C Center for Embedded Computer Systems
S University of California, Irvine

A User-level Thread Library Built on Linux
Context Functions for Efficient ESL Simulation

Guantao Liu and Rainer@ner

Technical Report CECS-13-07
June 6, 2013

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{guantaol, doemé@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

A User-level Thread Library Built on Linux
Context Functions for Efficient ESL Simulation

Guantao Liu and Rainer@ner

Technical Report CECS-13-07
June 6, 2013

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{guantaol, doemé@uci.edu
http://www.cecs.uci.edu

Abstract

Currently QuickThreads library is widely used in the mdiftteaded programs such as Elec-
tronic System Level (ESL) simulation. As a user-level thidaary, QuickThreads is very ef-
ficient in thread manipulation as it operates solely at usarel and introduces no operating
system overhead. While QuickThreads library utilizes dqige interface to wrap machine-
dependent code that performs thread initialization andternswitching, it only works on a
certain number of specific platforms and architectures.hiis teport, we propose a new user-
level thread library that offers the same features as Quic&dds, but makes use of Linux
library functions and therefore is portable to all 32-bitriLix platforms.

http://www.cecs.uci.edu

Contents

1 Introduction\

2 Basic Ideas of the ContextThreads Library

3 Performance Evaluation of the ContextThreads Library

3.1 Platform Architectures and Benchmark Examples
3.2 Producer-ConsumerModel

3.3 Threads with Pure Floating-point Multiplication (TEMUL)

4 Conclusion

References

A Benchmark Examples
A.1 Producer-Consumer Moélel
A2 TEMULMOdEl . . o o oo e

B Measured Simulation Times for All Benchmarks and Applications
B.1 Simulation Time for Producer-Consumer Model
B.2 Simulation Time for TFMUL Mod€l v oot

List of Figures

Intel Xeon architecture, X5650 (Xb_[3] D

Intel Core 2 Quad architecture, Q9650 (nﬁ) 5

o Ul WIN

Simulation Results for TFMUL Model on\xi

Simulation Results for Producer-Consumer Modelonmu
Simulation Results for Producer-Consumer Model bn Xi. .o e
Simulation Results for TFMUL Modelonmu

w

List of Tables

\1 Simulation Results for Producer-Consumer Model 4
2 Simulation Results for TFMUL Model 5
3 Producer-Consumer Modelonmu 15
4 Producer-Consumer Modelonxi 16
5 TEMUL Modelonmu e e 17
6 TEMUL ModelonXxi e 17

List of Listings

\1 Producer-Consumer Mo&lel
2 TEMUL Model

A User-level Thread Library Built on Linux
Context Functions for Efficient ESL Simulation

Guantao Liu and Rainer Domer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{guantaol, doemé@uci.edu
http://www.cecs.uci.edu

Abstract

Currently QuickThreads library is widely used in the multi-threaded proggauch as Electronic
System Level (ESL) simulation. As a user-level thread library, Quielkitls is very efficient in
thread manipulation as it operates solely at user level and introducespeeating system over-
head. While QuickThreads library utilizes a portable interface to wrap mactependent code
that performs thread initialization and context switching, it only works onrtagenumber of spe-
cific platforms and architectures. In this report, we propose a new lesed-thread library that

offers the same features as QuickThreads, but makes use of Linuy libnztions and therefore is
portable to all 32-bit Linux platforms.

1 Introduction

Before the popular use of multiprocessor machines, user-level threadylis widely adopted in
multithreading programs to handle multiple concurrent tasks in a time-slice madnde single
processor, multiple tasks are executed in a time-division multiplexing mode andrtextswitch-
ing between these tasks generally happens so frequently that the esmisgthe threads or tasks
as running at the same time. Thus, the essential part of the user-le\a thmery is how to effi-
ciently manage context switching between different user threads in thegganess. A well-known
example of the user-level threads is QuickThreads [2], which owra gegformance in sequential
multithreading programs. However, QuickThreads only works right on a lilmitenber of plat-
forms, which restricts the usage of QuickThreads. In the remainder dktthsical report, a new

http://www.cecs.uci.edu

user-level thread library built on Linux context library functions is pregd for the SpecC sequen-
tial simulator. Preliminary simulation results indicate that the new thread librarydrgssimilar
performance to QuickThreads and it is portable to all 32-bit Linux platforms

2 Basic Ideas of the ContextThreads Library

As a popular user-level thread library, QuickThreads provides awbateportable interface to
machine-dependent code that performs thread initialization and contiéstiiswg [2]. To offer more
simplicity and flexibility to the thread package, QuickThreads separate thaerfstasting and stop-
ping threads) from the thread allocation and scheduling of differeniegidn fact, QuickThreads
does not manipulate any allocation and run queues. Instead, it only pravddnple mechanism
that performs a context switch, and then invokes a client function onlfoefhihe halted thread.
During such a context switching, QuickThreads library will first saverdggster values of the old
thread on to its stack, adjusting the stack pointer as needed, and then jumgduodiiens of the
new thread by loading its stack.

Although QuickThreads library is superior in the thread initialization and edsigitching, it
is only portable to a certain number of platforms and architectures (80388, YAX family and so
on). On other platforms, modern Linux operating systems offer some lifiracyions to achieve the
same functionalities. Some examples of these functiongetmntextsetcontextswapcontexand
makecontextleclared inucontext.H1]. Specifically,getcontextvould save the current execution
context (register values, program counter and etc.) to a data strugheeuiyontexit, setcontext
would load aucontexit struct and switch to the specified execution contewtapcontexwill save
the current context and switch to another one aradkecontexwill create a new execution context
by defining the thread functions and arguments. To create a new threa@nairst calfgetcontext
to retrieve the current context and modify the context by specifying thetifion and arguments
in makecontextTo context switch to a new thread, we could just usestlivapcontexfunction to
stop the current thread and continue executing another. Integratirg filmestions, a new user-
level ContextThreads library is created. Similar to what QuickThread€alatextThreads separate
the thread execution and scheduling. Changing scheduling policies in titexCthreads library
would be as easy as changing a function pointemakecontext By utilizing the same ideas in
QuickThreads library and the Linux context functions, the new usei-tbvead library offers high
performance in computation as well as a wide portability to all Linux platforms.

3 Performance Evaluation of the ContextThreads Library

3.1 Platform Architectures and Benchmark Examples

To evaluate the performance of ContextThreads, we utilize two Spec@inanks to test two differ-
ent aspects of a thread library: a Producer-Consumer example (fomg)-to evaluate the context
switching performance and a parallel benchmark which has intensiedthreation/deletion oper-
ations to test the feature of thread initialization (named TFMUL, Threads with fploating-point
MULtiplication). Both of the benchmarks are running on two 32-bit Linux miaeg, which have

Intel(R) Core(TM) 2 Quad architecture Q9650 3.0 GHz CPU (nameyland Intel(R) Xeon(R) ar-
chitecture X5650 2.66 GHz CPU (nameidl respectively. Figure 1 and 2 illustrate the architectures
of the two processors. The dashed line in the middle of the processor theatise CPU has the

hyperthreading feature enabled [3].

‘ CPUO \ ‘ CPU1 CPU2 CPU3 \

L2 Cache L2 Cache
[FSB Interface] [FSB Ir:terface]
1)

Figure 1: Intel Core 2 Quad architecture, Q9650 (mu) [3]

HHHHHH

L3 Cache

Memory Ilntel QuickPath
L3Cache
10 + 22
- L1 Cache
[L2cache

Figure 2: Intel Xeon architecture, X5650 (xi) [3]

To simulate these two examples, we adopt three SpecC sequential simulaichisavehbased
on QuickThreads, ContextThreads and PosixThreads. The simulatiorféintes two benchmarks
onmu andxi are shown in Figure 3 to's Table 1 and 2 list the data used in these figures.

1The simulation results in all these figures are picked up from the tables ian&ispB, and they always choose the
example which has medium elapsed time

Table 1: Simulation Results for Producer-Consumer Model

Hostname | Usr Time | Sys Time | Elapsed Time | CPU Load | Thread Library
26.85s 0 26.87s 99.00% QuickThreads

mu 34.11s 14.22s 48.35s 99.00% ContextThreads
84.8s 189.48s 274.38s 99.00% PosixThreads
22.08s 0 22.14s 99.00% QuickThreads

xi 28.75s 9.79s 38.65s 99.00% ContextThreads
63.6s 231.25s 295.66s 99.00% PosixThreads

250

200

Time (s)

150

100

50

QuickThreads

ContextThreads

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

PosixThreads

CPU Load

[User Time
[Sys Time
[Elapsed Time

==>¢=CPU Load

Figure 3: Simulation Results for Producer-Consumer Model on mu

120.00%

300

250

200

Time (s)

150

100

50

QuickThreads

ContextThreads

[100.00%

[80.00%

[60.00%

[40.00%

r 20.00%

~ 0.00%

PosixThreads

CPU Load

[User Time
[Sys Time
[Elapsed Time

=>=CPU Load

Figure 4: Simulation Results for Producer-Consumer Model on xi

Table 2: Simulation Results for TFMUL Model

Hostname | Usr Time | Sys Time | Elapsed Time | CPU Load | Thread Library
8.61s 17.67s 26.29s 99.00% QuickThreads
mu 11.1s 24.36s 35.48s 99.00% ContextThreads
38.22s 169.36s 230.67s 89.00% PosixThreads
7.38s 11.21s 18.69s 99.00% QuickThreads
xi 10.1s 16.72s 26.93s 99.00% ContextThreads
37.84s 163.84s 222.02s 90.00% PosixThreads
250 120.00%
200 I 100.00%
[80.00%
g f 60.00% F—sys Time

100

50

200

150

Tiem (s)

100

50

QuickThreads

ContextThreads

[40.00%

[20.00%

© 0.00%

PosixThreads

CPU Load

W Elapsed Time

=>=CPU Load

Figure 5: Simulation Results for TFMUL Model on mu

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

CPU Load

[User Time
[Sys Time
[Elapsed Time

=>&=CPU Load

QuickThreads

PosixThreads

ContextThreads

Figure 6: Simulation Results for TFMUL Model on xi

3.2 Producer-Consumer Model

The first parallel benchmark, Producer-Consumer model, is a simple é&xavhgh features in-
tensive context switching. During the whole simulation, the program willterdaee threads: a
5

Producer, a Consumer and a Monitor. The Producer instance willtezgfigagend data to the Con-
sumer through a double-handshake channel. This communication is wrappea huge loop and
the monitor will terminate the whole program when all the communication is donecesl#ris ex-
ample has a limited amount of parallelism but a heavyweight of thread symizhtion. The exact
code of the Producer-Consumer model is listed in Appendix A.1.

From Figure 3 and 4, itis easily seen that QuickThreads library has she&dormance on both
two platforms while the sequential PosixThreads simulator owns the wofsripence. Context-
Threads library is slightly inferior to QuickThreads and is much better thaixPbreads. The
almost zero system time in the QuickThreads simulator indicates that QuickiBhheae very
low kernel-level overhead and is quite efficient in context switching. t€&dihreads library has
a small amount of system-level time as the signal mask is saved and restorgdhgssystem
call sigprocmaskintroducing some kernel-level overhead to the ContextThreads libEagn so,
ContextThreads is still more than 5 times faster than PosixThreads for tHadereConsumer ex-
ample. When the benchmark has intensive context switching, PosixBhspatd lots of time
in the kernel-level scheduling and synchronization of different tree&atom Figure 3 and 4, we
can see that the system-level overhead of PosixThreads is more than $Qarges than that of
QuickThreads and ContextThreads. Generally speaking, for thauGgp€onsumer Model, the
sequential QuickThreads simulator has a speedup of 10 over the safjBesixThreads simulator
and the ContextThreads simulator has a speedup of more than 6 over ikiEnResds simulator.

3.3 Threads with Pure Floating-point Multiplication (TFMUL)

TFMUL model is a highly parallel example that stresses thread creation/aeldticeach thread
of TFMUL, it is doing floating-point multiplication and there is no inter-threadgnoaounication.
Thus, all the child threads in the benchmark can be executing at the same timetveitlty data
dependencies. A total of 10,000,000 threads are created in the whoksprand it brings a heavy
load in thread initialization. A.2 shows the source code of the TFMUL example.

For the TFMUL benchmark, we can draw the same conclusion as the RreGoosumer ex-
ample. The heavy load of kernel threads creation and kernel struciputaion will burden the
performance of PosixThreads library. On batly andxi, the PosixThreads library is more than 6
times slower than the other two user-level thread libraries. For Quickdibr@ad ContextThreads,
they both have a high efficiency in thread initialization (as indicated by the sys#ira time on
Figure 5 and 6) and QuickThreads library still owns the best performanc

4 Conclusion

According to the simulation results for the two benchmarks, we can conclatd€dntextThreads
library is slightly inferior to QuickThreads as a user-level thread librany,is portable to all 32-
bit Linux platforms as it does not depend on any machine-dependeat(CahtextThreads fail on
LP64-architectures as the functiomkecontextequires additional parameters to be type int, but
the function call passes pointers. On LP64 architectures, the size eépsitarger than that of an
integer). Therefore, ContextThreads library would be a good substittive QuickThreads library

on platforms where QuickThreads are not configurable.

Acknowledgment

The authors thank Professor Demsky, EECS Department, UC Irvinedanitial idea of replacing
QuickThreads with ContextThreads.

References

[1] GNU. Linux Programmer's ManuaMarch 2009.

[2] David Keppel. Tools and Techniques for Building Fast Portable dtisePackages. Technical
Report UWCSE 93-05-06, University of Washington Department of QderpScience and
Engineering, May 1993.

[3] Guantao Liu and Rainer @mer. Performance Evaluation and Optimization of A Custom Na-
tive Linux Threads Library. Technical Report CECS-12-11, CefdeEmbedded Computer
Systems, University of California, Irvine, October 2012.

©CoO~NOUThWNPE

A Benchmark Examples

A.1 Producer-Consumer Model

Listing 1: Producer-Consumer Model

/! prodcons.sc: simple produceronsumer example

// author: Rainer Doemer, Guantao Liu

/1 02/14/13 GL modified to test HybridThreads library
// 01/09/12 RD modified to test oesimulator run-ahead

#include <stdio .h>
#include <stdlib .h>
#include <assert.b
#include <sim.sh>

#include <sched.b

#include <c_typed.double_handshake . sh

#define DATA 42

#define ITERATIONS 5000000

#define EXIT.ON.HANDSHAKE // to exit on handshake
#define printf nop /l eliminate printing messages

#ifdef USEFLOATING_POINT
#define FDATA 42.5e0
#endif

#ifndef MAXTHREAD
#define MAXTHREAD 1
#endif

DEFINEI_TYPED_SENDER (char, char) // interface i.char_sender
DEFINEI_TYPED_RECEIVER (char, char) // interface i.char_receiver
DEFINEI_TYPED_.TRANCEIVER (char, char) // interface i.char_tranceiver
DEFINEC_TYPED.DOUBLE HANDSHAKE (char, char)// channel cchar_.doublehandshake

DEFINEI_TYPED_.SENDER(short, short) // interface i.short.sender
DEFINEI_TYPED_RECEIVER (short, short) // interface i_short.receiver
DEFINEI_TYPED_.TRANCEIVER (short, short) // interface i_short_.tranceiver
DEFINEC_TYPED.DOUBLE HANDSHAKE (short, short)// channel cshort.doublehandshake

DEFINEI_TYPED_SENDER(int , int) // interface iint_sender
DEFINEI_TYPED.RECEIVER(int , int) // interface i.int_receiver
DEFINEI_TYPED_-TRANCEIVER(int , int) // interface i.int_tranceiver
DEFINEC_TYPED.DOUBLE HANDSHAKE (int , int)// channel cint.double.handshake

DEFINEI_-TYPED_.SENDER(llong , long long) // interface i.llong_sender
DEFINEI_TYPED_.RECEIVER((llong , long long)// interface i.llong_.receiver
DEFINEI_TYPED_-TRANCEIVER((llong , long long)// interface i.llong_-tranceiver
DEFINEC_TYPED.DOUBLE HANDSHAKE(llong , long long)// channel cllong_double.handshake

#ifdef USEFLOATING_POINT

DEFINEI_TYPED_.SENDER (float , float) Il interface i_float_.sender
DEFINEI_TYPED_RECEIVER (float , float) /l interface i.float_.receiver
DEFINEI_TYPED_.TRANCEIVER (float , float) Il interface i_float_tranceiver

113

DEFINEC_TYPED.DOUBLE HANDSHAKE (float , float)// channel cfloat.double.handshake

DEFINEI_TYPED_SENDER (double, double) /l interface i.double.sender
DEFINEI_TYPED_RECEIVER (double, double) /l interface i.double.receiver
DEFINEI_TYPED_.TRANCEIVER (double, double) /1 interface i.double_.tranceiver

DEFINEC_TYPED.DOUBLE HANDSHAKE (double, double)// channel cdouble.double.handshake

DEFINEI_-TYPED_.SENDER (Idouble ,long double) // interface i.ldouble.sender
DEFINEI_TYPED_.RECEIVER(Idouble , long double) // interface i_ldouble.receiver
DEFINEI_TYPED_.TRANCEIVER (ldouble , long double) // interface i_ldouble_tranceiver
DEFINEC_TYPED.DOUBLE HANDSHAKE (ldouble , long double)

/!l channel cldouble.double.handshake

#endif

void nop(const charx, ...)

/+ do nothing */

}

import "c_handshake”;

behavior producer(

#ifdef USEFLOATING_POINT
i_float_sender pF,
i_double.sender pD,
i_ldouble_sender pL,

#endif
i_char_.sender pc,
i_short.sender ps,
i_-int_sender pi,
i_llong_sender pl)

void main(void)
{
char ¢ = DATA;
short s = DATA;
int i = DATA;
long long | = DATA;
#ifdef USEFLOATING_POINT
float F = FDATA;
double D = FDATA;
long double L =FDATA;
#endif
int n;

print_.time ();
if (((charx)&s)[0] == DATA)
{ printf("Producer: appears to be LITTLE endign”);

}
else if (((charx)&s)[1] == DATA)
{ printf("Producer: appears to be BIG endigmn”);

else
{ printf("Producer: appears to be UNKNOMN endigm”);

for (n=0; r<ITERATIONS; n++)
waitfor (10);

printtime ();
printf ("Producer: sending char c¢ = %d (0x%020)", c, c);

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

pc.send(c);

C++;

waitfor (10);
printtime ();
printf("Producer:
ps.send(s);

S++;

waitfor (10);
printtime ();
printf("Producer:
pi.send(i);

i++;

waitfor (10);
print.time ();
printf("Producer:
pl.send(1);

| ++;

sending

sending

sending

#ifdef USEFLOATING_POINT

waitfor (10);
printtime ();
printf("Producer:
pF.send(F);

F += .5;

waitfor (10);
print.time ();
printf("Producer:
pD.send(D);

D += .5;

waitfor (10);
printtime ();
printf("Producer:
pL.send(L);

L += .5;

#endif

}
1

printtime ();
printf("Producer:

behavior consumer(
#ifdef USEFLOATING_POINT

i_float_receiver

pF,

sending

sending

sending

done\.n");

i_double.receiver pD,

i_ldouble_receiver pL,
#endif

i_char_.receiver pc,

i_short.receiver ps,
i
i

int_receiver pi,
Illong_receiver pl

#ifdef EXIT_ON.HANDSHAKE

i_send pdone

#endif

)

void main(void)

{

char c;
short s = DATA;
int i;

short s = %d (0x%04x)", s, s);

int i =%d (0x%08Xh”, i,

Illong

float F = %", F);

double D = %g”, D);

Idouble L = %\g”, L);

10

i);

| = %Ild (0x%01611xn”", I,

1);

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

long long I;

#ifdef USEFLOATING_POINT

float F = FDATA;
double D = FDATA;
long double L =FDATA;

#endif

#ifdef

int n;

printtime ();
if (((charx)&s)[0] == DATA)
{ printf("Consumer:

else
{ printf("Consumer:

else

{ printf("Consumer:
}

s = 0;

for (n=0; <ITERATIONS;
{

n++)

pc.receive(&c);
print.time ();
printf("Consumer:
ps.receive(&s);
printtime ();
printf("Consumer:
pi.receive(&i);
print.time ();
printf(”Consumer:
pl.receive(&l);
print.time ();
printf("Consumer:
USE.FLOATING_POINT
pF.receive (&F);
print.time ();
printf(”Consumer:
pD.receive(&D);
print.time ();
printf("Consumer:
pL.receive(&L);
print.time ();
printf("Consumer:

#endif

printtime ();
printf ("Consumer: done\.n");

#ifdef EXIT_ON.HANDSHAKE

pdone.send ();

#endif

}
}

behavior

monitor (

#ifdef EXIT_ON.HANDSHAKE

receive pdone

#endif

)

void main(void)

appears to

appears to

received

received

received

received

received

received

received

if (((char«)&s)[1] == DATA)
appears to

char

short s

int

llong

be LITTLE endign”);

be BIG endigm’);

be UNKNOWN endigm”);

c = %d (0x%02x)", c, c);

%d (0x%04xy, s, s);

i = %d (0x%08xd”, i, i);

| = %lld (0x%01611Xh", I,

float F = %g", F);

double D = %g”, D);

Ildouble L = %hg”, L);

11

1);

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293

{

#ifdef EXIT_-ON_TIME
waitfor (EXIT.ON.TIME);

#endif

#ifdef EXIT_ON.HANDSHAKE
pdone.receive ();

#endif
printtime ();

printf ("Monitor: Done, exiting ..\

exit (0);
}
s

behavior DUT

{
c.char.double.handshake cc;
c.shortdoublehandshake cs;
c.int_double.handshake ci;
c_llong-double.handshake cl;

#ifdef USEFLOATING_POINT
c_float_.double.handshake cF;
c.double.double.handshake c¢D;
c.ldouble_.double.handshake cL;

#endif

#ifdef EXIT_ON.HANDSHAKE

c_handshake cend;
#endif
producer prod(
#ifdef USEFLOATING_POINT
cF, cD, cL,
#endif
cc, cs, ci, cl);
consumer cons (
#ifdef USEFLOATING_POINT
cF, cD, cL,
#endif

cc, ¢cs, ci, cl
#ifdef EXIT_ON.HANDSHAKE
, cend

)
monitor mon
#ifdef EXIT_ON.HANDSHAKE
(cend)
#endif

#endif

void main(void)
.
int i;
for (i = 0; i < MAXTHREAD; i++)
par { prod.main();
cons.main ();
mon. main () ;

}
}
+
behavior Main
{

12

294
295
296
297
298
299
300
301
302
303
304
305
306
307

O©CoOo~NO U~ WNE

s
11

DUT top;

int main(void)

{
print.time ();
printf ("Main: starting..\n");
top . main ();
printtime ();
printf ("Main: done\n”");
return O;

}

EOF prodcons.sc

A

.2 TFMUL Model

Listing 2: TFMUL Model

TFMUL.sc: parallel floating—point benchmark

author: Weiwei Chen, Rainer Doemer, Guantao Liu
02/15/13 GL modified to test HybridThreads library
11/13/11 RD modified to create more parallel threads
09/02/11 WC created to test parallel simulators

#include <stdio .h>
#include <stdlib .h>
#include <sim.sh>

/1

number of multiplications per unit

#define MAXLOOP 1000

/1

number of threads

#ifndef MAXTHREAD
#define MAXTHREAD 100000
#endif

/1

type of floating—point numbers

typedef double float_t;

behavior Fmul

{

1

int i = 0;
float.t f = 1.2;

void main ()
while (i < MAXLOOP)
f x= 1.1;
i ++;

}
}

behavior Main

Fmul fmulo, fmull, fmul2, fmul3, fmul4,

13

int

{

fmul5, fmul6, fmul7, fmul8, fmul9;

main (void)

int i;
char xptrd7 , xptr53, xptr73, xptr89;
printf ("Fmul[%d,%d] starting ...\n”, MAXTHREAD, MAXLOOP);

for (i = 0;

{

i < MAXTHREAD; i++)

par { fmul0; }

ptra7 = (charx)malloc(47);

par { fmul0; fmull; fmul2; fmul3; fmul4;
ptr73 = (charx)malloc(73);

free (ptrd7);

par { fmul0; fmull; fmul2; fmul3; fmul4;
ptr53 = (charx)malloc (53);

free (ptr73);

par {fmul0; fmull; fmul2; }

ptr89 = (charx)malloc(89);

free (ptr53);

par { fmul0; fmull; fmul2; fmul3; fmul4;
ptr73 = (charx)malloc(73);

free (ptr89);

par {fmul0; fmull; fmul2; fmul3; }
ptra7 = (charx)malloc(47);

free (ptr73);

par { fmul0; fmull; }

ptr89 = (charx)malloc(89);

free (ptrd7);

fmul5; fmul6; }

fmul5; fmulé; fmul7; fmi8; }

fmul5; fmul6; fmul7;}

par { fmul0; fmull; fmul2; fmul3; fmul4; }

ptr53 = (charx)malloc (53);

free (ptr89);

par { fmul0; fmull; fmul2; fmul3; fmul4; fmul5; }

ptr73 = (charx)malloc(73);

free (ptr53);

par { fmul0; fmull; fmul2; fmul3; fmul4; fmul5; fmul6; fmul7; fmd8; fmul9; }

ptr89 = (charx)malloc(89);

free (ptr73);

par { fmul0; }

ptra7 = (charx)malloc (47);

free (ptr89);

par { fmul0; fmull; fmul2; fmul3;
ptr73 = (charx)malloc(73);

free (ptrd7);

par { fmul0; fmull; fmul2; fmul3;
ptr53 = (charx)malloc (53);

free (ptr73);

par {fmul0; fmull; fmul2; }

ptr89 = (charx)malloc(89);

free (ptr53);

par { fmul0; fmull; fmul2; fmul3;
ptr73 = (charx)malloc(73);

free (ptr89);

par {fmul0; fmull; fmul2; fmul3; }
ptr47 = (charx)malloc (47);

free (ptr73);

par { fmul0; fmull; }

ptr89 = (charx)malloc(89);

free (ptrd7);

fmul4 ;

fmul4;

fmul4;

fmul5; fmul6; }

fmul5; fmul6é; fmul7; fmi8; }

fmul5; fmul6; fmul7;}

par { fmul0; fmull; fmul2; fmul3; fmul4; }

14

100 ptr53 = (charx)malloc (53);

101 free (ptr89);

102 par { fmul0; fmull; fmul2; fmul3; fmul4; fmul5; }
103 ptr73 = (charx)malloc (73);
104 free (ptr53);

105 free (ptr73);

106 }

107 printf ("Done\n");

108 return (0);

109

110 };

111

112 // EOF TFMUL.sc

B Measured Simulation Times for All Benchmarks and Applications

B.1 Simulation Time for Producer-Consumer Model

Table 3: Producer-Consumer Model on mu

Hostname | Usr Time | Sys Time | Elapsed Time | CPU Load | Thread Library
26.78s 0 26.79s 99.00%
26.97s 0 26.99s 99.00%
mu 26.91s 0 26.92s 99.00% QuickThreads
26.85s 0 26.87s 99.00%
26.83s 0 26.84s 99.00%
34.27s 14.04s 48.34s 99.00%
34.24s 14.06s 48.32s 99.00%
mu 34.54s 14.23s 48.79s 99.00% ContextThreads
34.41s 14.1s 48.53s 99.00%
34.11s 14.22s 48.35s 99.00%
84.8s 191.57s 276.46s 99.00%
84.49s 189.62s 274.21s 99.00%
mu 84.8s 189.48s 274.38s 99.00% PosixThreads
84.22s 188.86s 273.18s 99.00%
84.16s 191.44s 275.69s 99.00%

15

Table 4: Producer-Consumer Model on Xi

Hostname | Usr Time | Sys Time | Elapsed Time | CPU Load | Thread Library
22.11s 0 22.17s 99.00%
22.08s 0 22.15s 99.00%
Xi 22.08s 0 22.14s 99.00% QuickThreads
22.04s 0 22.11s 99.00%
21.8s 0 21.86s 99.00%
28.44s 10.04s 38.6s 99.00%
28.57s 10.05s 38.74s 99.00%
Xi 28.82 10.28s 39.22s 99.00% ContextThreads
28.75s 9.79s 38.65s 99.00%
28.1s 10.16s 38.37s 99.00%
63.86s 233.22s 297.9s 99.00%
63.6s 231.25s 295.66s 99.00%
Xi 65.28s 228.73s 294.82s 99.00% PosixThreads
63.05s 229.41s 293.27s 99.00%
64.88s 234.53s 300.24s 99.00%

16

B.2 Simulation Time for TFMUL Model

Table 5: TFMUL Model on mu

Hostname | Usr Time | Sys Time | Elapsed Time | CPU Load | Thread Library

8.42s 17.97s 26.41s 99.00%
8.61s 17.67s 26.29s 99.00%

mu 8.28s 17.56s 25.86s 99.00% QuickThreads
8.41s 17.73s 26.15s 99.00%
8.61s 18.31s 26.94s 99.00%
11.21s 24.08s 35.31s 99.00%
11.1s 24.36s 35.48s 99.00%

mu 11.25s 23.68s 34.95s 99.00% ContextThreads
11.17s 24.32s 35.51s 99.00%
11.73s 24.89s 36.64s 99.00%
37.6s 170.21s 231.26s 89.00%
37.61s 170.56s 231.48s 89.00%

mu 38.22s 169.36s 230.67s 89.00% PosixThreads
37.38s 169.43s 229.93s 89.00%
37.46s 168.77s 229.25s 89.00%

Table 6: TFMUL Model on xi
Hostname | Usr Time | Sys Time | Elapsed Time | CPU Load | Thread Library

7.38s 11.21s 18.69s 99.00%
7.06s 11.34s 18.48s 99.00%

xi 7.31s 11.85s 19.27s 99.00% QuickThreads
7.11s 12.08s 19.3s 99.00%
7.08s 11.37s 18.55s 99.00%
10.48s 18.51s 29.12s 99.00%
10.28s 17.29s 27.7s 99.00%

Xi 10.1s 16.72s 26.93s 99.00% ContextThreads
9.86s 16.36s 26.34s 99.00%
9.63s 16.63s 26.39s 99.00%
39.46s 165.52s 225.7s 90.00%
37.84s 163.84s 222.02s 90.00%

Xi 37.71s 163.21s 221.67s 90.00% PosixThreads
37.46s 164.67s 222.81s 90.00%
36.42s 162.83s 219.74s 90.00%

17

	1 Introduction
	2 Basic Ideas of the ContextThreads Library
	3 Performance Evaluation of the ContextThreads Library
	3.1 Platform Architectures and Benchmark Examples
	3.2 Producer-Consumer Model
	3.3 Threads with Pure Floating-point Multiplication (TFMUL)

	4 Conclusion
	References
	A Benchmark Examples
	A.1 Producer-Consumer Model
	A.2 TFMUL Model

	B Measured Simulation Times for All Benchmarks and Applications
	B.1 Simulation Time for Producer-Consumer Model
	B.2 Simulation Time for TFMUL Model

