
Center for Embedded and Cyber-Physical Systems
University of California, Irvine

MAVO: An Automated Framework for ESL Design
Monitor, Analyze, Visualize and Optimize

Yasaman Samei and Rainer Dömer

Technical Report CECS-14-12
November 20, 2014

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

ysameisy,doemer@uci.edu
http://www.cecs.uci.edu

ysameisy, doemer@uci.edu
http://www.cecs.uci.edu

MAVO: An Automated Framework for ESL Design
Monitor, Analyze, Visualize and Optimize

Yasaman Samei and Rainer Dömer

Technical Report CECS-14-12
November 20, 2014

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

ysameisy,doemer@uci.edu
http://www.cecs.uci.edu

Abstract

Over the last decade, research in Electronic System Level (ESL) design has resulted in significant advances
in addressing the rising design complexity and meeting the required performance constraints. Now a major
concern of system-level design is the power reduction and energy dissipation of the system-on-chip which not
only affects battery lifetime but also thermal aspects and reliability of the end product. Towards power-aware
ESL design, we present MAVO, an automated framework to Monitor, Analyze, Visualize and Optimize both power
and performance at the early stages of the design process. Using four techniques for pipeline balancing, Dynamic
Voltage and Frequency Scaling (DVFS), power scheduling, and peak-power reduction, we minimize and balance
the energy dissipation at the same time as addressing performance constraints. Using an image processing
application, we demonstrate the benefits of automated powerprofiling and visualization in the MAVO framework
resulting in a smoothed energy dissipation profile by 29% andwith 16% power reduction without performance
penalty.

ysameisy,doemer@uci.edu
http://www.cecs.uci.edu

Contents

1 Introduction 1

2 Motivation 2
2.1 Design Modification 2
2.2 Voltage and Frequency Scaling 2
2.3 Balancing power dissipation by scheduling 3
2.4 Smoothing Power Spikes 3
2.5 Power shutoff 3

3 Related works 3

4 Approach:MAVO Framework 4
4.1 Monitor 4
4.2 Power and Performance Annotator 5
4.3 PowerAnalyzer API 5
4.4 Power Optimizer 6

5 Case Study: Canny Edge Detector 6
5.1 Canny: Design Modification 6
5.2 Canny: Adjusting Frequency 7
5.3 Canny: Power Aware Scheduling 7
5.4 Canny: Smoothing Power Spikes 7

6 Conclusion & Future Work 8

References 8

ii

List of Figures

1 Evaluation of different architectures for power and performance 2
2 AdjustingPE clock frequency . 2
3 Scheduling Power Dissipation with MAVO framework 3
4 Smoothing power spikes with MAVO framework 3
5 Design flow with MAVO framework 4
6 Canny Architecture 6
7 Adjusting Frequency for HW1 and HW2 using MAVO 7
8 Adjusting work period for HW1 and HW2 using MAVO 7
9 Active processes power dissipation in CPU 7
10 Smoothing power dissipation using MAVO 8
11 Power dissipation of Canny Edge Detector visualized and optimized by MAVO 9

iii

List of Tables

1 The delay & average power of pipeline stages 6
2 Timing and Performance for Canny Edge Detector after applying each technique 8

iv

MAVO: An Automated Framework for ESL Design
Monitor, Analyze, Visualize and Optimize

Yasaman Samei and Rainer D̈omer
Center for Embedded and Cyber-Physical Systems

University of California, Irvine
Irvine, CA 92697-2620, USA

ysameisy,doemer@cecs.uci.edu
http://www.cecs.uci.edu

Abstract

Over the last decade, research in Electronic System
Level (ESL) design has resulted in significant ad-
vances in addressing the rising design complexity and
meeting the required performance constraints. Now a
major concern of system-level design is the power re-
duction and energy dissipation of the system-on-chip
which not only affects battery lifetime but also ther-
mal aspects and reliability of the end product. To-
wards power-aware ESL design, we present MAVO,
an automated framework to Monitor, Analyze, Visual-
ize and Optimize both power and performance at the
early stages of the design process. Using four tech-
niques for pipeline balancing, Dynamic Voltage and
Frequency Scaling (DVFS), power scheduling, and
peak-power reduction, we minimize and balance the
energy dissipation at the same time as addressing per-
formance constraints. Using an image processing ap-
plication, we demonstrate the benefits of automated
power profiling and visualization in the MAVO frame-
work resulting in a smoothed energy dissipation pro-
file by 29% and with 16% power reduction without
performance penalty.

1 Introduction

ESL design has emerged around a decade ago and has
been equipped with different System Level Descrip-
tion Languages (SLDL) and Electronic Design Au-
tomation (EDA) tools. However, the increasing com-
plexity of SoCs extended the design space and conse-

quently intensified the design productivity gap. Be-
side the difficulties in managing the size of design
space, there are power, temperature and reliability
concerns of the design as well. All these factors, make
system design a challenging task. The fact that power
optimization at system level can result in significant
reduction up to an order of magnitude compared to
power saving at lower levels(e.g. less than 10% at
gate level), reveals the necessity for a effective and ef-
ficient system level power analysis [9]. System level
design decisions can significantly increase the relia-
bility and lifetime of a system and enhance any other
power optimization applied at lower levels later. The
main goal of evaluation at system level is to determine
whether or not the proposed design meets the power,
timing, temperature and reliability constraints and to
identify the power saving opportunities. In order to
explore the design space for better options, identify
power saving solutions, detect peak power, and im-
prove the reliability, a profound understanding of the
power dissipation behavior of the design is required
within reasonable time. The major design decisions
such as component selection, scheduling, pipelining,
and design configurations are essential to be made as
soon as possible in the design process. Since chang-
ing them at lower levels is expensive in terms of both
time and effort. Our proposed MAVO framework is
designed to answer the need for system-level power
and performance evaluation with minimal effort. The
main contributions of this paper are:

• Provide a framework to monitor the system
behavior in terms of power and performance,

1

ysameisy, doemer@cecs.uci.edu
http://www.cecs.uci.edu

through both power and performance logs, and
graphical visualization over time, in different
part of HW and SW, as well as different design
elements.

• Present a comprehensive analysis of system be-
havior, based on power and performance reports

• Apply power management mechanisms and as-
sist the designer to investigate further power sav-
ing solutions.

MAVO presents power and performance optimiza-
tion techniques for design modification, voltage and
frequency scaling, power aware scheduling, and dy-
namic power management with shut-off.

2 Motivation

Power and performance are major design concerns,
and they directly effect on all other aspect of the de-
sign, such as area, temperature, reliability and life-
time of the device. However, evaluating and monitor-
ing power and performance is a prime design chal-
lenge, particularly in multiprocessor SoCs. There-
fore, a comprehensive analysis of energy dissipation
within the system among HWs, communication ele-
ments, memories and SW processors is essential and
can be achieved by profiling the simulation and ap-
plying power models. The features and functionality
of MAVO are designed to fill this gap, at system level.
The power optimization techniques have simple idea
behind them, like voltage and frequency scaling or dy-
namic slack reclamation, however, in order to apply
the techniques either statically in design phase, or dy-
namically during running time, a powerful platform
is required to investigate the design rapidly and with
adequate details.

2.1 Design Modification

Multiple techniques have been proposed for optimiz-
ing power dissipation. However, a low power design
is mainly efficient due to its architecture and design
model itself rather than the applied optimization tech-
niques. For instance, the effect of having a system
working in form of a pipeline configuration and bal-
ancing the pipeline stages, cannot be made by apply-
ing a power optimization technique, such as DVFS.

Behavior
C

Behavior
D

Behavior
B

Behavior
A

(a) Original design

Behavior
D

Behavior
C

Behavior
A

Sub-BehaviorB1

Sub-BehaviorB2

(b) Modified design

Figure 1: Evaluation of different architectures for
power and performance

Fig.1 shows two different design options of a design.
The design in Fig.1(a) has 4 pipeline stages,A,B,C
andD. After monitoring the power dissipation within
different behaviors and availability of processing el-
ements, the pipeline stages, and weight of their as-
signed behaviors, design has been modified as it is
shown in Fig.1(b). Fig.1(b) shows an alternative with
split stageB (B1 andB2) and merged stageC andD.
Without an infrastructure to monitor and profile the
performance and power in each stage, it is impossible
to apply these modification and decide which archi-
tecture is more efficient.

2.2 Voltage and Frequency Scaling

The fact that power is basically spending energy over
time allows design optimization with respect to fre-
quency, and supply voltage. We can reduce power dis-
sipation and as a result develop more reliable designs
by lowering the frequency or supply voltage within
the defined deadline and without compromising the
performance. Fig.2 illustrates the general idea of this
scheme. The working frequency ofPEi is reduced

tstart tstarttdeadline tdeadline

p
o
w
e
r

p
o
w
e
r

PEi

PEi

Figure 2: AdjustingPE clock frequency

to minimize power dissipation, while meeting the re-

2

quested deadline.

2.3 Balancing power dissipation by schedul-
ing

Throughout the life-time of a device it is important
to balance power dissipation. This can effectively re-
duce the working temperature of the device, improve
reliability, minimize faults, and extend the system
life-time. MAVO supports monitoring the mode and

PEj

tstart tstarttdeadline tdeadline

p
o
w
e
r

p
o
w
e
r

PEi

PEj

PEi

Figure 3: Scheduling Power Dissipation with MAVO
framework

the activity intervals of each design element, as well
as the amount of their power consumption. Using this
information, designer can easily examine scheduling
alternatives and power saving opportunities via sim-
ple, yet effective design modification. Fig.3 demon-
strates this by improved scheduling of the working
intervals of two processing element,PEi andPEj , to
balance the overall power usage, and reducing peaks
and temperature at the same time.

2.4 Smoothing Power Spikes

The peak power of the design is among the factors that
directly influences the reliability, thermal limitations,
cost and size of the device [8]. Fig.4 illustrates the
general idea of eliminating low and high spikes. The
unwanted power dissipation behavior can be avoided
by scaling frequency within the involve units. In
an ideal design, peak power should be limited to cer-
tain range. In MAVO we are using a simple method
to monitor different active process of the design and
scale down the frequency, in order to avoid out of
range peak power.

ti tj

p
o
w
e
r

p
o
w
e
r

 PEi
PEi

ti tj

Figure 4: Smoothing power spikes with MAVO
framework

2.5 Power shutoff

Finally, in order to reduce static power, a common
Dynamic Power Management(DPM) technique is to
shutoff the inactive devices. MAVO also supports
this approach.

3 Related works

There has been large body of work and research ef-
forts on low-power design, power optimization tech-
niques, and power aware EDA tools, for design at
different levels of abstraction. For power and perfor-
mance estimation at system level, two common steps
within all these studies are: generating power models
and tracing model simulation to extract information
needed by power models. A functional level power
analysis approach is used in PETS [10]. PETS uses
generic power models while extracting micro archi-
tectural activity to tackle the accuracy-speed trade-
off. COMPLEX [5] is a framework for HW/SW co-
design at system levels and allows applying hybrid
combination of power models from various works for
different design components. Wattch [1] and Simple-
Power [14] are cycle-accurate power estimators with
low speed. A power, performance and area estima-
tor with built-in power models for all types of HW
units is presented in McPAT [7]. McPAT has to be
used along with a simulator as well. Although power
models can work with negligible error, the main lim-
itation at system level is to rapidly collect detailed
power traces for different applications. To alleviate
this problem, simulators Sniper [2] as an interval sim-
ulator and Multi2Sim [13] as functional simulator are

3

proposed. There are also works that extend SLDLs
with additional libraries and allows the designer to in-
sert power data/functions to design manually, such as
PowerSC [6] and TLM POWER3 [4].
These power estimators at system level generate gen-
eral power reports in form of average power consump-
tion, performance, or the trace of total power of the
design only. However, our MAVO framework en-
ables the designer to concentrate on any HW or SW
part of the design, their working intervals, their power
consumption over time, and modes of operation, with
user-defined granularity. This feature allows to make
critical design decisions and find power optimization
solutions easy and rapidly with clear understanding of
the design.

4 Approach:MAVO Framework

An overview of the design flow using MAVO is
presented in Fig.5. The main developed compo-
nents consist of aMonitor [11], PowerAnalyzerAPI
[12], power-time modelAnnotator, and an interac-
tive power-performanceOptimizer. We developed the
Monitor and thePowerAnalyzerAPI [12], and eval-
uated them in terms of accuracy and fidelity for ESL
power estimation [11]. Our results confirms that the
Monitor along with thePowerAnalyzerdeliver rapid
estimates with high fidelity and at minimal cost. In
this work we automated the monitoring and power
analysis. We also integrated the visualization and in-
teractive optimization capabilities.
As it is shown in Fig.5, the design process at sys-
tem level starts with a specification model, that re-
flects the functional behavior of the system, without
any notion of time nor power. Next, Processing Ele-

B2
C1

C2 C4

C3
B3

B1

B4
B5

System-Level
 Model

CPU Mem

IPHW

CPU Bus DSP Bus

B1 B3V1
v2

B5B4

DSP

c4
c

3

s

1

OSos

B2

B
ri

d
g

e

Architecture Model

Power & Time
Annotated model

CPU Mem

IPHW

CPU Bus DSP Bus

B1 B3V1
v2

B5B4

DSP

c4c3s1

OSos

B2

Br
id

ge

Simulation

Power Report p
o

w
e

r

time

p
o

w
e

r

time

Monitor

Power
Library

Timing
Library

Power
Analyzer

API

Annotator

Power
Optimization

- Design Modification
- DPM
- Adjusting Metrics
- Balance peak
power
- Alter mapping
- Alter PEe

Figure 5: Design flow with MAVO framework

ment (PE) allocations, behavior mappings, schedul-

ing and communication refinements are performed.
All these design decisions generate a large design
space which needs to be minimized through elimi-
nation, based on design constraints. All invalid de-
sign options are pruned from the design space and the
best design options go to power optimization and per-
formance improvement phase. In this work, we im-
plemented the system level specification models in
SpecC language, and the System-on-Chip Environ-
ment (SCE) [3] is used for component allocation, ar-
chitecture mapping, and refinements. Although we
picked SpecC language and SCE as the design en-
vironment, MAVO can be used in SystemC or other
design frameworks similarly. Moreover, each module
of MAVO, Monitor, PowerAnalyzerAPI, Annotator,
and power-performanceOptimizer, can be used sepa-
rately as needed or integrated into other tools as well.
Once the architecture model is ready, the subsequent
steps are profiling the model, annotating power and
time related functions to the design, and finally the
power and performance analysis.

4.1 Monitor

The system specification model represents the func-
tionality of the system. The system level design lan-
guages allow the designer to specify the design with
timing notion, different communication attributes
such as channels, queues, and the format of behav-
iors executions such as parallel, pipeline, sequential
or finite state machines . For power and timing anal-
ysis, designer needs to specify the structural model in
which processing elements, communication elements,
and memories are allocated, and mappings are defined
for specification model components. In order to gen-
erate the power and timing reports and perform anal-
ysis,Monitor [11] profiles the trace of different oper-
ations executed on processing elements and memory
accesses, besides the amount and type of data being
transferred over the channels. These traces can be
collected with different levels of granularity, for in-
stance, with highest granularity for the whole design,
or lower, the trace of every component and commu-
nication channel of the design. In this work, we are
monitoring with granularity of every basic block. The
basic block in this work is defined as in compilers
design. The traces of operations, data accesses, and

4

transferred data are generated dynamically through
simulation of system level architecture model.

4.2 Power and Performance Annotator

In order to perform power and timing aware simula-
tion, and design exploration, the collected traces are
annotated to the structural model. In order to maintain
accuracy, the traces are associated with every basic
block of the model. Therefore, anAnnotator is de-
signed to insert power and timing information. Nev-
ertheless, theAnnotator can support the annotation
with higher granularity of behaviors and components
as well. The back annotated information includes ex-
ecution delay, static, and dynamic power dissipated
within the corresponding basic block, considering the
type of the design component that block is mapped to,
its configured operational mode, as well as the com-
munication transactions through the assigned commu-
nication unit. In order to process these values,Power-
AnalyzerAPI [12] is applied. TheAnnotatoris linked
to PowerAnalyzerAPI in order to apply the power
functions and use generated values for annotations.
An example of a basic block annotated with time and
power information is presented below.

{ / / b a s i c b l o ck : Bi
{

Label i :
wa i t f o r t ime ;
d i s s i p a t e(PowerMeterA , Dynamic Power , S t a t i c

Power) ;
}
. . .
d ++;
Ch1 . send (d) ;

}

As shown, thedissipate function represents the
amount of power spent in basic blockBi , in form
of dynamic and static power, as well as thePower-
MeterA that monitorsBi power dissipation. MAVO
can support the dynamic and static power monitor-
ing separately, so the designer can focus on any of
them as needed. The static power represents leakage
power, and because of shrinking in transistor size to
sub-micron, static power needs to be investigated as
carefully as dynamic power.

4.3 PowerAnalyzer API

ThePowerAnalyzerAPI is developed to complement
system level models with power notion.PowerAn-
alyzer API [12] is implemented inC++ and can be
used along with any ANSI-C based SLDL. In this
API, a set of power related functions is provided to
add the dimension of power to system level design.
Using the provided functions, the user can specify
power related activities and analyze power dissipation
in different processing elements, communication ele-
ments, behaviors, and globally, both manually or au-
tomatically using theAnnotator.
In order to analzye power consumption, PowerMeters
are used. Power dissipation is measured using Power-
Meters and can be evaluated for any subsection of the
design. As shown in last section, the dissipate func-
tion captures the dynamic and static power dissipa-
tion of a block which is monitored by aPowreMeterA.
PowerMeters can get allocated for any component,
behavior or block of the design automatically. How-
ever, designer can define more PowerMeters for any
part of the design for further analysis if needed. The
PowerMeters are mainly useful for post-simulation
power analysis. For effective power analysis and im-
proving the reliability of system, designer need to
monitor global power consumption of the system for
peak powers, and temperature analysis. However, for
power optimization investigation and balancing peak
power, detailed power dissipation traces of design el-
ements, beside behaviors status, is required. For in-
stance, in a design with multiple processing elements,
in order to balance the power consumption within el-
ements and schedule their mapped behaviors, it is re-
quired to monitor elements activity intervals as well
as the amount of their power consumption, apart from
profiling entire design power dissipation. Similarly,
in order to identify a solution for smoothing a peak
power in certain processing element, designer need
to study active behaviors on that element during the
peak.
To generate a comprehensive analysis of power and
performance, thePowerAnalyzerAPI andAnnotator
are working alongside to use monitored power log
information, and annotate power and timing related
functions generated byPowerAnalyzerAPI. To calcu-
late the dynamic and static power values, user need to

5

provide power model and configuration files of each
element.

4.4 Power Optimizer

The powerOptimizer is an infrastructure for close
evaluation and analysis of the design, through power
reports, and identifying power and performance op-
timization opportunities. These opportunities can
be in form of design alteration e.g. changing the
weight of computations in different blocks of the de-
sign, altering algorithms, changing execution meth-
ods like parallelism or pipelining, communication
policies, components allocations, and PE mappings.
The other group of power saving solutions, can be
power optimization methods such as dynamic voltage
and frequency scaling, dynamic power management,
scheduling or load balancing.
The main role ofOptimizer is to assist the designer
with optimization decisions.Optimizersupports gen-
erating power and performance analysis for any time
interval or subsection of the design to allow the de-
signer to evaluate the design and explore other design
options rapidly. For frequency scaling, scheduling
and balancing peak power,Optimizer can help fur-
ther and show the working intervals of each element,
and involved design elements in peak power.TheOp-
timizerassesses PowerMeters and provides numerical
logs of power over time. In order to control the size
these log files and adjust the precision of this analysis,
the user can pick the sampling frequency. The user
can also specify any simulation interval to monitor
as well. Most importantly, the user can view graphi-
cal power dissipation over time and zoom in for spe-
cific intervals of any design elements and behaviors.
Moreover, theOptimizersupport merging the reports
or stacking up the power dissipation values in differ-
ent PowerMeters over time.

5 Case Study: Canny Edge Detector

We have investigated the MAVO framework with a
Canny edge detector. Canny is a real-life image pro-
cessing application implemented in 4-stage pipeline
configuration. The model was examined on an ARM
based processor with two custom HW units for in-

put and output, and 2 HWs for pipeline. All units are
communicating through the AMBA BUS.

5.1 Canny: Design Modification

The 4-stage pipeline architecture is suggested by edge
detection algorithm which has four major steps. How-
ever, after viewing the power and timing reports from
MAVO, it become apparent that this architecture is
imperfect in term of the pipeline load in each stage.
Table 1 shows the power and time consumption of
each pipeline stage.

Design
Stage1 Stage2 Stage3 Stage4 Stage5

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW)

4-Stage 537 328.3 184.4 77.1 353 72.5 142 38.5 - -
5-Stage 226 174.6 237.8 149.6 184.4 77.1 353 72.5 142 38.5
3-Stage 226 174.6 237.8 149.6 688.8 188.2 - - - -

Table 1: The delay & average power of pipeline stages

Data In

Magnitude
Delta

Non-maximal
Suppression

Apply
Hysteresis

Canny

Gaussian
Smooth

Q1

Data OutQ2

(a) 4-stage pipeline

Data In

Gaussian
Smooth Y

Magnitude
Delta

Non-maximal
Suppression

Apply
Hysteresis

Canny

Gaussian
Smooth X

Q1

Data OutQ2

(b) 5-stage pipeline

Data In

Gaussian
Smooth Y

Magnitude
Delta

Non-maximal
Suppression

Apply
Hysteresis

Canny

Gaussian
Smooth X

Q1

Data OutQ2

(c) 3-stage pipeline

Figure 6: Canny Architecture

The power and timing results reveal that theGaus-
sian Smoothbehavior is computationally expensive
and power hungry. In order to balance the pipeline
we modified the design to a 5-stage pipeline (Can-
nyA), splitting the Gaussian Smooth behavior in toX
andY dimensions. In this work the stage 1 and stage
2 of the pipeline are mapped to custom HWs, and rest
of the stages are mapped to ARM processor. The ap-
plied mappings, makes the Canny architecture works
as a 3-stage pipeline configuration. Fig.6 shows the
architecture of Canny before and after the modifica-
tion. Next we evaluate Canny for power optimization.
Fig.11(a) shows the power dissipation in each of the
design elements.

6

5.2 Canny: Adjusting Frequency

Using the reports and graphs, the working frequency
and supply voltage of each unit can be optimized. In
Fig.11(a), a power saving opportunity can be detected
for HW1 and HW2, which finish their tasks earlier
than the rest of stages. In turn, we lower the frequency
of HW1 and HW2 within the performance constraints
(CannyB).

 0

 0.1

 0.2

 0.3

 0 2e+09 4e+09

p
o
w
e
r
(
W
)

time(ns)

HW1
HW2

(a) Before

 0

 0.1

 0.2

 0.3

 0 2e+09 4e+09

p
o
w
e
r
(
W
)

time(ns)

HW1
HW2

(b) After

Figure 7: Adjusting Frequency for HW1 and HW2
using MAVO

By extending the processing time in stage 1 and 2,
the simulation time gets extended as well. This is
due to the fact that initially it takes longer to fill
the pipeline, however, the pipeline throughput perfor-
mance remains the same.

5.3 Canny: Power Aware Scheduling

In order to balance power dissipation in whole device,
we can schedule the work period of the units such that
they have minimum overlaps. For HW1 and HW2

the result of this modification (CannyC) is shown in
Fig.8.

 0

 0.1

 0.2

 0.3

 0 2e+09 4e+09

p
o
w
e
r
(
W
)

time(ns)

HW1
HW2

(a) Before

 0

 0.1

 0.2

 0.3

 0 2e+09 4e+09

p
o
w
e
r
(
W
)

time(ns)

HW1
HW2

(b) After

Figure 8: Adjusting work period for HW1 and HW2
using MAVO

 0

 0.1

 0.2

 0.3

 0 1e+09 2e+09 3e+09 4e+09 5e+09

p
o
w
e
r
(
W
)

time(ns)

ApplyHysteresis
Derivative

MagnitudeXY
MAX

Figure 9: Active processes power dissipation in CPU

5.4 Canny: Smoothing Power Spikes

The total power results from MAVO show that the
device is experiencing high peak powers, where the

7

 0

 0.1

 0.2

 0.3

 0 2e+09 4e+09

p
o
w
e
r
(
W
)

time(ns)

ARM

(a) Before

 0

 0.1

 0.2

 0.3

 0 2e+09 4e+09

p
o
w
e
r
(
W
)

time(ns)

ARM

(b) After

Figure 10: Smoothing power dissipation using
MAVO

peak is more than the double the average. In order to
smoothen the dissipation MAVO identifies the active
processes during the peaks as shown in Fig.9.

Here we decide to scale the frequency for the in-
volved behaviors. Fig.10 shows the results (CannyD).
A block performing the floating point operations is re-
sponsible for power peaks. We lower the frequency
of CPU here and in order to maintain the perfor-
mance, another integer intensive behavior is scaled
with higher frequency instead. Table 2 shows the
power and performance of each models. The canny
example has been tested with 6 images and it was ex-
pected to generated one image in every 0.8 seconds.
As shown, MAVO power savings resulted in an opti-
mized design with no performance penalty. The opti-
mized design experiences power fluctuations 8% less,
based on comparing the standard deviation of power
reports and the power changes range has been reduced
by 29%. The difference between the minimum and
the maximum of power dissipation over time, consid-
ered as the power changes range of the design.

Model

Pipeline

Throughput

(ms)

Power

Range

(min,max)

Relative

Fluctuation

Power

(mW)

Power

Saving

CannyA 688.8/800 (86%)(0.003,0.312) 100% 374.504 +0%

CannyB 689/800 (86%) (0.003,0.312) 100% 357.113 +5%

CannyC 701.8/800 (88%)(0.003,0.312) 100% 329.903 +12%

CannyD 738.8/800 (92%)(0.001,0.204) 71% 315.511 +16%

Table 2: Timing and Performance for Canny Edge
Detector after applying each technique

6 Conclusion & Future Work

This paper presents a framework toMonitor, Analyze,
Visualizeand Optimizepower and performance for
low power ESL design. MAVO is a simulation based
power and performance estimator and optimizer. A
Monitor for profiling the system model simulation,
an API calledPowerAnalyzerfor computing power
numbers using power models, a modelAnnotatorfor
back annotating the power values automatically, and
anOptimizerto apply power optimization techniques,
are developed and integrated in MAVO.
The Canny edge detector has been studied using
MAVO, and it is optimized up to 16% for power with-
out compromising performance. The power range has
been reduced by 29%. Future work will address in-
tegrating an efficient dynamic power manager with
thermal and reliability analyzer.

References

[1] David Brooks, Vivek Tiwari, and Margaret
Martonosi. Wattch: a framework for
architectural-level power analysis and optimiza-
tions, volume 28. ACM, 2000.

[2] Trevor E Carlson, Wim Heirman, and Lieven
Eeckhout. Sniper: exploring the level of abstrac-
tion for scalable and accurate parallel multi-
core simulation. InProceedings of 2011 In-
ternational Conference for High Performance
Computing, Networking, Storage and Analysis,
page 52. ACM, 2011.

[3] Rainer D̈omer, Andreas Gerstlauer, Junyu Peng,
Dongwan Shin, Lukai Cai, Haobo Yu, Samar

8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1e+09 2e+09 3e+09 4e+09 5e+09

p
o
w
e
r
(
W
)

time(ns)

AMBA_ARM__HW1
AMBA_ARM__HW2

AMBA_ARM__IO-OUT
AMBA_ARM__IO-IN

ARM
HW1
HW2

(a) Canny edge detector

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1e+09 2e+09 3e+09 4e+09 5e+09

p
o
w
e
r
(
W
)

time(ns)

AMBA_ARM__HW1
AMBA_ARM__HW2

AMBA_ARM__IO-OUT
AMBA_ARM__IO-IN

ARM
HW1
HW2

(b) Optimized Canny Edge Detector

Figure 11: Power dissipation of Canny Edge Detector visualized and optimized by MAVO

Abdi, Daniel D Gajski, et al. System-on-chip
environment: a SpecC-based framework for het-
erogeneous MPSoC design.EURASIP Journal
on Embedded Systems, 2008.

[4] David Greaves and Mehboob Yasin. TLM
POWER3: Power estimation methodology for
SystemC TLM 2.0. InModels, Methods, and
Tools for Complex Chip Design, pages 53–68.
Springer, 2014.

[5] Kim Grüttner, Philipp A Hartmann, Kai Hylla,
Sven Rosinger, Wolfgang Nebel, Fernando Her-
rera, Eugenio Villar, Carlo Brandolese, William
Fornaciari, Gianluca Palermo, et al. The com-
plex reference framework for hw/sw co-design
and power management supporting platform-
based design-space exploration.Microproces-
sors and Microsystems, 37(8):966–980, 2013.

[6] Felipe Klein, Rodolfo Azevedo, Luiz Santos,
and Guido Araujo. Systemc-based power eval-
uation with PowerSC.Electronic System Level
Design, pages 129–144, 2011.

[7] Sheng Li, Jung Ho Ahn, Richard D Strong,

Jay B Brockman, Dean M Tullsen, and Nor-
man P Jouppi. McPAT: an integrated power,
area, and timing modeling framework for mul-
ticore and manycore architectures. InMi-
croarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, pages
469–480. IEEE, 2009.

[8] Massoud Pedram. Power minimization in ic de-
sign: principles and applications.ACM Trans-
actions on Design Automation of Electronic Sys-
tems (TODAES), 1(1):3–56, 1996.

[9] Jan Rabaey. Low power design essentials.
Springer, 2009.

[10] Santhosh-Kumar Rethinagiri, Oscar Palomar,
Osman Unsal, Adrian Cristal, Rabie Ben-
Atitallah, and Smail Niar. Pets: Power and en-
ergy estimation tool at system-level. InQual-
ity Electronic Design (ISQED), 2014 15th Inter-
national Symposium on, pages 535–542. IEEE,
2014.

[11] Yasaman Samei and Rainer Dömer. Automated
Estimation of Power Consumption

9

for Rapid System Level Design. InPerformance
Computing and Communications Conference
(IPCCC), 2014 IEEE 33rd International. IEEE,
2014.

[12] Yasaman Samei and Rainer Dömer. PowerMon-
itor: A Versatile API for Automated Power-
Aware ESL Design. InSpecification & Design
Languages (FDL), 2014 Forum on. IEEE, 2014.

[13] R Ubal, J Sahuquillo, S Petit, and P López.
Multi2sim: A simulation framework to evaluate
multicore-multithread processors. InIEEE 19th
International Symposium on Computer Archi-
tecture and High Performance computing, page
(s), pages 62–68, 2007.

[14] Wu Ye, Narayanan Vijaykrishnan, Mahmut
Kandemir, and Mary Jane Irwin. The design and
use of simplepower: a cycle-accurate energy es-
timation tool. InProceedings of the 37th Annual
Design Automation Conference, pages 340–345.
ACM, 2000.

10

	1 Introduction
	2 Motivation
	2.1 Design Modification
	2.2 Voltage and Frequency Scaling
	2.3 Balancing power dissipation by scheduling
	2.4 Smoothing Power Spikes
	2.5 Power shutoff

	3 Related works
	4 Approach:MAVO Framework
	4.1 Monitor
	4.2 Power and Performance Annotator
	4.3 PowerAnalyzer API
	4.4 Power Optimizer

	5 Case Study: Canny Edge Detector
	5.1 Canny: Design Modification
	5.2 Canny: Adjusting Frequency
	5.3 Canny: Power Aware Scheduling
	5.4 Canny: Smoothing Power Spikes

	6 Conclusion & Future Work
	References

