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Abstract
Formal verification of system level models has been broadly studied to address the com-

pleteness concern that the simulation-based validation cannot cover. One approach among
formal verification methods is to convert a system-level design into a well-defined representa-
tion and make use of existing formal verification tool to analyze the representation along with
the properties of interest. In this report, we present an approach to convert an electronic system
level (ESL) design in SpecC system level description language (SLDL) into an UPPAAL system
level model which is an automaton network for formal verification purpose. Our approach does
not only support most of the semantics in the behavioral hierarchy, but also the communication
between modules such as event synchronization and most used predefined channels in SpecC
semantics. Most important of all, our UPPAAL model can simulate the behaviors of traditional
discrete event simulation (DES) and parallel discrete event simulation (PDES). The model can
be used for May-Happen-in-Parallel analysis, and for design verification in other aspects, such
as timing constraint and power consumption verification.

cheweic, doemer@uci.edu
http://www.cecs.uci.edu


Contents

1 Introduction 1

2 UPPAAL System Model 2

3 SLDL Design to UPPAAL Model 3
3.1 PDES model in UPPAAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Automaton Template for Hierarchical Behaviors . . . . . . . . . . . . . . . . . . . 5

3.2.1 Sequential and FSM Composition . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 Parallel and Pipelined Composition . . . . . . . . . . . . . . . . . . . . . 6

3.3 Automaton Template for Leaf Behaviors . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.1 Control-flow Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Time Advancement and Event Synchronization . . . . . . . . . . . . . . . 7
3.3.3 Channel Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Scheduler Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 UPPAAL System Description for a PDES Model . . . . . . . . . . . . . . . . . . 11

4 Conclusion and Future Work 11

References 12

ii



List of Figures

1 Example of an UPPAAL system model . . . . . . . . . . . . . . . . . . . . . . . . 3
2 SLDL Design to UPPAAL automata conversion . . . . . . . . . . . . . . . . . . . 4
3 SLDL source code for an introductory design example . . . . . . . . . . . . . . . 5
4 Representation of Hierarchical behaviors in UPPAAL . . . . . . . . . . . . . . . . 6
5 Control flow statements reflected in leaf automata . . . . . . . . . . . . . . . . . . 7
6 Waitfor statement and wait-notify synchronization . . . . . . . . . . . . . . . . . . 8
7 Communication using standard double handshake channel . . . . . . . . . . . . . 9
8 Scheduler automaton with delta and time advance cycles . . . . . . . . . . . . . . 10
9 UPPAAL system description for the introductory example . . . . . . . . . . . . . 12

iii



Abstracting ESL Designs to UPPAAL System Models

Che-Wei Chang, R Dömer
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Abstract

Formal verification of system level models has been broadly studied to address the completeness
concern that the simulation-based validation cannot cover. One approach among formal verifica-
tion methods is to convert a system-level design into a well-defined representation and make use
of existing formal verification tool to analyze the representation along with the properties of inter-
est. In this report, we present an approach to convert an electronic system level (ESL) design in
SpecC system level description language (SLDL) into an UPPAAL system level model which is an
automaton network for formal verification purpose. Our approach does not only support most of
the semantics in the behavioral hierarchy, but also the communication between modules such as
event synchronization and most used predefined channels in SpecC semantics. Most important of
all, our UPPAAL model can simulate the behaviors of traditional discrete event simulation (DES)
and parallel discrete event simulation (PDES). The model can be used for May-Happen-in-Parallel
analysis, and for design verification in other aspects, such as timing constraint and power consump-
tion verification.

1 Introduction

To cope with the gap between the application in high level language and embedded system platform
in hardware description language, System Level Description Language (SLDL) such as SpecC [1]
and SystemC [2] are introduced to simplify the design flow and evaluate the software and hardware
as a whole at an early design stage. SpecC is one of the SLDL which models the application at
higher levels of abstraction and supports implementation features like processing element alloca-
tion, module partition, and channel communication. Through the steps of system level design, we
verify the functionality along with the implementation details.
Approaches to verify the system-level design can be roughly divided into two sub-categories:
1) simulation-based validation and 2) formal analysis and verification. The advantage of the
simulation-based validation is that it is fast compared to the formal approaches, but the disadvantage
is that it cannot prove that the completeness, i.e., it cannot guarantee if a certain property is satisfi-
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able or unsatisfiable under all possible inputs and conditions. To address the completeness concern
in the verification, formal approaches are widely studies to prove or disprove the satisfiability of the
property of interest. A widely used approach in formal verification is to convert the system level
design into a well-defined representation and then make use of existing formal verification tools to
analyze and verify the representation. In this report, we propose an approach to convert the system
design in SpecC SLDL into an UPPAAL [3] system model in the form of automaton network so
that we can use UPPAAL model checker to analyze and verify the model. There are also other
works using UPPAAL model checker to formally verify the system-level design in SystemC [4].
Compared with the other work using UPPAAL model checker, our approach generates an UPPAAL
model which does not only simulate the behavior of traditional discrete event simulaiton, but also
parallel discrete event simulation (PDES) [5] in which concurrent threads are executed by processor
cores in parallel.
This report is organized as follows: In Section II we briefly introduce the UPPAAL system model
and in Section III we show the conversion from system level design in SpecC SLDL to UPPAAL
system model. We conclude this work and its future applications in Section IV.

2 UPPAAL System Model

Before the description of our approach, we first briefly introduce the basic concept of an UPPAAL
system model. An UPPAAL model consists of a network of concurrent processes which are cre-
ated by instantiating the pre-defined timed automaton templates, and these concurrent processes can
communicate and synchronize with each other through parameters and channels defined. The sys-
tem can be seen as a set of automata running concurrently, i.e., when there are multiple transitions
enabled in the instance processes, these enabled transitions can take place in non-deterministic or-
der. An UPPAAL system model is usually composed of three parts:
1) definition of data structures, functions and global variables declaration,
2) definition of automaton templates, and
3) system definition.
The first part is quite similar to programming language like C. In an UPPAAL model the designers
can define global vairalbes and function to be accessed and called by all instance processes. Except
for the basic variable types supported by UPPAAL modeling language such as integer and Boolean
variable, designers can also define their own complex data structures using struct construct. As for
the second and third parts, we use a simple model in Fig. 1 to illustrate the basic components in
an UPPAAL model. In this example, the model is composed of two processes Inst1 and Inst2
(illustrated as green blocks in the figure) communicating through channel [sync] and integer [a].

The templates of the automata has to be defined first and then they can be instantiated in the
system definition to create the processes and build the model. To build a model in Fig. 1, automaton
template TA1 and TA1 have to be defined first. In the definition of a template, states in the automa-
ton, transitions between states, the conditions to enable a transition and expression to be evaluated
on the transition are clearly specified. In UPPAAL model they are named as location, transition,
and label respectively. Take template TA1 as the example. Four locations X1∼ X4, transitions
X1→X2, X1→X3, X2→X4, and X3→X4 are defined. Labels are shown as blocks on transitions
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in the illustration, and they are attached to transitions to specify the expressions and conditions in
which transitions are enabled. UPPAAL model checker supports three types of label for different
purposes. The first type are update labels (b=1, b=3, or a=b+1 in black in this example) define the
expression to be evaluated during the transition. The second type are guard labels represent the con-
dition when transitions are enabled. When process Inst2 is at location Y2, integer a defines which
transition is enabled in this process. Note that when a equals 3, process Inst2 stays at location Y2.
The third type are synchronisation labels which define the event synchronization between transi-
tions in multiple processes. The synchronisation labels with exclamation mark are event producers
and the labels with question marks are consumers. In this example, whenever transition X2→X4
or X3→X4 happens, the transition from Y1→Y2 happens at the same time if process Inst2 is at
location Y2.

The final step to build an UPPAAL model is to instantiate predefined templates and create a
network with concurrent processes in the system definition. The instance processes created in the
system definition can communicate with parameter and channel. In this example, channel [sync]
and integer [a] are defined in the system definition and used to connect processes Inst1 and Inst2.
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Figure 1: Example of an UPPAAL system model

3 SLDL Design to UPPAAL Model

In this section, we first briefly introduce the basic concept of mapping a system design into an
UPPAAL system model. After the introduction, we describe how we convert the details of behaviors
and scheduler for parallel discrete event simulation algorithm into UPPAAL automaton templates.

3.1 PDES model in UPPAAL

Fig. 2 shows our structure of the UPPAAL model for a system model. A system model is usually
composed of multiple computation blocks(modules, behaviors) with communication (port, channel,
event synchronization) between those blocks. We distinguish two types of behaviors: Leaf and
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Hierarchical behavior, which implements the computation and specifies the composition of leaf
instances, respectively. A system model is constructed with a topmost behavior Main and the sub-
instances of hierarchical and leaf behaviors.
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Figure 2: SLDL Design to UPPAAL automata conversion

In our approach, we first abstract an automaton template from each behavior. These templates are
then instantiated to build a process network modeling the system. Each behavior instance in the
design is one-to-one mapped to a process through template instantiation. The system also contains
a scheduler process to coordinate the transitions in instance processes. All instance processes are
connected to the scheduler process through a structure status tree and a channel c schedule. The
status tree is a tree structure designed to keep the status information for all behavior instances. The
status flags ready, enable, and done, are kept in the node to represent the status of the corresponding
instance, and certain additional flags such as wtime or notify X are added to the node according
to the statement in the behavior. Based on the information in [status tree], the scheduler activates
instance processes in the proper order and ensures the transitions are compliant with the parallel
discrete event execution semantics.
We provide an introductory SLDL example from [6] in Fig. 3 to demonstrate the structure of our
UPPAAL model as well as the [status tree]. As shown in Fig. 3, four processes are created through
template instantiation in the system definition for the scheduler, topmost behavior Main, and its
child instance A and B, respectively. All instance processes are connected to the scheduler process
through [c schedule] and [status tree]. Note that there is also a channel c call between the parent
process and its child processes, as in some hierarchical behavior the child instance are activated by
the parent but not the scheduler.
While the hierarchy of instances has been flattened in the system definition of the UPPAAL model,
[status tree] still maintains the hierarchy of the design. The reference of each node is passed to
the corresponding instance process as parameter so that the process can access its flags and its
children’s. Except for the reference of the node, the reference of a flag can also be passed to a
process as needed. Take flag [notify e] as an example. The reference of this flag is passed to
process Main B for statement "notify e2"in BhvrB as process Main B needs to set this flag
when it reaches the location of the notify statement.
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Figure 3: SLDL source code for an introductory design example

3.2 Automaton Template for Hierarchical Behaviors

Fig. 4 shows automaton template for a hierarchical behavior in our approach. The left-hand side
of the illustration shows the basic structure for all types of behaviors. In each behavior template
there are at least three locations: [Idle], [Initial], and [End]. All behavior processes start at [Idle],
and wait for transition [Idle]→[Initial] to be activated. Transition [Idle]→[Initial] is only activated
when the enable flag in the status node for the corresponding instance is set and the synchronization
is triggered through channel [c schedule] or [c call]. After the execution of the behavior instance is
finished, the process reaches [End] and then goes back to [Idle]. Fig. 4 also shows the locations and
transitions for the four types of composition defined in SpecC SLDL.
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Figure 4: Representation of Hierarchical behaviors in UPPAAL

3.2.1 Sequential and FSM Composition

For both sequential and finite-state-machine (FSM) composition, the instances are executed se-
quentially and only one instance is activated at a time. In a hierarchical behavior of sequential
composition, the children instances are executed in the order in which they are instantiated. When
the parent process reaches location [seq ini], the enable flag of the first child instance is set by the
parent process, and the parent process activates the transition [Idle]→[Initial] in child by triggering
the synchronization over channel [c call] with synchronize label in transition [seq ini]→[seq end].
After the activated child process reaches [End], the done flag of the child process is set and transition
[seq end]→[seq ini] is enabled. The parent process then activates the next child process in the same
manner. After the execution of all children finishes, transition [seq end]→[End] is enabled, and the
parent process sets its done flag, resets the enable flag, and goes back to [Idle]. For the FSM compo-
sition, the interaction between parent and child instances are similar to the sequential composition,
but the child automata are activated in the order specified in the FSM transition statements.

3.2.2 Parallel and Pipelined Composition

The instances in a behavior with parallel or pipelined composition are executed concurrently. To
model the parallel execution semantics, all child processes are activated at the same time in the
UPPAAL model. As shown in Fig. 4, in transition [Initial]→[par] the update label sets the ready
flags of all child instances and clears enable flag of the parent instance. The scheduler process
detects the assertion of the ready flags and activates child processes at the same time by setting the
enable flags of all child instances and triggering the synchronization over channel [c schedule]. The
parent process waits at location [par] until the done flags of all child instances are set.
As for the pipelined composition, considering the filling and flushing stage, not all child instances
are activated in all iterations. For a pipeline composition with n instances and m iterations, the ready
and done flag of i-th instance at s-th iteration, i ∈ {1,2, ...,n},s ∈ {1,2, ...,m}, are set in the iterative
transition [pipe]→[pipe] as follows:
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if i≤ s≤ m+i−1, Inst(i).ready= 1,Inst(i).done= 0

else Inst(i).ready= 0,Inst(i).done= 1

3.3 Automaton Template for Leaf Behaviors

As for the abstraction of leaf behaviors, instead of generating location and transition for every state-
ments, only certain statements of interest are taken into consideration in the model generation. Here
we categorize the statements of interest into three types: 1) control-flow statement, including if/if-
else, while/do-while and for loop, 2) time advancement and event synchronization, and 3) channel
communication. Statements other than these three types are abstracted away (ignored) since they
have no influence on the transition in the automaton. Note that if there is no waitfor, wait-notify
statement or channel communication in the sub-statements, the control-flow statement is abstracted
away, too.
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Figure 5: Control flow statements reflected in leaf automata

3.3.1 Control-flow Statement

Fig 5 shows the corresponding locations and transitions generated for if/if-else, while/do-while,
and for loop. We generate a pair of locations [ini] and [end] for these three types of statements to
encapsulate their sub-statements. For if/if-else statements, we create transitions from location [ini]
into the sub-statements for both cases, and two paths merge at location [end]. For the do-while/while
loop statement, transition [end]→[ini] is inserted to execute the substatement for non-deterministic
times, and a transition bypassing the substatement is provided for the while statement in case the
condition is false at the first iteration. The for-loop statement is similar to the while-loop with guard
and update labels in the transition to count the iteration.

3.3.2 Time Advancement and Event Synchronization

The time advancement and event synchronization in our system model is implemented with wait-
for and wait-notify statements. The locations and transitions inserted for waitfor, wait, and notify
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statements are illustrated in Fig. 6. Two locations [ini] and [end] are created for each wait and
waitfor statement, and one location [notify] is inserted for each notify statement. According to the
execution semantics, it takes at least one delta cycle or simulation clock advancement to wake up
an automaton from suspension caused by wait or waitfor. Since the scheduler process is the only
module aware of time advancement, the suspended automata are re-activated by the scheduler.
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Figure 6: Waitfor statement and wait-notify synchronization

A waitfor statement with argument T suspends the current instance from execution for T time units.
The suspended process will be wakened up by the scheduler processes after the simulation clock is
advanced by N time units. In our UPPAAL model, a global sorted queue is used to store the waiting
time of all suspended instances, and flag [wtime] in the status node also keeps the remaining waiting
time for the corresponding instance. When a process reaches location [ini] of statement waitfor
T, it suspends itself and set its flag [wtime] to T. A predefined function insert is also called to
insert T into a global sorted queue for time advance in the scheduler. The waiting time in the
queue will be read out in order in the scheduler process to decide what is the next time units to
be advanced. After the simulation time is advanced by T units and flag [wtime] of the suspended
instance is reduced to zero, the process is reactivated by the scheduler.

A wait statement suspends the current thread from execution and waits for a statement notifying
the same event is executed. In our model, a wait flag is added to the status node for each event
argument in the instance. The flag is set to specify the corresponding instance is waiting for event
delivery. Take the introductory design in Fig 3 as the example. Flag [wait e1] and [wait e2] are
added to the status node of instance A and B for argument event e1 and event e2. When a
process reaches location [ini] of a wait statement, it suspends itself and sets the corresponding wait
flag. When any process reaches the location of a notify statement notifying the event, the suspended
process is reactivated by the scheduler.
A notify statement wakes up all suspended threads waiting for the notification of a certain event.
In our model, a notify flag is added to the status node for each event. The reference of the flag is
passed to all instances notifying the event so that those processes can set the flag when they reaches
the notify location. For example, in Fig 3 flag notify e is added to the status node of Main, and the
reference of this flag is passed to the process of instance B for the statement notify e2at line 22.
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3.3.3 Channel Communication

Channel communication is essential in system level modeling, and SpecC SLDL supports various
standard channels, such as semaphore, mutex, handshake, double-handshake, and queue. In SLDLs,
the channel communication between blocks is implemented by making function calls to the method
defined in the channel instances to transfer data from sender to receiver. Our approach supports the
modeling of the three mostly used channels, which are handshake, double-handshake, and queue.
We show the standard double handshake channel illustrated in Fig. 7 as the example. In this ex-
ample, channel instance C is connected to instances S and R so that these two instances can call
functions send() and receive() defined in the channel to communicate.

 !"!#$!%#&#

 !"!#$!%!&'

(!&'%#&#

(!&'%!&'

&)*#+,% !-

.//0
$/0

.//1
$/0

.2#*%2"3%#&#

.2#*%2"3%!&'

 

!

!

!

!

.2#*% !-%#&#

.2#*% !-%!&'

&)*#+,%2"3

.2#*%2"3%#&#

.2#*%2"3%!&'

$//1
./0

$//0

444
./1

$/1

 

 !2',5/51
6&5/51

.2#*+) 5/51

7))8
7))8

#&*
+#&#(9!'5/517))8

:;(*2*<(%=9$ :>

$5/51
.5/51

&)*#+,%2"3/1

#&*
#&*

#&*
&)*#+,% !-/17))8

 !;(*2*<(%?@A>

 !2',5/51
6&5/51

.2#*+) 5/51

7))8
7))8

#&*
+#&#(9!'5/517))8

 !2',5/51
555B

.2#*% !-5/51

7))8

"##$
.2#*%2"3/51"##$

%!;(*2*<(% !"!#$! >

 !2',5/51
6&5/51

7))8
7))8

+#&#(9!'5/517))8

 !2',5/51
555B

7))8

.2#*%2"3/51"##$

&!;(*2*<(%(!&'! > A!&'! C!"!#$! 

&'(')*!+("$, -)'#.('#/!+,.0$(',

1/$1/,

Figure 7: Communication using standard double handshake channel

In the UPPAAL model, we inline the predefined communication method into the sender and receiver
process. The text and block in red in the left part of Fig. 7 shows the additional node and flags for
using a double handshake channel. The right part illustrates the inlining of locations and transitions
modeling the detail of the communication with a double-handshake channel. Except for locations
[ini] and [end] inserted for the channel function call, The locations and transitions modeling the
detail of the communication method are also inlined between [ini] and [end]. Flags wait ack and
wait req are added to the status node of the sender S and receiver R, and a status node C is inserted
in the tree for the channel instance C. The wait and notify locations here synchronize the sender and
receiver, and the guard and update labels in the transitions make sure the send and receive function
finish at the same time.

3.4 Scheduler Automaton

In this section we show the scheduler process modeling the discrete event simulation. Note that our
scheduler automaton supports the modeling for both regular DES and parallel DES. The difference
is that the regular DES mode allows one active process at a time, while the parallel DES mode allows
many activated processes. Since in this paper the scheduler needs to run in PDES mode for MHP
analysis, the following description of scheduler automaton is for PDES mode. Fig. 8 illustrates the
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template of the scheduler automaton. The composition of the scheduler automaton can be roughly
divided into three parts: 1) instance activation, 2) event delivery, and 3) time advancement.
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Figure 8: Scheduler automaton with delta and time advance cycles

The instance activation contains the loop from [Idle] to [Ready] and [Scheduling], and then
back to [Idle]. Transition [Idle]→[Ready] is enabled when there is any asserted ready flag in
the status tree. The enable flags of all instances with asserted ready flags are set in transition
[Ready]→[Scheduling], and the all instances with asserted enable flag are activated by the syn-
chronisation label in transition [Scheduling]→[Idle].
The event delivery includes the path from [Idle] to [Ready] via [Notification] and [WakeUp]. This
part simulates the delta cycle increment in the DES. Transition [Idle]→[Notification] is enabled
when all instances are suspended. The guard in transition [Notification]→[WakeUp] checks if there
is any asserted notify flag, and the update label sets the ready flags of the suspended instances
waiting for the same event. For example, the labels below are annotated to the transition to wake up
instance A and B in Fig. 3 from suspension.

[guard] Main.notify e== 1

[update] Main.A.ready= (Main.A.wait e1== 1)? 1 : 0,

Main.B.ready= (Main.B.wait e2== 1)? 1 : 0

The time advancement is the path from [Idle] to [Ready] via [WaitTime] and [TimeAdvance]. This
part simulates the simulation time advancement in the DES. Transition [Notification]→[WaitTime]
is enabled when there is no asserted notify flag in the status tree. The guard in transition
[WaitTime]→[TimeAdvance] reads the minimal waiting time min clk from the sorted queue and
advance the time by min clk. If min clk is 0, i.e., there is no instance waiting for time advancement,
the transition to [Terminate] is enabled and the scheduler process can end. If the minimal time value
is greater than 0, the update label in transition [WaitTime]→[TimeAdvance] set the ready flag of
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the suspended instance if its wtime flag matches min clk. The following labels are annotated to
transition [WaitTime]→[TimeAdvance] to wake up instance A and B from suspension in Fig. 3.

[guard] min clk> 0

[update] Main.A.ready= (Main.A.wtime== min clk)? 1 : 0,

Main.B.ready= (Main.B.wtime== min clk)? 1 : 0

min clk will then be subtracted from all wtime flags greater than 0 in the status tree as well as from
all waiting times in the sorted queue.

3.5 UPPAAL System Description for a PDES Model

After automaton templates for behaviors and centural scheduler are defined, the last step is to in-
stantiate the defined templates in the system description to build the model. As we described before,
each instance in the design is one-to-one mapped to a instance process in the system description.
Our approach flattens the hierarchy of the system, and we rely on the synchronization channels be-
tween scheduler and instance processes as well as the channels between parent and child instances
processes to coordinate the transitions in these concurrent processes and simulate the execution se-
mantics defined in SpecC language. Here we use the introductory example in Fig. 3 to demonstrate
the generated system description. An UPPAAL system model illustrated in Fig. 9 is generate for
the introductory example. For simplicity, the labels on the transition and communication between
processes are not shown in the figure.

4 Conclusion and Future Work

In this work, we propose an approach to model a system-level design in SpecC SLDL as an UP-
PAAL model. Our method covers most of the compositions in hierarchical behaviors including
sequential, parallel, pipeline and fsm, and support control-flow statement, event synchronization
and time advancement statement in leaf behaviors. As for the channel communication, our model
also supports three most used channels which include handshake, double-handshake, and queue
channel with arbitrary buffer size. Most important of all, our model simulate both regular discrete
event simulation and parallel discrete event simulation.
There are many possible applications we can apply this apporach to. Based on this model, we can
formally verify properties of interest in the system-level design, such as potential deadlock detec-
tion, timing/power constraint verification, and May-Happen-in-Parallel analysis. We also plan to
use this model to optimize the power consumption of a system.
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Figure 9: UPPAAL system description for the introductory example
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