undecided Work on this class in the future
sclogic class Undecided Work on this class in the future
sclv_base class Undecided Work on this class in the future
sclv class template Undecided Work on this class template in the future
sc.main function Supported
This function is not supported by
sc.maxtime function Not Supported Now the out-of-order simulation
in the current release.
sc.max function Supported
sc.methodprocess class Supported
SCMETHOD macro Supported
sc.min function Supported
scmodulename class Supported
scmodule class Supported
SC.MODULE macro Supported
This class is not supported
scmutexif class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.mutex class Not Supported Now by the risc compiler
in the current release.
scobject class Supported
scoutclk type (deprecated Supported

12

Table 5: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
scoutresolved class Supported
scoutrv class Supported
scout class Supported
scpause function Undecided Work on this function in the future
sc pendingactivity_at currenttime function Undecided Work on this function in the future
sc pendingactivity_at future time function Undecided Work on this function in the future
sc_pendingactivity function Undecided Work on this function in the future
scphash class (deprecated) Undecided Work on this class in the future
scplist class (deprecated) Undecided Work on this class in the future
scport class Supported
scportbase class Supported
scppq class (deprecated) Undecided Work on this class in the future
sc prim_channel::update() is not
scprim_channel class Supported supported by the out-of-order
simulation in the current release.
scprocessh type (deprecated Supported
scprocesshandle class Supported
sc pvector class (deprecated) Undecided Work on this class in the future
scref macro Undecided Work on this macro in the future
screlease function Supported
sc.reporthandlerproc typedef Undecided Work on this typedef in the future
screporthandler class Undecided Work on this class in the future
screport class Undecided Work on this class in the future
This class is not supported
sc.semaphoref class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.semaphore class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.sensitiveneg class (deprecated) Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.sensitivepos class (deprecated) Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.sensitive class Not Supported Now by the risc compiler
in the current release.
. . function
sc.setdefaulttime_unit (deprecated) Supported
sc.setstopmode function Undecided Work on this function in the future

13

Table 6: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subssir{oed)

Name Type Supported or not Notes
sc.settime_resolution function Supported
scsetvced time_unit member function Undecided Work on this function in the future
(deprecated)
scsignalin_if class Supported
scsignalin_if <boob> class Supported
scsignalin_if <sclogic> class Supported
scsignalinout.if class Supported
scsignalout.if type (deprecated Supported
scsignalresolved class Supported
scsignalrv class Supported
scsignalwrite_if class Supported
scsignal::trace() is not supported
scsignal class Supported by the out-of-order simulation
in the current release.
scsignakboob>::trace() is not
scsignakbool> class Supported supported by the out-of-order
simulation in the current release.
scsignaksclogic>::trace() is not
scsignhaksclogic> class Supported supported by the out-of-order
simulation in the current release.
scsignedbitref.r class Undecided Work on this class in the future
scsignedbitref class Undecided Work on this class in the future
scsignedsubrefr class Undecided Work on this class in the future
scsignedsubref class Undecided Work on this class in the future
scsigned class Supported
sc.simcontext::initialcrunch(), cycle()
scsimcontext class Supported and other functions are partially
(deprecated) supported by the out-of-order
simulation in the current release.
: o function
scsimulationtime (deprecated) Supported
sc.spawnoptions class Supported
sc.spawn() is not supported
sc.spawn function Not Supported Now by the out-of-order simulation
in the current release.
scstartof_simulationinvoked function Undecided Work on this function in the future
scstart function Supported
This function is not supported by
scstart(double) function Not Supported Now the out-of-order simulation
in the current release.
scstatus enumeration Supported

14

Table 7: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
scstophere function Undecided Work on this function in the future
sc.stop function Undecided Work on this function in the future
scstring class Undecided Work on this class in the future
(deprecated)
scsubrefr class template Undecided Work on this class template
in the future
scsubref class Undecided Work on this class in the future
sc.switch enumeration Supported
scthreadprocess class Supported
SC.THREAD macro Supported
sctime class Supported
sctime_stamp function Supported
sctime_to_pendingactivity function Undecided Work on this function in the future
sctracedeltacycles function Undecided Work on this function in the future
(deprecated)
sctracefile class Undecided Work on this class in the future
sctrace function Undecided Work on this function in the future
sc.ufix_fast class Undecided Work on this class in the future
sc.ufix class Supported
sc.ufixed fast class template Undecided Work on this class template in the future
sc.ufixed class template Supported
sc.uint_base class Supported
scuint bitref r class Undecided Work on this class in the future
sc uint_bitref class Undecided Work on this class in the future
scuint_subrefr class Undecided Work on this class in the future
scuint_subref class Undecided Work on this class in the future
sc.uint class template Supported
sc.unsignedbitref_r class Undecided Work on this class in the future
sc.unsignedbitref class Undecided Work on this class in the future
sc.unsignedsubrefr class Undecided Work on this class in the future
scunsignedsubref class Undecided Work on this class in the future
scunsigned class Supported
sc.unwind.exception class Undecided Work on this class in the future
scvaluebase class Undecided Work on this class in the future
sc.vectorassembly class Undecided Work on this class in the future
scvectorbase class Undecided Work on this class in the future
sc.vector class Undecided Work on this class in the future
scversionmajor function Supported
sc.versionminor function Supported
sc.versionoriginator function Supported
scversionpatch function Supported

15

Table 8: RISC V0.2.1 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
scversionprerelease| function Supported
scversionreleasedate | function Supported
sc.versionstring function Supported
scversion function Supported

wait(sceventandlist), wait(sceventor_list),
wait function Supported wait(void) are not supported by
the risc compiler in the current release.
This function is not supported
nexttrigger function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
halt function | Not Supported Now by the risc compiler
in the current release.

in RISC. The root problem here lies in the elimination of explicit channels, iwviere a key contribution in the
early days of research on system-level design [16, 17, 18]. As mesarchers agreed, the concept of separation
of concerns was of highest importance, and for system-level desigrticydar, this meant the clear separation
of computation (in behaviors or modules) and communication (in channels).

Regrettably, SystemC TLM 2.0 chose to implement communication interfaces diascilyckets in modules
[30] and this indifference between channels and modules thus breaksshmption of communication being
safely encapsulated in channels. Without such channels, there is verygitietunity for safe parallel execution.

At this point, it is unclear how this situation can be worked around or ctaded hus, SystemC TLM 2.0 can
currently not be supported by RISC.

4.4 SystemC Datatypes

A large part of the SystemC language covers special data types designduit-accurate hardware
modeling, simulation time representation, and other ESL specifics. Thesem®&ydata types include
sc_bigint, sc_biguint, scbit, sc.bv, scfix, scufix, scfixed, scufixed, sc.int,
sc_ui nt,sc_ ogic,andsc.v.

While all these SystemC data types are available in RISC, only a few of theenblesn validated and tested
for being safe in a truly parallel multi-threading context. At this point, RIS@psutssc_i nt, sc_ui nt,
sc_fi xed, andsc_uf i xed (which are MT-safe). All other data types are so far untested and mamgpmot
be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Table 1 through Table 8, there is a plethora of other SystemC ARIlfalde. Some of
these are easily supported in RISC (suctsascopyri ght, sc_versi on_ngj or, sc_versi on_m nor,
sc_ver si on_pat ch, sc_ver si on), others are not supported at this time, such as the SystemC built-in trac-
ing featuresgc_trace,sc_trace_fil e)and the end of simulation due $& _st op.

At this point, there is also a large humber of special SystemC constructshichw is unclear whether

16

or not these can be supported in an OoO PDES context with reasontditeaeid efficiency. An example
of such constructs are those functions which involve or allow to inspecsithelator state at run-time, such
as sc_findevent, sc_findobject, sc_get_current_process_handle, sc_get_status,
sc_get _ti me_resol ution, sc_get top.l evel _events, sc_get top.l evel obj ects,
sc_hi erarchi cal _nanme_exi sts, sc_.i s_running, sc. s_.unw nding, sc_sintontext, and
sc_st at us.

On the other hand, access to the current simulated time_t{nme, sc_sinulation_tine,
sc_del t a_count), an essential part of every SystemC model evaluation, is supportetSity ®oO PDES.

5 Conclusion

While SystemC is the de-facto and official standard language for ESLrje3ygtemC simulation largely is still
performed sequentially following classic DES semantics. Thus, SystemC simutatimot utilize the parallel
processing capabilities available on today’s multi- and many-core host ¢erapu

In this report, we have described the Recoding Infrastructure faieBy3 (RISC), an agressive simulation
approach beyond traditional parallel DES, where a dedicated Systemgllenand advanced parallel simulator
implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES)ysteC. This approach promises
to exploit parallel computing resources to the maximum extend and thus fsistesation speed. At the same
time, O0oO PDES maintains the traditional SystemC modeling semantics.

At this time, this technical report documents the RISC Compiler and Simulatoredailsdhe SystemC subset
supported by the RISC Alpha Release V0.2.1.

As we move on in the project, we will update this report and in particular theastgd subset tables accord-

ingly.

Acknowledgements

This work has been supported in part by substantial funding from Gueboration under an initial seed grant
and a following three year grant for the project titt€at-of-Order Parallel Simulation of SystemC Virtual Plat-
forms on Many-Core Architectures'The authors thank Intel Corporation for the valuable support anteegp
special gratitude to Abhijit Davare, Ajit Dingankar and Desmond KirkpatficKruitful discussions, productive
feedback and invaluable insights.

References

[1] IEEE Computer SocietylEEE Standard 1666-2011 for Standard SystemC Language Refdviarusal
IEEE, New York, USA, 2011.

[2] Accellera Systems Initiativenttp://www.accellera.org.
[3] SystemC Language Working Group (LW@itp://accellera.org/activities/working-groups/systemc-language.

[4] SystemC Language Working Group. SystemC 2.3.1, Core SystemC agegand Examples.
http://accellera.org/downloads/standards/systemc.

[5] Richard Fujimoto. Parallel Discrete Event SimulatioBommunications of the ACM3(10):30-53, Oct
1990.

17

http://www.accellera.org
http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/downloads/standards/systemc

[6] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and &nHieffmann. parSC: Synchronous Par-
allel SystemC Simulation on Multi-Core Host ArchitecturesPinceedings of the International Conference
on Hardware/Software Codesign and System Synthesiges 241-246, 2010.

[7] Dukyoung Yun, Jinwoo Kim, Sungchan Kim, and Soonhoi Ha. Simulationifenment Configuration for
Parallel Simulation of Multicore Embedded SystemsPtaceedings of the Design Automation Conference
(DAC), pages 345-350, 2011.

[8] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur SimonDaegpak Ravi. Parallelizing Sys-
temC Kernel for Fast Hardware Simulation on SMP MachinesPADS '09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distritiitedlation pages 80-87, 2009.

[9] Rohit Sinha, Aayush Prakash, and Hiren D. Patel. Parallel simulatimixed-abstraction SystemC models
on GPUs and multicore CPUs. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) 2012.

[10] Weiwei Chen, Xu Han, and Rainerdner. Multi-Core Simulation of Transaction Level Models using the
System-on-Chip EnvironmentEEE Design and Test of Compute28(3):20-31, May/June 2011.

[11] J.H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, amddaratto. Time-decoupled parallel systemc
simulation. InProceedings of the Design, Automation and Test in Europe (DATE) femcfe Dresden,
Germany, March 2014.

[12] Weiwei Chen, Xu Han, and Rainerdner. Out-of-Order Parallel Simulation for ESL Design.Proceed-
ings of the Design, Automation and Test in Europe (DATE) Conferdtaech 2012.

[13] Weiwei Chen and Rainer @ner. An Optimizing Compiler for Out-of-Order Parallel ESL Simulation
Exploiting Instance Isolation. IRroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 461-466, February 2012.

[14] Weiwei Chen and Rainer@ner. Optimized Out-of-Order Parallel Discrete Event Simulation using Rredic
tions. InProceedings of the Design, Automation and Test in Europe (DATE) o March 2013.

[15] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rairiané&. Out-of-Order Parallel Discrete
Event Simulation for Transaction Level ModelfEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCARBB(12):1859-1872, December 2014.

[16] Jianwen Zhu, Rainer @mer, and Daniel D. Gajski. Syntax and semantics of the SpecC language. |
Proceedings of the International Symposium on System SyntBssika, Japan, December 1997.

[17] Daniel D. Gajski, Jianwen Zhu, Rainebbher, Andreas Gerstlauer, and Shuging ZtgecC: Specification
Language and Design Methodolodyluwer Academic Publishers, 2000.

[18] Andreas Gerstlauer, Raineer, Junyu Peng, and Daniel D. Gajs8ystem Design: A Practical Guide
with SpecC Kluwer Academic Publishers, 2001.

[19] Rainer Dmer, Andreas Gerstlauer, and Daniel GajsBpecC Language Reference Manual, Version 2.0
SpecC Technology Open Consortiunttp://www.specc.org, December 2002.

[20] Open SystemcC Initiativéhttp://www.systemc.org. Functional Specification for SystemC 22000.

18

http://www.specc.org
http://www.systemc.org

[21] Thorsten Gitker, Stan Liao, Grant Martin, and Stuart Swa&ystem Design with SystemKluwer Aca-
demic Publishers, 2002.

[22] Guantao Liu, Tim Schmidt, and Rainer Doemer. Recoding Infrastredar SystemC (RISC) Compiler
and Simulatorhttp://www.cecs.uci.edu/~doemer/risc.html.

[23] Rainer Dbmer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-Core Pbgiteulation of System-
Level Description Languages. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 311-316, January 2011.

[24] Anirudh Kaushik and Hiren D. Patel. SystemC-clang: An Opene®&ramework for Analyzing Mixed-
abstraction SystemC Models. Rroceedings of the Forum on Specification and Design Languages)(FDL
Paris, France, September 2013.

[25] Hiren Patel. "SystemC-clang: SystemC parser using the clang fralit-e
https://github.com/hdpatel/systemcclang.

[26] Tim Schmidt. Recoding Infrastructure for SystemC (RISC) API.
http://mww.cecs.uci.edu/~doemer/risc/html_risc_021/index.html.

[27] Frank Ghenassidlransaction-Level Modeling with SystemC: TLM Concepts and Applicatioisribed-
ded SystemsSpringer, 2005.

[28] Open SystemC Initiative (OSCIPSCI TLM-2.0 Language Reference ManuyaBCl, July 2009.

[29] Guantao Liu. Out-of-Order Parallel SystemC ARttp://www.cecs.uci.edu/~doemer/risc/html_oopsc_
021/index.html.

[30] David C. Black. The Definitive Guide to SystemC: TLM-2.0 and the IEEB6-2011 Standard. Tutorial
at Design Automation Conference, San Francisco, California, Jurie 201

19

http://www.cecs.uci.edu/~doemer/risc.html
http://www.cecs.uci.edu/~doemer/risc/html_risc_021/index.html
http://www.cecs.uci.edu/~doemer/risc/html_oopsc_021/index.html

A Appendix

A.1 Manual Page of the RISC Compiler and Simulator
NAME

risc — Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [options] design[options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purposecat to parse, analyze, in-
strument, and compile a SystemC source program into an executable prfog@unt-of-order parallel
simulation.risc is a frontend source-to-source compiler for SystemC built on top of theER8piler
infrastructure with GNU C++ as the backend target compiler. As susxhrelies on and supports also
most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the spetgBeghis compiled. By default,
risc reads the SystemC source file, performs preprocessing and builds aralimapresentation (ab-
stract syntax tree) and a Segment Graph (SG) of the model. Next, staflictcamalysis is performed
and the design model is instrumented for Out-of-Order Parallel DiscretetBimulation (OoO PDES).
Finally, instrumented C++ code is generated, compiled, and linked into antakée file that can be
run for fast parallel simulation.

On successful completion, the exit value 0 is returned. In case ofatuwing processing, an error
code with a brief diagnostic message is written to the standard error stretheucompilation is
aborted with an exit value greater than zero (i.e. 10).

For preprocessing and C++ compilatiaisc relies on the availability of an external C++ compiler
which is used automatically in the background. By default, the GNU C++ conpiteis used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the hame of
designis used as base name for all intermediate and output files;

OPTIONS

—h | —-help print the compiler version and a brief usage information message to standard and
quit;

—-v | —-verbose increment the verbosity level so that all tasks performed are logged tdastherror
(default: be silent); at level 1, high-level messages about the taskamped are dis-
played; at level 2, additional details such as input and output file naredsstad; at
level 3, very detailed information about each executed task is printed;

—w | —-warningsincrement the warning level so that compiler warning messages are eidéfadit:
warnings are disabled); four levels are supported ranging from onlgrit@pt warnings
(level 1) to pedantic warnings (level 4); for most cases, warning igtecommended
(—w —w);

20

—g|—glevel add a symbol table suitable for debugging (e.g. gdb) to the generated simwa&o
cutable (default: no debugging symbols);

—O| -0 level optimize the generated simulation executable for higher execution speed &sd/or
memory usage (default: no optimization);

—Idir add the specifiedir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in ther astigheir
specification; the standard include path ($SYSTEM&E HOME/include or $SYS-
TEMC_OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

—Ldir add the specifiedir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; tinelatd library
path ($SYSTEMCOOP.HOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

—llib add the specifietib to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
Isystemc) are automatically appended to this list; by default, only standardidibrar
are used;

—C perform only the preprocessing, analysis, instrumentation, and compitasks; skip
the final linking stage so that only an object file is created (default: parfdf tasks
including linking);

—o output file specify the name of the final output file explicitly (default: a.out);
—rose:option pass this option through to the underlying ROSE compiler (default: none);

—GNU option pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

RISC is used to determine the installation directory of the RISC compiler and simulatoe e
RISC system components are located.

SYSTEMA.W_HOME is used to find the RISC light-weight SystemC header files (in directory $SYS-
TEMC_LW _HOME/include).

SYSTEMQOOP_HOME is used to find the RISC OoO PDES SystemC header files (in directory $SYS-
TEMC_OOP.HOME/include) and the RISC OoO PDES SystemC library (in directory $SYS-
TEMC_OOP.HOME/lib).

VERSION

The RISC compiler and simulator is alpha release version 0.2.1.

AUTHORS

Tim Schmidt <schmidtt@uci.ed#, Guantao Liu <guantaol@uci.edd, and Rainer Doemer
<doemer@uci.edd.

21

COPYRIGHT
(c) 2015 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

Probably many, since this is an alpha release of a proof-of-conoafotype implementation.

22

	1 Introduction
	2 Out-of-Order Parallel Simulation
	2.1 Notations
	2.2 Discrete Event Scheduler
	2.3 Parallel Discrete Event Scheduler
	2.4 Out-of-Order Parallel Discrete Event Scheduler

	3 RISC Compiler and Simulator
	3.1 Segment Graph
	3.2 Conflict Analysis
	3.3 Source Code Instrumentation

	4 Out-of-Order Parallel Simulatable SystemC Subset
	4.1 SystemC Hierarchical Structure of Modules and Channels
	4.2 SystemC Threads
	4.3 SystemC Transaction Level Modeling (TLM)
	4.4 SystemC Datatypes
	4.5 SystemC Utilities and Other Constructs

	5 Conclusion
	Acknowledgements
	References
	A Appendix
	A.1 Manual Page of the RISC Compiler and Simulator

